

Radiomic Analysis and prognostication-TMH &Indian Data

Jayant S Goda, MD, DNB, MRes Radiation Oncology Email: godajayantsastri@gmail.com

Multi-modality Imaging in Cancer

Radiomic features

(quantitative features from medical images using automated data characterization algorithms)

- Machine learning algorithms
- Deep learning algorithms

Dosiomic features

radiomic features extracted

from **dose maps**

descriptors of **spatial patterns** in dose distributions

Semantic features

(qualitative imaging features that are defined by experienced radiologists)

Traditional imaging

Indian Data : Radiomics & Al across all cancers

- Data has just started emerging from Indian institutions
- Mostly computational and organizational data
- Limited clinical Data
- Ongoing studies at various centres across India

CMC, Tata Medical Centre, Tata Memorial hospital, other Centres across India.....

Radiomics in preoperative classification of PitNETs

Home > Acta Neurochirurgica > Article

Is radiomics a useful addition to magnetic resonance imaging in the preoperative classification of PitNETs?

Sathya A, Abhijit Goyal-Honavar, Ari G Chacko, Anitha Jasper, Geeta Chacko, Devadhas Devakumar,

Joshua Anand Seelam, Balu Krishna Sasidharan, Simon P Pavamani & Hannah Mary T Thomas 🗹 2024 Feb

Radiomics in preoperative classification of PitNETs

high- and low-risk non-functioning PitNETs

somatotroph and gonadotroph PitNETs

Sathya et al Acta Neurochirurgica 2024

Tata Memorial Hospital Projects

- Started in 2018 : Retrospective studies to explore its potential
- No of Radiomics based Research projects :17 (across all cancers; 3 projects on brain tumors)
- Radiomics extraction software used: TexRAD [™] & Pyradiomics
- Research projects with specific endpoints
 - Grading of Cancer
 - -Molecular classification of disease
 - Response to Therapy
 - Survival Outcomes
- Publications : 5 & Abstract in conferences: 6

Radiomics & Deep Learning in molecular classification of cancers

Predicting IDH subtype of high Grade Astrocytoma and Glioblastoma from tumor radiomic patterns extracted from Multiparametric Magnetic Resonance Images

Kandalgaonkar & Ann Christy Saju et al Frontiers in Oncology, 2022

- N= 100 pts
- Imaging protocol T1+C & T2W MRI sequences
- 82 texture features each in T1W+C &T2W images

Medium filter

Coarse filter

LASSO selected features used for model development

T1W+C TEXTURE FEATURES (N = 7)	T2W TEXTURE FEATURES (N = 7)
KURTOSIS_0_T1C	MEAN_0_T2
ENTROPY_2_T1C	MPP_0_T2
KURTOSIS_2_T1C	KURTOSIS_0_T2
MEAN_5_T1C	MEAN_4_T2
KURTOSIS_5_T1C	GLCM1_clusterShade_T2
SKEWNESS_6_T1C	GLCM1_idn_T2
GLCM4_correlation_T1C	GLCM1_sumEntropy_T2

Performance of best classification model

ROC curves of the best model for prediction of the two molecular subgroups using combined multi-

Best Model(4 GLCM+10 first order features)

slice T1+C and T2w GLCM features using Quadratic SVM, (A) IDH positive and (B) IDH negative

Diagnostic metrics	IDH –VE (n=83)	IDH +VE (n=17)			
AUC	0.89	0.89			
Sensitivity	96%	53%			
Specificity	52.9%	96.4%			
FNR	4%	47%			
PPV	90.9%	75%			
NPV	75%	90.9%			
Overall A ccuracy	89%				

10-fold internal cross validation

MEdulloblastoma Radiomics as a Molecular Adjunct In Diagnosis (MERMAID)- Initial Analysis

