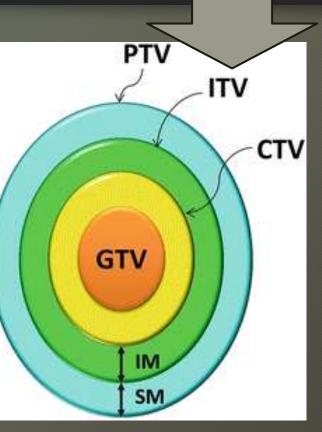
PRODVANCE

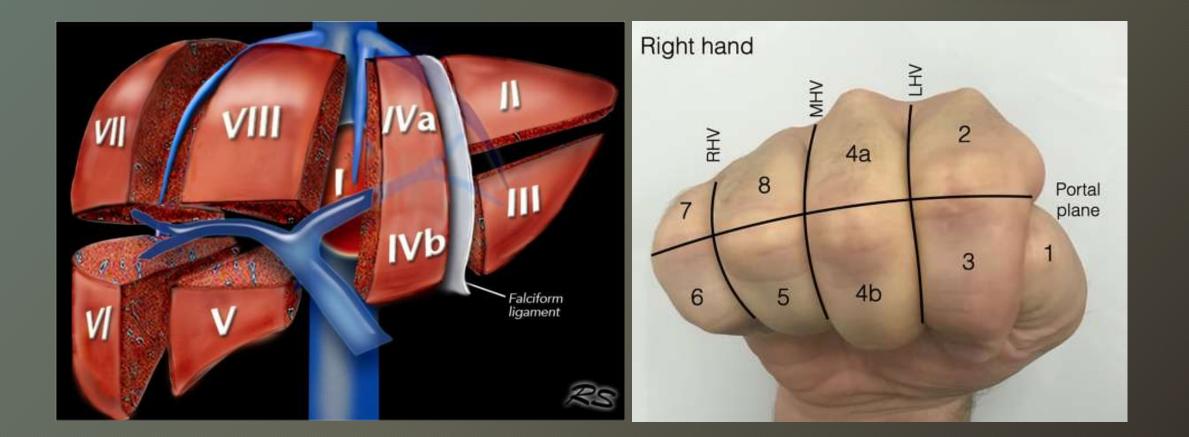
Motion Management in Liver SABR

Kausik Bhattacharya


How to reduce ITV

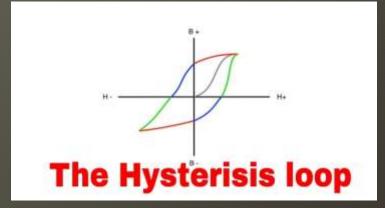
GTV: gross tumor volume, defined as visible tumor volume in images

CTV: clinical target volume, defined as GTV + subclinical/invisible invasion


ITV: internal target volume, defined as CTV + IM (internal margin for organ motion)

PTV: planning target volume, defined as ITV + SM (setup margin for setup error)


Segments of liver

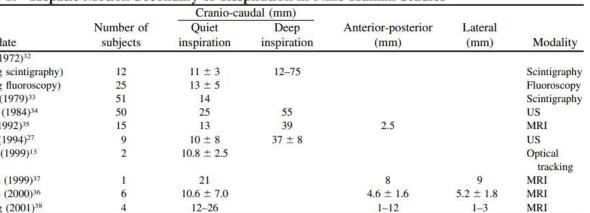


Liver moves with Respiration

- Asymmetric
- Non reproducible
- Individual variation
- Deformation
- Hysteresis

