

Defining operable , borderline and Inoperable

Dr Sumana K Ramachandra

AIG hospital, Gachibowli, Hyderabad

Dr Sumana K Ramachandra

ASTS FELLOWSHIP IN MULTIORGAN TRANSPLANT SURGERY, THOMAS E STARZL INSTITUTE, UPMC, PITTSBURGH USA

FELLOWSHIP IN PEDIATRIC TRANSPLANT, CHP, UPMC

Phone no - 9650230555, email - krsumana@gmail.com

Plan

- Brief history of modern liver surgery
- General Principles of liver Surgery
- Staging System for HCC
- Surgical Management of HCC
- Extended criteria for management of HCC, role of TAce and SBRT

Milestones in liver surgery

Mystic Organ to a Transparent Organ

The liver surgery has progressed tremendously in the last 50 years

From mortalities ranging from 10-20 % it is now < 2 %

A better knowledge of Liver segmental Anatomy, and Inventions in Imaging techniques and techniques of Surgeryand post operative management

Couinaud's classification 1954

Principles of surgery in Hepatic Tumours Milestones in liver surgery

Henry Bismuth introduce the concept of Anatomical resections

IOUS - 1984

Thomas E Starzl performed the first liver transplantation in1963

Strong First LDLT from adult to child in july1989 was performed in Australia

Lo, First Adult LDLT in1996

A good knowledge of the anatomy is a prerequisite

Liver anatomy Imaging techniques Understanding liver regeneration

Liver anatomy

- Right hepatic vein divides the right lobe into anterior and posterior segments
- Middle hepatic vein divides the liver into right and left lobe, this runs from IVC to GB fossa an dis called cantle's line
- Left hepatic vein divides the left lobe into medial and lateral part
- Portal vein divides the liver into upper and lower part

Risk Factors for Resection

Advanced Age

Co morbidities

Chronic liver Disease

Cholestatic Disease

Post Chemotherapy

Extent and Complexity of the Liver Resection

Imaging of the liver

Pre operative simulation using a triple phase Contrast CT scan

Accurate assessment of the segmental anatomy

Liver Vasculature

Volumetry

MRCP -Biliary Tree

MR spectrography/ Fibroscan -

Functional Status - ICG

• POST OPERATIVE LIVER FAILURE IS THE COMMONEST CAUSE OF MORTALITY

Cause of Post op Liver failure

Impaired Functional reserve

Inadequate residual volume

Residual volume

FLRV

Future Remnant Liver Volume FLR

Residual Liver Volume

Total liver Volume - tumour volume

- Total liver volume 2625
- Right lobe without MHV 1840 (70%)
- Left lobe with MHV 785.9(30%)
- Left lateral 546(20.81)%
- Tumour volume 1253

Volumetry

Plan – extended left hepatectomy

Strategies to deal with Impaired Functional reserve

- Parenchymal sparing resection
- Resection after PVE
- Resection in combination with RFA
- Two staged Resection ALLPS
- Resection after chemo
- Resection after TACE

Augmentation of FLRV

PVE PV ligation Repeat CT after 3 weeks FLRV increases by 20- 46 % Resectability 70 -100% Can be used as a dynamic test for Liver Regeneration

Portal vein embolisation

Principles of surgery in Hepatic Tumours Anatomic VS Non Anatomic Resections

Anatomic vs non-anatomic resections

- Anatomic resections preferred for malignancies
 - A Ro resections
 - (Anatomical vs non-anatomical: 2% positive margins vs 60%)
 - \checkmark blood loss
- Non-anatomic resections
 - Preserve parenchyma
 - Indications:
 - Benign hepatic tumours
 - Malignancies in cirrhotic pts
- Margin width? >1mm shown to be adequate

ANATOMIC VS NON ANANTOMIC RESECTIONS

Principles of surgery in Hepatic Tumours HEPATOCELLULAR CARCINOMA

Challenges

5th most common cancer world wide

80% of the times develops in a diseased organ.

Disease free survival is relative

Time to symptomatic progression is confounded

Surgical resection or liver transplant - curative

Surgery Remains the Gold Standard

Resection in Cirrhotics

Best in Single lesions , Asymptomatic

Absent Portal Hypertension

HVPG <10 mm of Hg

Platelet >1L

Normal bilirubin

No Varices

70 % survival at 5 yrs

Only 5-10 % meet the criteria

Lloveet al resection vsTx Hepatology 1999

Criteria for selection and operability

Anatomical

Imaging Simulation

Functional

Clinical

Biochemical

Functional

Hepatocellular carcinoma

PRACTICAL APPROACH

Diagnosis - is tissue and issue

Staging (prognosticating) - which system?