BJR	© 2022 The Authors.	Published by the British Institute of Rediology
Received: OB December 2021 Revised: Accepted: 04 March 203	22 Published online: 21 March 2022	https://doi.org/10.1259/bjr-20211359
Cite this article as: Saju AC, Chatterjee A, Sahu A, Gupta T, Krishnatry R, Moka medulloblastoma using multiperametric MRI-based tumor	il S., et al. Machine-learning appro radiomics. Br J Radiol (2022) 1012	ach to predict molecular subgroups of 59/bjr:20211559
FULL PAPER		
Machine-learning approa subgroups of medulloble MRI-based tumor radion	ach to predict astoma using i nics	molecular multiparametric
¹ ANN CHRISTY SAJU, MD, ¹ ABHISHEK CHATTERJE ¹ RAHUL KRISHNATRY, MD, ³ SMRUTI MOKAL, MSc, ⁴ ⁵ GIRISH CHINNASWAMY, MD, ¹ JAI PRAKASH AGAI	E, MD, ² ARPITA SAHU, MD, ¹ TE ¹ AYUSHI SAHAY, MD, ⁴ SRIDH/ RWAL, MD and ^{1,6} JAYANT S G	EJPAL GUPTA, MD,DNB, AR EPARI, MD, ⁵ MAYA PRASAD, MD, ODA, MD,DNB

Ann Christy Saju et al, British Journal of radiology 2020

Radiomics Work flow

Medium filter

Data Augmentation

Single slice multiple sampling of volumes T1+C -174,T2W-170

Coarse filter

T1w+C & T2W:164 texture features

Fine filter

Texture Features Extracted				
First-Order Features	Mean			
	Standard Deviation			
	Mean of Positive pixels			
	Entropy			
	Skewness			
	Kurtosis			
GLCM features	Autocorrelation			
	Cluster prominence			
	Cluster shade			
	Cluster tendency			
	Contrast			
	Correlation			
	Dissimilarity			
	Homogeneity			
	Joint average			
	Joint energy			
	Joint entropy			
	Idm (inverse difference moment)			
	Difference entropy			
	Difference variance			
	Idmn (inverse difference moment normalized)			
	Idn (inverse difference normalized)			
	Inverse variance			
	Sum entropy			
	Sum squares			
	Joint maximum			
Shape/topographic features	Perimeter			
	Area			
	Elongation			
	Sphericity			
	Long axis			
	Short axis			
	·			

Performance of Single slice Multiple Sampling approach using GLCM + shape features in T1w images

Support vector Classification

	WNT	SHH	Group3	Group4
AUC	0.93	0.9	0.93	0.93
Sensitivity	73%	70%	86%	82%
PPV	79%	73%	87%	75%
False discovery Rate	21%	27%	25%	13%

Best Model(30 GLCM+6 shape features)

Validation cohort (N= 30)

Support vector Classification

	Precision	Recall	F1 Score	Sensitivity	Specificity
Gp3	38.27	26.94	30.05	NaN	84.11
Gp4	58.07	26.60	34.82	58.07	86.58
WNT	28.22	50.00	34.05	NaN	75.11
SHH	26.95	58.61	33.83	26.95	69.04

Exploration of Targeted Anti-tumor Therapy

Open Access Original Article

Deep learning based automated epidermal growth factor receptor and anaplastic lymphoma kinase status prediction of brain metastasis in non-small cell lung cancer

Abhishek Mahajan^{1,2*}, Gurukrishna B², Shweta Wadhwa², Ujjwal Agarwal², Ujjwal Baid³, Sanjay Talbar³, Amit Kumar Janu², Vijay Patil⁴, Vanita Noronha⁴, Naveen Mummudi⁵, Anil Tibdewal⁵, JP Agarwal⁵, Subash Yadav⁶, Rajiv Kumar Kaushal⁶, Ameya Puranik⁷, Nilendu Purandare⁷, Kumar Prabhash⁴

- N=117
- EGFR mutation: 33;ALK mutation:43; double negative:41
- Data was divided into 80% training and 20% testing
- Training was done using CNN architecture
- Different Deep learning algorithms were used