MOVEMENT OF LIVER

- Measured by
 - Fluoroscopy
 - 4D CT
 - Cine MRI



• Influenced by

- Ascites
- Stomach filling
- Abdominal gas

MOVEMENT OF LIVER

FROM THE DEM	ARTMENT OF DIAGNOSTIC RADIOLOGY, UNIVE	Acta Radiologica Diagnosis 25 (1984) Fare, 2 RNITY OF OULU, 5F-90220 OULU, FINLAND.		Computer Aided Surgery 7:291-299 (2002)				
				Re	view Article	t)		
CRANIO-CAU	JDAL MOVEMENTS OF THE LIV IN RESPIRATIO	NN .	Respirati Mark A. Cliffor Imaging Science an University Medical	ment of He on for Com d, M.S., Filip Banov and Information System Center (M.A.C., F.B. versity Hespital/MedS	IDUTER Assis IC, M.D., Elliot Levy IS (ISIS) Center, De , E.L., K.C.), and E	sted Interve y, M.D., and Kevin (partment of Radiolog Department of Radiolog	entions Cleary, Ph.D. gy, Georgetown ogy, Georgetown	
Movement of o	Table 1 rgans in respiration ex Mean and range	amined by ultrasound.			ondary to Res		s ine Human Studies	s
			-	Number of	Quiet	Deep	Anterior-posterior	Lateral
Organ	Excursion		Study/date	subjects	inspiration	inspiration	(mm)	(mm)
	Maxium respi-	Normal respi-	Weiss (1972) ³² (using scintigraphy) (using fluoroscopy)	12	11 ± 3 13 ± 5	12-75		
	ration (cm)	ration (cm)	Harauz (1979)33	25 51	14	55		
						55 39	2.5	
Liver	5.5 (3-8)	ration (cm) 2.5 (1–4)	Harauz (1979) ³³ Suramo (1984) ³⁴	51 50	14 25		2.5	
Liver Pancreas	5.5 (3-8)	2.5 (1-4)	Harauz (1979) ³³ Suramo (1984) ³⁴ Korin (1992) ³⁵	51 50 15	14 25 13	39	2.5	
Pancreas	5.5 (3-8) 4.3 (2-8)	2.5 (1-4) 2.0 (1-3)	Harauz (1979) ³³ Suramo (1984) ³⁴ Korin (1992) ³⁵ Davies (1994) ²⁷ Herline (1999) ¹³	51 50 15 9	$14251310 \pm 810.8 \pm 2.5$	39		9
	5.5 (3-8)	2.5 (1-4)	Harauz (1979) ³³ Suramo (1984) ³⁴ Korin (1992) ³⁵ Davies (1994) ²⁷	51 50 15 9	$ \begin{array}{r} 14 \\ 25 \\ 13 \\ 10 \pm 8 \end{array} $	39	2.5 8 4.6 ± 1.6	9 5.2 ± 1.8

MOVEMENT OF LIVER

Tsai et al. Radiation Oncology (2018) 13:59 https://doi.org/10.1186/s13014-018-1007-0

Radiation Oncology

Open Access

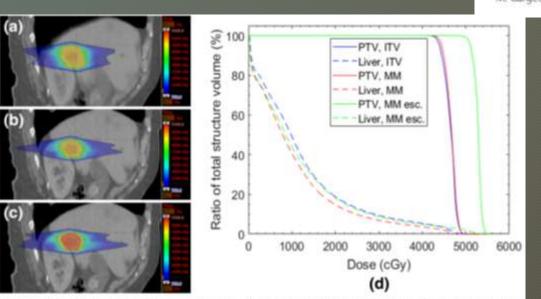
Crushfield

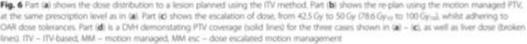
RESEARCH

Quantitative analysis of respiration-induced motion of each liver segment with helical computed tomography and 4-dimensional computed tomography

Yu-Lun Tsai¹, Ching-Jung Wu^{1,2,3}, Suzun Shaw¹, Pei-Chieh Yu¹, Hsin-Hua Nien¹ and Louis Tak Lui^{1*}

Segment	Average amplitude \pm SD (mm)					
	LR	AP	SI			
S1	-2.0 ± 2.6	1.0 ± 1.3	5.5 ± 2.6			
S2	0.3 ± 2.2	1.2 ± 3.5	6.3 ± 4.2			
S3	-0.3 ± 1.9	2.4 ± 1.4	5.8 ± 2.8			
S4a	-1.4 ± 3.3	1.5 ± 2.4	3.0 ± 2.6			
S4b	-1.2 ± 1.6	2.0 ± 1.9	5.3 ± 3.4			
S5	-0.2 ± 2.1	3.2 ± 2.0	5.5 ± 2.4			
S6	-0.1 ± 4.6	2.2 ± 2.3	6.5 ± 3.5			
S7	-1.4 ± 3.8	3.5 ± 2.5	8.6 ± 3.4			
S8	10 + 26	33+23	50+33			
mean	-0.6 ± 3.0	2.3 ± 2.4	5.7 ± 3.4			


Table 2 Amplitudes of respiration-induced liver motion of each


Positive values denote excursion in the left, posterior, or superior directions; Negative values, right, anterior, or inferior