Treatment Indications (fitting the treatment to the tumour and the underlying liver disease) - which service knows the best

Multidisciplinary Approach for Management of HCC

Principles of surgery in Hepatic Tumours INDIVIDUALISED CARE

No single staging system with arrows connecting the stage to treatment will be a substitute replace the need to have a thinking clinician

Jordi Bruix, MD;

HCC Staging

- STAGING
- No single universally accepted staging system (>10 in use)
- Many (AASLD) have adopted the BCLC (validated)
- 5 stages
- Variables
- Tumor stage
- Physical and liver functional status
- Cancer related symptoms
- Treatment Algorithm

Principles of surgery in Hepatic Tumours STAGING SYSTEMS

1984	1998	1999	2002	2003	2005	2010	
8					1		
Okuda	CLIP	GRETCH	CUPI	JIS	Tokyo	AJCC/UICC 7th ed	
		BCLC	eTNM.				

<u>igure 1</u>

Timeline of hepatocellular carcinoma staging system. AJCC: American Joint Committee on Cancer; UICC: International Jnion Against Cancer; CLIP: Cancer of the Liver Italian Program; GRETCH: Groupe d'Etude et de Traitement du Carcinome Hépatocellulaire; BCLC: Barcelona Clinic Liver Cancer; CUPI: Chinese University Prognostic Index; JIS: Japan Integrated Staging Score; TNM: Tumor Node Metastasis.

Table 2

Variables included in the main prognostic systems

Variables	Prognostic scores										
	Okuda[13]	CLIP[<u>14</u>]	GRETCH[21]	BCLC[<u>16</u>]	CUPI[23]	JIS[<u>24]</u>	Tokyo[22]				
Child-Pugh score		Х		Х		Х					
Ascites	Х				Х						
Albumin	х						Х				
Total Bilirubin	Х		Х		Х		Х				
Alkaline phosphatase			Х		Х						
Alpha-fetoprotein		Х	Х		Х						
Tumor size	Х	Х		Х			Х				
Numbers of nodules		Х		Х			Х				
TNM stage					Х	Х					
Portal vein thrombosis		Х	Х	Х							
Metastasis				Х							
Portal hypertension				Х							
Presence of symptoms and/or			Х	Х	Х						
General Status											

Open in a separate window

CLIP: Cancer of the Liver Italian Program; GRETCH: Groupe d'Etude et de Traitement du Carcinome Hépatocellulaire; BCLC: Barcelona Clinic Liver Cancer; CUPI: Chinese University Prognostic Index; JIS: Japan Integrated Staging Score; TNM: Tumor Node Metastasis.

Principles of surgery in Hepatic Tumours BARCELONA CANCER

BCLC 2022

*Except for those with tumour burden acceptable for Transplant

Child-Pugh, MELD, ALBI do not identify 100% of endstage patients

Clinical Decision-Making

Johnson et al. J Clin Oncol 2015; Pinato et a. J Hepatol 2017; Pugh et al. Br J Surg 1973; Kamath et al. Hepatology 2001; Kim et al. N Engl J Med 2008Kim et al. Gastroenterology 2021. de Franchiset al.J Hepatol 2015; D'Amico et al. J Hepatol 2018; Garcia-Tsaoet al. Hepatology 2010; Tonon et al. Clin Gastroenterol Hepatol 2021; Llach J et al. Gastroenterology 1988

Downstaging in BCLC 2022 approach

The goal of downstaging is to reduce tumour burden in order for residual viable tumours to fall within acceptable LT criteria, With Milan Criteria being the commonest endpoint of downstaging SBRT?

Mazzaferro et al Lancet Oncol 2020; Yao et al. Hepatology 2015

- The upper limit of where a downstaging approach is considered varies across LT regions.
- This also affects the specific imaging criteria used to define baseline and post-treatment staging and evaluation of response.
- There is need to develop further studies to validate such approach and establish how to best apply a downstaging protocol.