DL for predicting ALK & EGFR mutations in brain mets of lung cancer pts

Architecture name	Accuracy without segmentation	Accuracy post segmentation
ResNet18	0.52	0.62
ResNet34	0.56	0.65
ResNet50	0.61	0.66
MobileNetV1	0.60	0.66
MobileNetV2	0.62	0.69
Xception	0.74	0.83
EfficientNetB0	0.76	0.89

Predicting Biomarker using Imaging Biomarker

- 282 NSCLC patient's pretreatment CT scans
- [EGFR+(178)/ EGFR- (104)]
- 108 stable radiomic features (based on our earlier stability study (Jha A,K, etal,2021)
- hierarchical clustering
- RFE : 6 radiomic features
- ML algorithms: Decision tree , Random forest, K-nearest neighbor, XG-boost, Adaboost and Logistic regression.
- Train and Test(70:30)
- Models were compared based on Accuracy and AUC in the Test set

LR= Logistic regression, RF= Random forest, KNN=K-nearest neighbor , DT=Decision tree, XGB=XG-boost, ADB=Adaboost

Accessing the predictability of Epidermal growth factor receptor status from Computed Tomography radiomics using machine learning.

Sherkhane, U., Jha, A. K., Jaiswar, V., Mithun, S., Rangarajan, V., Wee, L., & Dekker, A. (2022, September). *EUROPEAN JOURNAL OF NUCLEAR MEDICINE* AND MOLECULAR IMAGING (Vol. 49, No. SUPPL 1, pp. S623-S623).

Radiomics in Grading of Cancer

Machine learning based Radiomics for Classifying Glioma grade from Magnetic Resonance Images of the brain

- N= 83
- Histopathologically proven gliomas
- underwent T2W sequence MRI
- LASSO regression method was selected for feature reduction

-The features selected were 3 first order and 1 shape feature to develop the model

- Used multiple machine learning tools
 - Gradient boost classifier
 - Adaboost classifier
 - Random Forest classifier
 - Support vector machine Classifier
 - Naïve Bayes Classifier

11

LGG

HGG

Kumar A et al; Journal of personalized medicine 2023

Radiomics for Classifying Glioma Grade

Prediction model performance from selected radiomics features for classifying LGG from HGG.

		Class Probability				Per	formance Met	rics
Algorithm/ Model	Validation	0 Low-Grade (Grade-2/3)	1 High-Grade (Grade 4 As- trocytoma)	Accuracy	The Area under the Curve (AUC)	Precision	Recall	F1 Score
Random Forest Classifier	10-fold cross validation	0.80	0.90	0.83 ± 0.16	0.81 ± 0.19	0.85 ± 0.13	0.93 ± 0.12	0.88 ± 0.11
Support vector Machine Classifier	10-fold cross validation	0.62	0.79	0.82 ± 0.14	0.82 ± 0.21	0.85 ± 0.13	0.91 ± 0.10	0.87 ± 0.09
Gradient boost Classifier	10-fold cross validation	0.96	0.98	0.71 ± 0.09	0.70 ± 0.17	0.80 ± 0.10	0.79 ± 0.13	0.78 ± 0.08
Naïve Bayes Classifier	10-fold cross validation	0.58	0.72	0.66 ± 0.18	0.71 ± 0.23	0.78 ± 0.06	0.72 ± 0.17	0.73 ± 0.14
Ada boost Classifier	10-fold cross validation	0.57	0.74	0.74 ± 0.19	0.75 ± 0.19	0.76 ± 0.09	0.79 ± 0.19	0.73 ± 0.13

- Random forest model was found to be a better than the other three classifier models for all the performance metrics in differentiating the grades of gliomas.
- The RF classifier on glioma grades achieved a predictive performance (AUC:0.81, accuracy :0.83, precision :0.85, Recall:0.93 & F1 score:0.88)