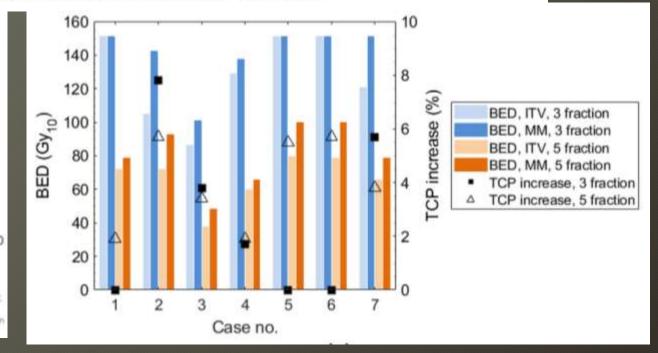
Abbreviations: LR left-right, AP anterior-posterior, SI superior-inferior, SD standard deviation

Why manage motion

- Right Target
- Right Dose

Gargett et al. Radiation Oncology (2019) 14:93 https://doi.org/10.1185/s13014-019-1300-6

Radiation Oncology

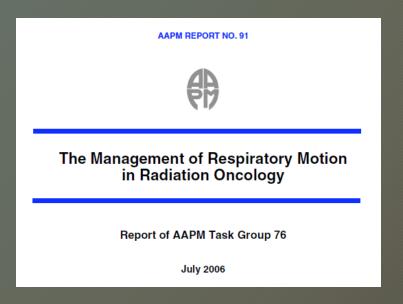

Open Access

Check It

RESEARCH

Clinical impact of removing respiratory motion during liver SABR

M. Gargett^{1*}⁽⁶⁾, C. Haddad¹, A. Kneebone¹, J. T. Booth^{1,2} and N. Hardcastle²³



Strategies to Manage Motion

- 1. Reduce Motion
- 2. Follow the Motion

Stereotactic Ablative Body Radiation Therapy (SABR): A Resource

AAPM TG 76

AAPM REPORT NO. 91

The Management of Respiratory Motion in Radiation Oncology

Report of AAPM Task Group 76

July 2006

- DIBH (DEBH)
- Active Breath Control
- Self breath-hold
- Shallow Breathing
- Abdominal Compression
- Tumour Tracking
 - Fiducial
 - IR Surrogate
 - RF device

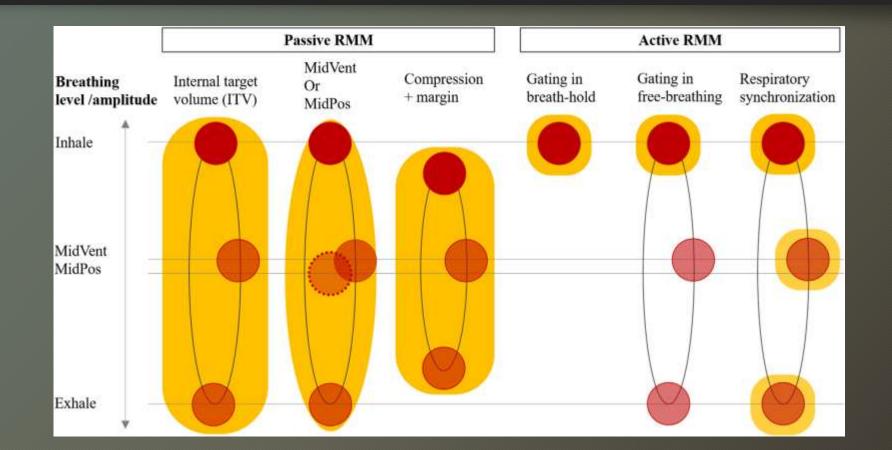
UK SABR Guidelines

Stereotactic Ablative Body Radiation Therapy (SABR):