Patients with an AFP >1000 ng/mL who experienced biochemical response (at least a decrease to >500 ng/mL) to locoregional therapies have a post-LT outcome comparable to the reported within MC

Mehta et al. Hepatology 2019; Mehta et al. Transplantation 2020

HCC

Hongkong liver cancer staging system

Gestroenterology 2014 1461691-1700.e3DOI: (10.1053/j.gastro.2014.02.032) Gastroenterology 2014 1461691-1700.e3DOI: (10.1053/j.gastro.2014.02.032)

QUESTIONS TO BE ASKED IN CLINICAL PRACTICE

TUMOR CHARACTERISTICS

Diagnosis , is biopsy needed Segmental anatomy Tumour size and no Extra hepatic spread

CONDITION OF THE LIVER

Functional status Is there e/o Portal hypertension What is the FLRV

PATIENT FACTORS

Age

Co morbidities

Performance status

FITTING THE TREATMENT TO THE TUMOUR AND THE UNDERLYING LIVER DISEASE

EVALUATION OF THE HEPATIC RESERVE OF PATIENTS WITH HCC

Quantity and Quality of the FLRV

Quantity

>25% for normal liver

>40 % for Cirrhotic Liver

(Schindl MJ et, Gut 2005 adnd Shoup et al J gastrointest Surg 2003)

Quality -

LFT (alb, INR Platelets

HVPG

OGD

Liver Biopsy

HCC

Resection for HCC

NON CIRRHOTIC. - Only 5-10 % of the patients

Extended Resections can be done after proper

evaluation

CIRRHOTIC — Child s A - Major hepatectomy(Avoid R hepatectomy)

Child s B - segmental or subsegmental resection

Child S C - contraindication for resections

HCC

Resection for HCC

	R	esectio	n			
Function	Sir	Single		Multiple		
	PHT**	No PHT	PHT	No PHT		
Child-Pugh A	68%	71%	58%	56%		
Child-Pugh B	Over all 5 year survival 19%					
Resection after recurrence*	79%	81%	73%	73%		

Resection after Downstaging Neoadjuvant and down staging prior to resection

Not recommended if the tumour is resectable

Delay

Technically more difficult

May be associated with more morbidity

Not resectable due to anatomic reasons, 6-28% become resectable

Recurrence rate is 40 -85 %

Survival, 5 year 25 to 60 %

HCC

Practicality of liver resections

- 20 % who meet the current EASL/AASLD criteria are denied surgery and this increases mortality
- Common practice is to offer surgery beyond the criteria
- Down staging and LR is offered for patients who have locally advanced tumour
- Downstaging and LR has better survival compared to locaregional therapies like TACE
- In real life LR for HCC is based on individual componentsand local conditions which are not captured by guidelines

HCC WHAT EXTENT CAN WE GO ?

Surgical treatment of hepatocellular carcinoma

HEPATOLOGY

CORRESPONDENCE

HEPATOLOGY, March 2016

Hepatic Surgeons Are Like the Child Who Rescued Dying Fish

TO THE EDITOR:

Let us first share with you a story. Under a scorching sun, numerous fish were stranded on the beach after a receding tide, waiting to die. A child picked these fish up one by one and threw them back into the sea. An old man asked the child, "There are so many of them, who cares for one or two fish?" The child did not stop his work and replied, "Look, this one cares, and that one cares too." We, hepatic surgeons, are like this child. We are aware that we are unable to cure all our patients with hepatocellular carcinoma (HCC), but we never stop to give a chance of cure to them by surgery. Although the current European and American guidelines for HCC do not recommend hepatic resection for patients with intermediate or advanced HCCs, with Child B liver function, or concurrent portal hypertension, many hepatic surgeons around the world still operate on such patients on a selective basis provided the perioperative mortality and morbidity rates are estimated to be low.⁽¹⁻³⁾ In real life, a significant proportion of these patients would also choose surgical resection because of the potential cure despite a high tumor recurrence rate after resection.