Kumar A et al; Journal of personalized medicine 2023

Characterization of lesions

Characterization of SPN using Radiomic feature

PREDICTION MODELLING STRATEGIE

- Total 163 patients 117 metastatic and 46 benign .
- Feature selection by RFE: 5 radiomic features
- PCA: 3 principal components
- Data balancing: SMOTE
- Prediction model: Random forest
- Validation: test, cross-validation and bootstrap.
- Accuracy: 0.8, 0.80±0.07, and 0.84±1.11 (original)
- Accuracy: 0.8, 0.83±1.10, and 0.80±0.07 (balanced)
- PCA accuracy: 0.86.

Artificial Intelligence assisted PET imaging biomarker for the Characterization of Solitary Pulmonary Lesions

Ashish Kumar Jha, Sneha Mithun, Umesh Kumar Baburao Sherkhane, Akhilesh Tripathi, Grace Monica S. Mehta, Nilendu Purandare, Leonard Wee, V. Rangarajan, Andre Dekker, Molecular Imaging and Biology

Tata Memorial Hospital / Homi Bhabha National Institute

Treatment response and prognostication

MRI based radiomics as an Imaging biomarker for locally advanced carcinoma rectum: Predicting tumor response, and survival following Neoadjuvant Chemoradiotherapy.

- Screened 614 pts
- Analysed 100 pts
- No of radiomic features :62
- End points : Tumor response to NACTRT
 - 2 yr DFS 3 Yr OS

Clinical endpoint Criteria	Feature Selection method	Selected optimal radiomic features from Baseline and Post – Operative MRI
Tumor response to NACTRT	Recursive feature elimination using random forest algorithm	Standard deviation (SSF3)- Baseline MRI Standard deviation (SSF2)- Baseline MRI Skewness(SSF2)- Baseline MRI GLCM-IDMN- Post-NACTRT MRI Differential Entropy- NACTRT MRI
3- year Overall survival	Recursive feature elimination using random forest algorithm	Skewness (SSF4)- Baseline MRI Skewness (SSF5)- Baseline MRI GLCM-Homogeinity- Baseline MRI GLCM-Contrast – Baseline MRI GLCM-Dissimilarity- Baseline MRI GLCM-IDM- Baseline MRI
2- year disease-free survival (DFS)	Recursive feature elimination using random forest algorithm	GLCM Cluster shade- Baseline MRI 'GLCM homogeneity- Baseline MRI GLCM IDM- Baseline MRI GLCM Auto Correlation- Post- NACTRT MRI, GLCM homogeneity- Post-NACTRT MRI

Prediction Model performance from selected radiomic features for classifying tumour response (Complete response v/s no or partial response)

			c			
Machine learning Algorithm	Cross- Validation	Accuracy	Precision	Recall (sensitivity)	f1-score	AUC
Random Forest Classifier (RFC)	10-folds	0.72±0.12	0.77±0.10	0.87±0.11	0.81±0.07	0.79±0.15
Support vector classifier (SVC)	10-folds	0.68±0.16	0.73±0.11	0.87±0.14	0.79±0.11	0.69±0.16
Gradient Boosting Classifier (GBC)	10-folds	0.67±0.13	0.75±0.08	0.77±0.16	0.75±0.11	0.68±0.21
Naive Bayes <u>Classifier(</u> NBC)	10-folds	0.67±0.06	0.61±0.06	0.99±0.04	0.80±0.04	0.62±0.20
AdaBoost Classifier (ABC)	10-folds	0.71±0.12	0.79±0.12	0.84±0.14	0.80±0.08	0.73±0.23