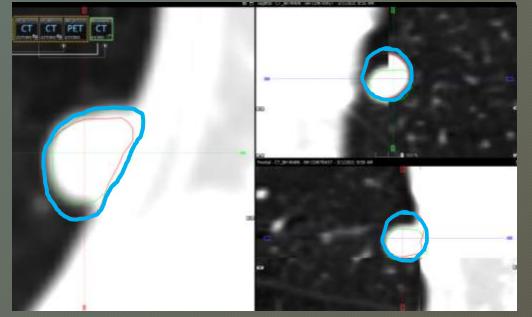
A Resource

• Reducing

- Compression
- ABC
- Voluntary/ Coached Breath-holding


• Mitigating

- Passive Gating
- Fiducial tracking
- Unrestrained Respiration
 - ITV
 - 4DCT


Passive vs Active

ITV Approach

- Inspiration phase CT
- Expiration phase CT
- Free breathing
- Fuse image sets
- Combine all phases
- Poor man's 4DCT
- Best for Lungs
- Time for scan is a concern in Liver

Typcal ITV

Tsai et al. Radiation Oncology (2018) 13:59 https://doi.org/10.1186/s13014-018-1007-0

Radiation Oncology

RESEARCH

Quantitative analysis of respiration-induced motion of each liver segment with helical computed tomography and 4-dimensional computed tomography

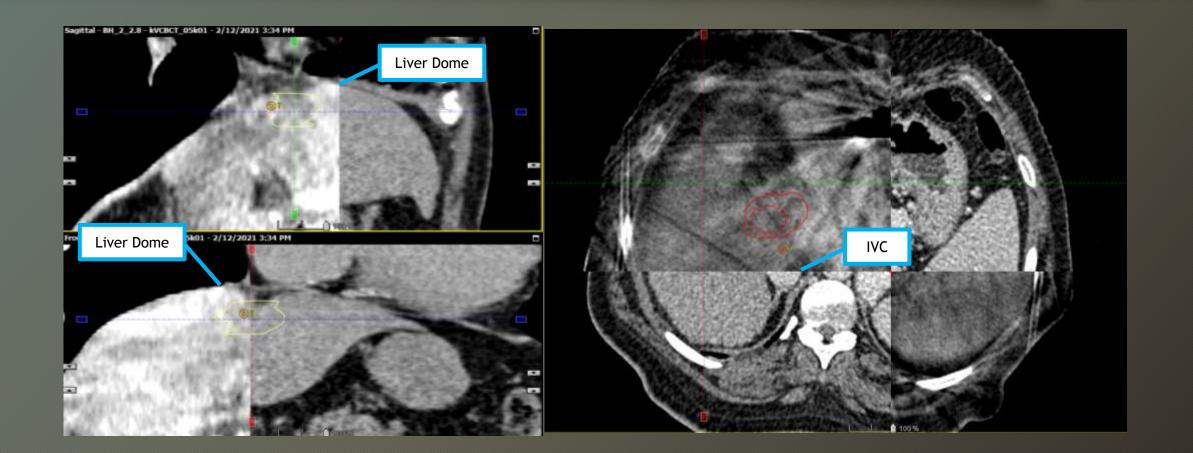
Yu-Lun Tsai¹, Ching-Jung Wu^{1,23}, Suzun Shaw¹, Pei-Chieh Yu¹, Hsin-Hua Nien¹ and Louis Tak Lui^{1*}

 Table 2 Amplitudes of respiration-induced liver motion of each

 liver segment during expiration period in free breathing

Segment	Average amplitude \pm SD (mm)					
	LR	AP	SI			
S1	-2.0 ± 2.6	1.0 ± 1.3	5.5 ± 2.6			
S2	0.3 ± 2.2	1.2 ± 3.5	6.3 ± 4.2			
S3	-0.3 ± 1.9	2.4 ± 1.4	5.8 ± 2.8			
S4a	-1.4 ± 3.3	1.5 ± 2.4	3.0 ± 2.6			
S4b	-1.2 ± 1.6	2.0 ± 1.9	5.3 ± 3.4			
S5	-0.2 ± 2.1	3.2 ± 2.0	5.5 ± 2.4			
S6	-0.1 ± 4.6	2.2 ± 2.3	6.5 ± 3.5			
S7	-1.4 ± 3.8	3.5 ± 2.5	8.6 ± 3.4			
S8	1.0 ± 2.6	3.3 ± 2.3	5.0 ± 3.3			
mean	-0.6 ± 3.0	2.3 ± 2.4	5.7 ± 3.4			