Tian Yang, M.D.¹

¹Department of Hepatic Surgery Eastern Hepatobiliary Surgery Hospital Second Military Medical University Shanghai, China ²Faculty of Medicine The Chinese University of Hong Kong Hong Kong SAR, China

Liver Transplantation for HCC

Liver Transplantation for HCC

Multifocal HCC

Large HCC with vascular involvement

Liver Transplantation for HCC

Conventional Criteria - LT for HCC

Milan group -- single $\leq 5cm$, $\leq 3 tumours \leq 3cm$ (on imaging)

**Mazaffero et al, NEJM 1996

4yr OS 75% DFS 83%

~ Accepted by UNOS as "Conventional Criteria" since 1998

UCSF Criteria

- Lesion <6.5cm
- 2-3 lesions
 - -Largest <4.5cm
 - -total dia <8cm
- No vascular invasion
- No extrahepatic metastases
- One yr survival 90%
- Five yr survival 75%

Yao FY etal.Hepatology2001;33: 1394-403

Liver Transplantation for HCC EXPANDED CRITERIA

Criteria Name, year	Criteria	No. of patients	OS / RFS using expanded criteria	OS / RFS for within Milan	Prognostic factors
Pamplona Criteria, 2001	1 nodule ≤ 6 cm or 2-3 nodules ≤ 5 cm	63 pts, 12 beyond Milan	79% OS at 5 yrs in entire group, 70% RFS	NA	
Mt.Sinai criteria, 2002	≥ 1 nodule 5-7 cm (with neoadjuvant Chemo + TACE)	31 pts in expanded criteria	55% 5 yr OS in pts beyond Milan and within Mt.Sinai	NA	
Edmonton Criteria, 2004	1 nodule <7.5 cm, or any number < 5 cm	40 pts, 21 pts beyond Milan	83% 4 yr OS and 77% RFS	87% OS at 4 yrs	Sirolimus helps in beyond criteria
UCSF Criteria, 2007	Single tumour ≤ 6.5 or ≤ 3 nodules ≤ 4.5 and TTD ≤ 8 cm	168, 38 beyond Milan	75% OS at 5 yrs, RFS 93%	80% OS 5 yrs, RFS 90%	
Up to Seven, 2009	Seven as sum of largest tumour dia (cm) and no. of tumours	1556 pts, 1112 beyond Milan	71.2% OS at 5 yrs	73% OS for within Milan	MVI significantle affects survival
UNOS Region 4,R4T3 Criteria. 2010	1 lesion <6 cm; s3 lesions, none >5 cm and total dia <9 cm	445 pts, 363-MC and 82 expanded	3 yr OS 77.1%, RFS 86.9%	3 yr OS 72.9%, RFS 90.5%	

Liver Transplantation for HCC EXPANDED CRITERIA

Published expanded criteria – LDLT					
Criteria Name, year	Criteria	No. of patients	OS / RFS using expanded criteria	OS / RFS for within Milan	Prognostic factors
Tokyo (5-5 rule), 2007	≤ 5 nodules and ≤ 5 cm	Total 78 patients	5-yr OS 75% 5-yr RFS 94%		•
Kyoto Criteria, 2007	≤ 10 nodules , all ≤ 5 cm and DGCP (PIVKA II) ≤ 400 mAU/ml	Total 136, 62 beyond Milan	87% OS and 5% recurrence rate at 5 yrs	10% recurrence rate at 5 yrs for tumours in Milan	-
Asan Criteria, 2008 (on explant path)	tumor diameter ≤ 5 cm, ≤ 6 lesions, no gross vascular invasion	221 patients	82% 5 yr OS	76% for within Milan	Higher discriminatory power compared to Milan and UCSF
Kyushu Criteria, Japan, 2009	Any number of tumours, < 5 cm in size, PIVKA II <300	90 pts, 54 pts beyond Milan	83% OS at 5 yrs 87% RFS at 5 yrs	95.6% OS at 5 years	Pre-op DGCP ≥ 300 mAU/mL and tumour size ≥ 5 cm
Hangzhou, 2008	Tumour size <8 cm in total, any tumour number. If >8 cm, gr I/II + AFP <400 ng/mL	92 patients	72% 5-yr OS		Preop AFP and tumour differentiation
Toronto Criteria, 2011	No number-size criteria. Poor tumour differentiation as exclusion	294 patients	70% OS and 70% DFS at 5 yrs	72% OS at 5 years	-
71 to 221 pts	Upto 10 cm, upt	any no.	> 75% OS, > 70 %	RFS Outcom	nes comparable to

LIVER TRANSPLANTATION FOR HCC EXTENDED CRITERIA

EXTENDED CRITERIA ROLE OF SBRT /TACE /TARE

DOWNSTAGING

- Conventionally **PVTT** is contraindication for Liver Transplant
- With **Downstaging**, even this group can have long time survival with Resection and or LT.
- Double Equipoise concept (maximum recipient benefit with minimum donor risk)
- Downstaging recommended in LDLT even if Adverse Biological factors
- Minimal recipient survival is contentious and TRansplant Benefit, a better metric