Prediction Model performance from selected radiomic features for 2 year DFS

			C			
Machine learning Algorithm	Cross- Validation	Accuracy	Precision	Recall (sensitivity)	f1-score	AUC
Random Forest Classifier (RFC)	10-folds	0.73±0.17	0.74±0.20	0.75±0.19	0.73±0.18	0.75±0.21
Support vector classifier (SVC)	10-folds	0.58±0.18	0.58±0.16	0.76±0.24	0.65±0.17	0.68±0.19
Gradient Boosting Classifier (GBC)	10-folds	0.64±0.17	0.70±0.23	0.66±0.19	0.66±0.17	0.67±0.22
Naive Bayes <u>Classifier(</u> NBC)	10-folds	0.52±0.14	0.53±0.19	0.77±0.31	0.59±0.18	0.59±0.23
AdaBoost Classifier (ABC)	10-folds	0.63±0.21	0.63±0.22	0.65±0.28	0.62±0.24	0.65±0.26

Prediction Model performance from selected radiomic features for Overall Survival at 3 years

			c			
Machine learning Algorithm	Cross- Validation	Accuracy	Precision	Recall (sensitivity)	f1-score	AUC
Random Forest Classifier (RFC)	10-folds	0.80±0.09	0.81±0.08	0.89±0.07	0.85±0.04	0.77±0.08
Support vector classifier (SVC)	10-folds	0.73±0.13	0.76±0.10	0.91±0.12	0.82±0.08	0.70±0.21
Gradient Boosting Classifier (GBC)	10-folds	0.74±0.08	0.81±0.08	0.84±0.13	0.81±0.06	0.77±0.08
Naive Bayes <u>Classifier(</u> NBC)	10-folds	0.70±0.06	0.70±0.04	0.98±0.04	0.81±0.03	0.55±0.08
AdaBoost Classifier (ABC)	10-folds	0.66±0.12	0.79±0.08	0.89±0.09	0.83±0.05	0.70±0.21

Radiomics in organ preservation

Tumor radiomic features complement clinicoradiological factors in predicting long-term local control and laryngectomy free survival in locally advanced laryngo-pharyngeal cancers

¹JAI PRAKASH AGARWAL, MD, ¹SHWETABH SINHA, MD, ¹JAYANT SASTRI GODA, MD, ¹KISHOR JOSHI, Dip RP, ¹RITESH MHATRE, Dip RP, ²SADHANA KANNAN, Msc, ¹SARBANI GHOSH LASKAR, MD, ¹TEJPAL GUPTA, MD, ¹VEDANG MURTHY, MD, ASHWINI BUDRUKKAR, MD, ¹NAVEEN MUMMUDI, MD and ³BALAJI GANESHAN, PhD

Parameters	Local con	ntrol		Laryngectomy free survival				
	HR	95% CI	<i>p</i> -value	HR	95% CI	<i>p</i> -value		
Age (years)	0.992	0.970-1.014	0.461	0.976	0.941-1.012	0.185		
T stage T1,T2 vs T3,T4	0.629	0.333-1.189	0.154	0.468	0.19-1.151	0.098		
AJCC Stage IV vs III	1.158	0.649-2.067	0.619	0,942	0.418-2.123	0.886		
Subsite Hypopharynx vs larynx	1.120	0.624-2.010	0.704	0.547	0.246-1.220	0.141		
Entropy (medium filter)	1.800	1.257-2.578	0.001	5.982	2.590-13.813	0.0003		
MPP (medium Filter)	0.998	0.989-1.007	0.723	0.969	0.949-0.988	0.002		

The Next Steps in TMH

- Prospective validation on an external data set to have more robust and interpretable results
- Need more concerted efforts in developing large and annotated imaging data bases through multicentric approach
- Planning to use Radiotherapy image data sets (CBCT & MVCT) images.
- Dosiomics : extracting features from radiation dose maps to study the end point of interest
 - Clinical outcomes
 - Radiation Toxicity

Is it prime time for AI or Radiomics to be used in clinical settings?

Acknowledgements

- Professor JP Agarwal
- Dr Abhishek Chatterjee
- Dr Shwetabh Sinha
- Dr Arpita Sahu
- Dr Ashish Jha
- Dr Reena Engineer

Thank You!