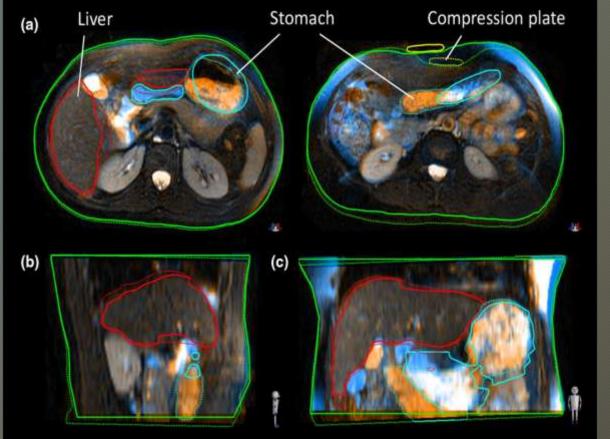
Positive values denote excursion in the left, posterior, or superior directions; Negative values, right, anterior, or inferior


Abbreviations: LR left-right, AP anterior-posterior, SI superior-inferior, SD standard deviation

Segment	ITV margin (mm) (to cover more than 95% of each tumor)					
	LR	AP	SI			
S1	– 2.2 and 2.3	– 0.4 and 2.3	-4.4 and 4.7			
S2	– 2.3 and 0.5	-2.4 and 1.6	– 4.7 and 5.9			
S3	– 2.2 and 1.1	-3.3 and 2.1	– 4.6 and 4.1			
S4a	-1.8 and 1.8	-2.4 and 1.3	– 2.4 and 4.0			
S4b	– 2.6 and 0.3	-2.8 and 1.4	– 4.1 and 4.5			
S5	-3.0 and 0.0	-2.4 and 2.9	– 3.0 and 4.7			
S6	– 1.9 and 2.3	-2.3 and 2.1	-4.6 and 5.1			
S7	– 2.4 and 2.3	-3.1 and 2.8	–5.7 and 7.3			
S8	-3.4 and 0.0	–2.8 and 3.0	– 3.5 and 4.7			
mean	– 2.5 and 1.2	–2.5 and 2.2	– 4.2 and 5.0			

Surrogate Structure Matching

Abdominal Compression



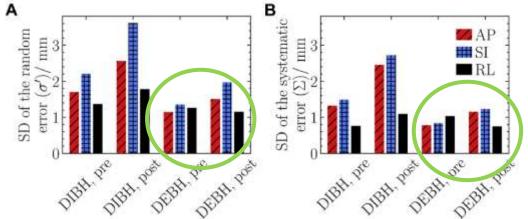
- Forced shallow respiration
- Reduces diaphragmatic motion significantly
- Mechanical
- Pneumatic
- Can be used with conjunction with 4DCT/gating

Abdominal Compression



• Discomfort

- Obese
- Ascites
- Reproducibility issues
- Significant deformity of internal organs


DIBH/DEBH

- Patient is coached to hold breath in comfortable position
- 20-30 seconds
- IR marker and IR camera
- Respiratory graph is generated
- Planning CT \rightarrow Planning
- In treatment room same position is reproduced
- Beam is on only when graph is in the threshold

DIBH VS DEBH

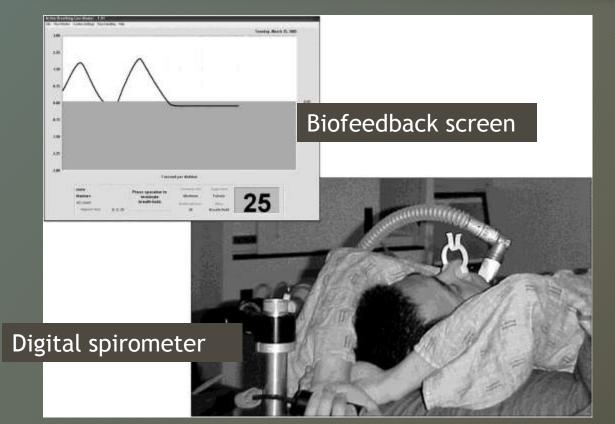
Advances in Radiation Oncology (2021) 6, 100610

Incase for

Influence of intra- and interfraction motion on planning target volume margin in liver stereotactic body radiation therapy using breath hold

Patricia A.K. Oliver, PhD,^{a,*} Mammo Yewondwossen, PhD,^{a,b,c} Clare Summers, RTT,^b Conor Shaw, PhD,^a Slawa Cwajna, MD,^b and Alasdair Syme, PhD^{a,b,c,*}

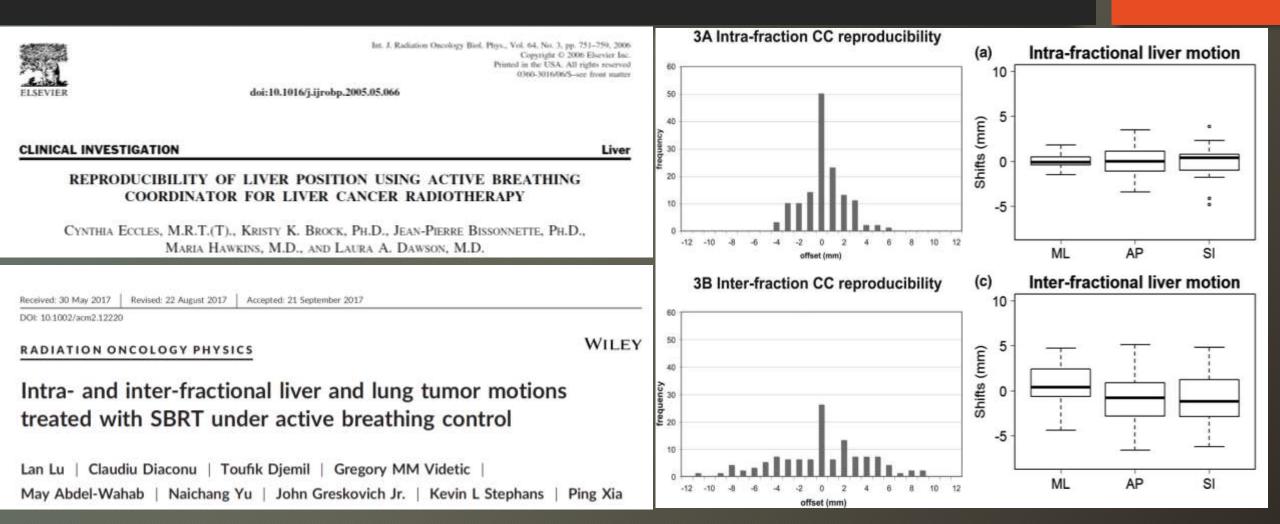
^aDepartment of Medical Physics, Nova Scotia Health Authority, Halifax, Canada; ^bDepartment of Radiation Oncology, Dalhousie University, Halifax, Canada; and ^cDepartment of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada


Table 2Standard deviations of random and systematic errors, values of the mean of means, and PTV margin estimates for DIBHand DEBH with pre- and posttreatment images analyzed together

DIBH			DEBH			
AP	SI	RL	AP	SI	RL	
2.2	3.1	1.6	1.3	1.6	1.2	mm
1.7	1.8	0.8	0.9	1.0	0.8	mm
0.3	0.0	0.0	0.1	-0.5	0.0	mm
5.7	6.3	3.0	3.1	3.4	2.8	mm
	2.2 1.7 0.3	AP SI 2.2 3.1 1.7 1.8 0.3 0.0	AP SI RL 2.2 3.1 1.6 1.7 1.8 0.8 0.3 0.0 0.0	AP SI RL AP 2.2 3.1 1.6 1.3 1.7 1.8 0.8 0.9 0.3 0.0 0.0 0.1	AP SI RL AP SI 2.2 3.1 1.6 1.3 1.6 1.7 1.8 0.8 0.9 1.0 0.3 0.0 0.0 0.1 -0.5	AP SI RL AP SI RL 2.2 3.1 1.6 1.3 1.6 1.2 1.7 1.8 0.8 0.9 1.0 0.8 0.3 0.0 0.0 0.1 -0.5 0.0

Abbreviations: AP = anterior-posterior; DEBH = deep expiration breath hold; DIBH = deep inspiration breath hold; PTV = planning target volume; RL = right-left; SI = superior-inferior.