Radiomics Workflow

Classifying PCNSL from GBM by DL/ ML approach

Amrita Guha, ^{1,*} Jayant S. Goda, ^{1,*} Archya Dasgupta, ² Abhishek Mahajan, ¹ Soutik Halder, ³ Jeetendra Gawde, ³ and Sanjay Talole ³

Clinical Radiology MM

RESEARCH ARTICLE | ARTICLES IN PRESS

Meta analysis of studies comparing DL/ ML with radiologist in discriminating GBM from PCNSL How does deep learning/ machine learning perform in comparison to radiologists in distinguishing Glioblastomas (or grade IV Astrocytomas) from Primary CNS Lymphomas?: A meta-analysis and systematic review

Amrita Guha A ⊠ • Soutik Halder • Shubham H. Shinde • Jitendra Gawde • Satish Munnolli • Sanjay Talole • Jayant S. Goda A ⊠

Classifying PCNSL from GBM by DL/ ML Approach

studies comparing DL/ ML with Radiologist

Development and validation of radiomic signature for predicting overall survival in advanced-stage cervical cancer

Radiomic feature selection

					Feature selection function	ML algorithm	Prediction model	Accuracy	Precision	Recall	F1-Score	AUCh
Feature selection	Feature	Number of	Accuracy	Карра	Logistic regression	Logistic Regression	LR-Clinical-B	0.61	0.63	0.62	0.62	0.65
	type	features	with	value			LR-Clinical	0.61	0.63	0.62	0.6	0.65
technique		selected	selected				LR-Radiomics-B	0.76	0.83	0.76	0.78	0.60
Participate			features				LR-Radiomics	0.71	0.77	0.71	0.73	0.62
			neurones	0.01			LR-Combined-B	0.71	0.77	0.71	0.73	0.56
Recursive Feature	Clinical	5	0.69	0.31			LR-Combined	0.76	0.78	0.76	0.77	0.51
Elimination with	Radiomics	3	0.64	0.17	Random forest	Random Forest	RF-Clinical-B	0.67	0.7	0.67	0.67	0.65
Logistic regression	Clinical +	+ 5	0.68	0.26			RF-Clinical	0.76	0.77	0.76	0.76	0.71
	Radiomics	2356		100000			RF-Radiomics-B	0.86	0.86	0.86	0.85	0.82
Recursive Feature Elimination with	Clinial		0.79	0.22	Support Vector		RF-Radiomics	0.81	0.81	0.81	0.81	0.81
	Clinical	5	0.68	0.32			RF-Combined-B	0.81	0.81	0.81	0.81	0.70
	Radiomics	4	0.72	0.38			RF-Combined	0.81	0.78	0.81	0.78	0.71
Random Forest	Clinical +	5	0.77	0.46		Support Vector Classifier	SV-Clinical-B	0.62	0.38	0.62	0.47	0.39
	Radiomics						SV-Clinical	0.62	0.38	0.62	0.47	0.59
							SV-Radiomics-B	0.76	0.76	0.76	0.76	0.70
							SV-Radiomics	0.71	0.74	0.71	0.69	0.83
							SV-Combined-B	0.76	0.83	0.76	0.78	0.82
							SV-Combined	0.81	0.85	0.81	0.82	0.82
Ctor 1.17	1	a dia maia fa	ata			Gradient Boosting	GB-Clinical-B	0.67	0.66	0.67	0.66	0.68
Step 1: 12.	l stable i	radiomic te	atures			8	GB-Clinical	0.62	0.6	0.62	0.61	0.68
Sten 2. tor	7 clinic	al features	and ton 15	5			GB-Radiomics-B	0.76	0.83	0.76	0.78	0.74
				•			GB-Radiomics	0.76	0.83	0.76	0.78	0.82
radiomic fe	eatures.						GB-Combined-B	0.76	0.78	0.76	0.77	0.74
							GB-Combined	0.76	0.74	0.76	0.75	0.72