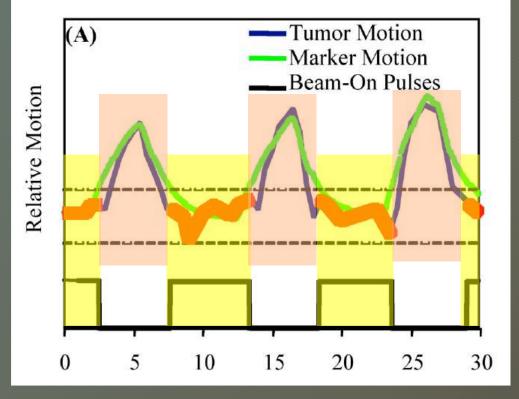
Active Breathing Coordinator



- Simple
- Reproducible
- Cheap
- Beam On/OFF
- Very small ITV
- 'quasi' invasive
- Patient cooperation

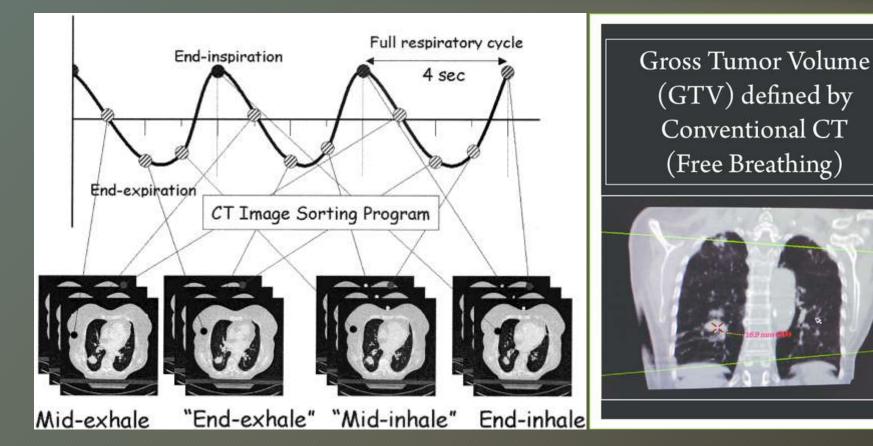
Active Breathing Coordinator

Respiratory Gating (RPM)



- Infrared surrogate
- Implanted Fiducial (BrainLab)
- Implanted RFID/EM (Calypso)
- Generates a respiratory graph

Respiratory Gating (RPM)



- Define Threshold
- ITV correlates to threshold
- Track the motion on machine
- Beam is automatically switched on/off
- Comfortable
- Small ITV (with Abdominal Compression)

4D CT Acquisition

Internal Target Volume (ITV) defined by 4 dimensional CT (10 Phases Combined)

4D CT in Liver- challenges

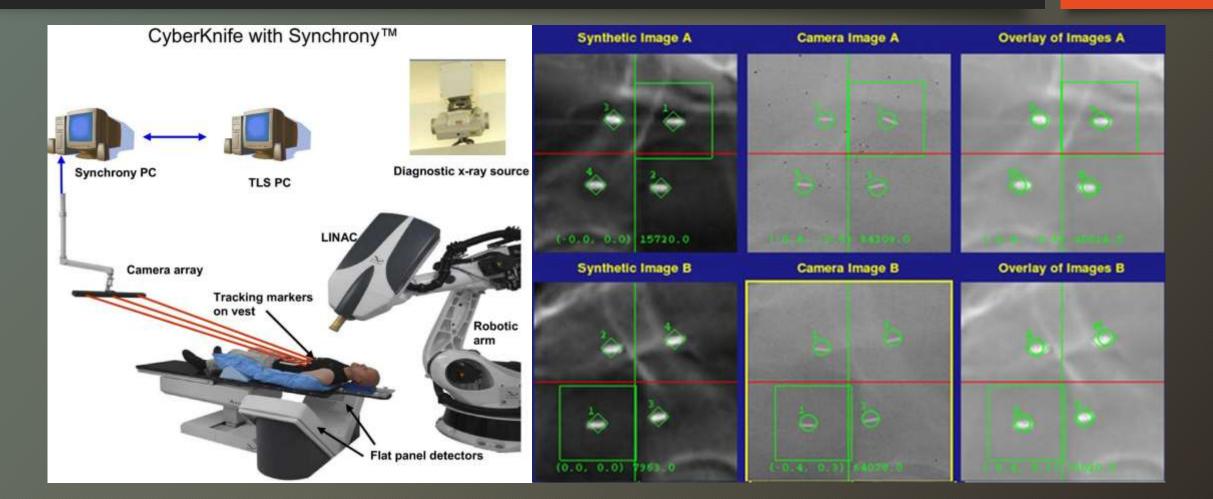

- Lesions are best seen in late arterial/ early venous phase
- 4DCT takes a long time to acquire
- Image quality (MnIP/AvG) is not good for marking the target