Step 3:

Classifying PCNSL from GBM by DL/ ML Approach

studies comparing DL/ ML with Pathology

Author	Year	Sample Size (N)	Accuracy (%)	Sensitivity (%)	Specificity (%)	Balanced Accuracy (%)	AUC (%)
Chen Y (1)	2018	96	90.6	80.0	95.5	87.8	98.2
Xiao DD (2)	2018	82	82.0	78.0	91.0	84.5	90.0
Wu G (3)	2018	102	94.5	90.0	96.0	93.0	NA
Shrot S (5)	2019	53	93.6	100	100	100	NA
Chen C (6)	2020	138	97.9	98.2	97.6	97.9	97.8
Park JE (7)	2020	260	NA	95.0	76.0	85.5	89.0
Escoda A (8)	2020	95	93.0	93.0	92.0	92.5	NA
Bathla G (9)	2021	94	93.4	97.0	87.1	92.1	97.7
McAvoy (10) M	2021	248	94.0	87.0	100	93.5	95.0
Kim Y (4)	2018	143	94.7	96.6	92.9	94.7	95.6

• The diagnostic metrics for AI/ML for discriminating PCNSL from GBM were high and comparable to Pathology

- Limited by the number of studies and heterogeneity.
- Cautious regarding over fitting of models.

Classifying PCNSL from GBM by DL/ ML Approach

studies comparing DL/ ML with Radiologist

												-	
Sr.		Sample					Sr.		Sample				
No.	Study	Size	Accuracy	Sensitivity	Specificity	AUC	No.	Study	Size	Accuracy	Sensitivity	Specificity	AUC
1	Yamashita K 2008	70	0.879	0.877	0.881	0.949	1	Yamashita K 2008	70	0.869	0.785	0.897	0.899
2	Alcaide-Leon P 2017	106	0.849	0.743	0.9	0.877	2	Alcaide-Leon P 2017	106	0.849	0.771	0.887	0.899
3	Nakagawa M 2018	70	0.9164	0.889	0.9438	0.98	3	Nakagawa M 2018	70	0.729	0.703	0.755	0.84
4	Sub H B 2018	77	0.896	0.913	0.889	0.921	4	Suh H B 2018	77	0.623	0.754	0.58	0.759
5	Kang D 2018	112	0.833	0.857	0.821	0.946	5	Kang D 2018	112	0.93	0.897	0.964	0.93
6	Vup L 2010	105	0.875	0.037	0.821	0.947	6	Yun J 2019	195	0.854	0.7915	0.9165	0.9225
7	Yia W 2020	240	0.012	0.929	0.021	0.042	7	Xia W 2020	240	0.945	0.913	0.978	0.945
<u> </u>		240	0.912	0.091	0.955	0.945	8	Xia W 2021	289	0.906	0.853	0.954	NA
ð	xia w 2021	289	0.899	0.934	0.867	0.964		ł ł					

Diagnostic Metrics of Machine learning/ Deep Learning models

Diagnostic metrics of Radiologists

- DL/ML tools can complement radiologists in classifying PCNSL from GBM.
- The role of radiologists cannot be undermined since AI is prone to over fitting.
- DL/ML performed better than radiologist with superior sensitivity and accuracy.
- Radiologists showed better specificity, this could be attributed to their experience

Radiomic features are biologic correlates of tumor heterogeinity

Morphometric

Morphometric

Intensity

Intensity

Biological Underpinning of Radiomic Signatures

Single sequence

Development and validation of radiomic signature for predicting overall survival in advanced-stage cervical cancer

- Pretreatment clinical features and CT radiomic features of 68 patients, treated with CTRT
- 1,093 radiomic features extracted from CT images

Development and validation of radiomic signature for predicting overall survival in advanced-stage cervical cancer *** frontiers** Frontiers in Nuclear Medicine

Ashish Kumar Jha¹²³*, Sneha Mithun^{12,3}, Umeshkumar