Dual 4DCT

4DCT Simulation With Synchronized Contrast Injection in Liver SBRT Patients

Joelle Helou, MD^{1,2}, Aliaksandr Karotki, PhD³, Laurent Milot, MD⁴, William Chu, MD^{1,2}, Darby Erler, BSc, MHSc¹, and Hans T. Chung, MD^{1,2}

• 2 sets of 4DCT


Technology in Cancer Research & Treatment 2016, Vol. 15(1) 55-59

C The Author(a) 2015

Aprinta and permission: agepub.com/pormalsPermissions.ms DOI: 10.1177/1533034615572341 mt.agepub.com @SAGE

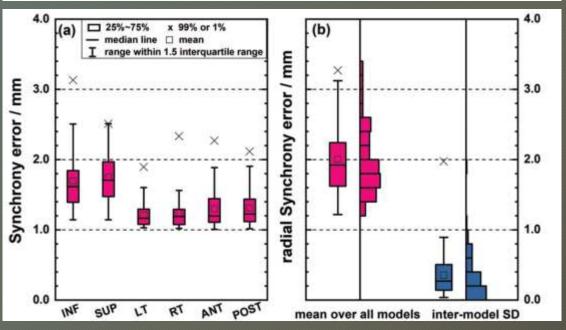
- Short CT- only area OF INTEREST
- Long CBCT all OARs
- Mark in Short 4DCT
- Fuse with Long 4DCT
- Plan on Long 4DCT

Cyberkife: Synchrony & Fiducial

HOSPITALS

Fiducial Tracking (Synchrony - Cyberknife)

1	ACTA ONCOLOGICA
	2019, VOL 58, NO. 6, 906-915
	https://doi.org/10.1080/0284186X.2019.1578896

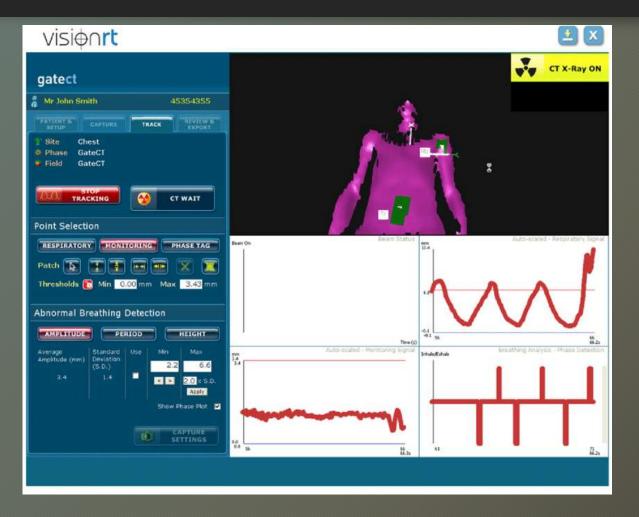

Taylor & Francis Taylor & Francis Taylor & Francis Group

ORIGINAL ARTICLE

Geometrical tracking accuracy and appropriate PTV margins for robotic radiosurgery of liver lesions by SBRT

Ming Liu^a, Joanna E. Cygler^{a.b.c} and Eric Vandervoort^{a.b.c}

"Department of Physics, Carleton University, Ottawa, Canada; "Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, Canada; "Department of Radiology, University of Ottawa, Ottawa, Canada


• Translational error 2-3 mm

• Rotational error not correctable in most cases

• 4 - 5 mm margin would suffice in 95% cases

Surface Guidance

- Uses body surface as surrogate for motion
- Produces respiratory graphs
- Can be used for
 - DIBH/DEBH
 - Gating
- Integrated with
 - IGRT Couch movement
 - Beam On/Off

Comparison of Different Techniques

- Abdominal Compression
- Voluntary Breath-hold
- Shallow Breathing
- DEBH, DIBH
- RPM Gating
- Tumor Tracking
- Fiducial Tracking
- 4DCT

• ITV Approach

Method of RMC	Respiratory status	Timing of beam-on	Time-efficiency	Internal margin
Suppress	~~~~	~~~~	good	large
Breath-hold	$\wedge_\wedge_$	$\wedge_\wedge_$	bad	small
Gating	\sim	\sim	bad	medium
Tracking	\sim	\sim	good	small
Free Breathing	\sim	\sim	good	large

your eyes cannot see what your mind doesn't know one size does not fit all horses for courses