LIVER TRANSPLANTATION FOR HCC DOWNSTAGING FOR LOCALLY ADVANCED HCC

HCC WITH PVTT- LT POST DOWN STAGING WITH RT+TACE/CR

Down-Staging of Hepatocellular Carcinoma via External-Beam Radiotherapy With Subsequent Liver Transplantation: A Case Report

Alan Wigg,^{1,2} Kenneth Hon,^{1,2} Leigh Mosel,³ Nicole Sladden,⁴ and Kevin Palumbo⁵ ¹ Hepatology and Liver Transplant Medicine Unit, ²South Australian Liver Transplant Unit, ³Department of Medical Imaging, and ⁴Department of Anatomical Pathology, Flinders Medical Centre, Bedford Park, Australia, and ⁵Adelaide Radiotherapy Centre, Adelaide, Australia

Living Donor Liver Transplantation for Advanced Hepatocellular Carcinoma with Portal Vein Tumor Thrombosis after Concurrent Chemoradiation Therapy

Dai Hoon Han,^{1,2} Dong Jin Joo,^{1,2,3} Myoung Soo Kim,^{1,3} Gi Hong Choi,^{1,2,3} Jin Sub Ch Young Nyun Park,^{2,4} Jinsil Seong,^{2,5} Kwang-Hyub Han,^{22,6} and Soon II Kim^{21,3}

Liver Transplantation After Transarterial Chemoembolization and Radiotherapy for Hepatocellular Carcinoma with Vascular Invasion

Yuri Jeong¹ • Min-Ho Shin² • Sang Min Yoon¹ • Gi-Won Song² • Ki-Hun Kim² • Chul-Soo Ahn² • Deok-Bog Moon² • Shin Hwang² • Jin-hong Park¹ • Jong Hoon Kim¹ • Sung-Gvu Lee²

DOWNSTAGING FOR LOCALLY ADVANCED HCC Successful pre-Tx downstaging of HCC-PVTT gives good results after LDLT

AMC, Seoul Jeong Y, Lee SG et al., J Gastrointest S 2016

17 HCC patients with PVTT underwent DS with TACE and radiotherapy, and LDLT the 3-year DFS and OS were 57.8 and 60.5 %, respectively.

LIVER TRANSPLANTATION FOR HCC DOWNSTAGING FOR LOCALLY ADVANCED HCC

Experience With LDLT in Patients With Hepatocellular Carcinoma and Portal Vein Tumor Thrombosis Postdownstaging

Arvinder S. Soin, MS, FRCS,¹ Prashant Bhangui, MS,¹ Tejinder Kataria, MD,² Sanjay S. Baijal, MD,³ Tarun Piplani, MD,³ Dheeraj Gautam, MD,⁴ Narendra S. Choudhary, DM,¹ Srinivasan Thiagarajan, MS,¹ Amit Rastogi. MS.¹ Neerai Saraf. MD.¹ and Saniiv Saigal. DM¹

Survival in 25 HCC PVTT patients following LDLT Postdownstaging

Soin AS, Bhangui P. et al. Transplantation 2020

TRANSPLANT BENEFIT

MC-in HCC , Child's C – 3/5 yr post Tx survival 85/80%; No transplant - 3/5 yr survival 25/0%

8cm, 7 tumors, no PVTT – 3/5 yr post Tx survival 75/65%; No transplant – 3/5 yr survival 10/0%

HCC+PVTT –DS (TARE+SBRT)+LDLT –3/5 yr post Tx surv 65/55 No transplant – 3/5 yr survival 0/0%

LIVER TRANSPLANTATION FOR HCC CASE REPORTS

CASE I (TARE + LDLT)

	26/12/19	31/1/20	I 6/3	23/4
AFP	7.2	11.5	6.9	
PIVKA	25453	8600	2793	166

- 65 yr old , Lyricist ,
- NASH related CLD(child s A) detected to have Advanced HCC (VP 2-3)

Tumor size reduced 9.1x 7.2 cm4.7 x 3.7 cmPVTT — Complete metabolic resolution and enhancement of filling defect

NO EXTRA HEPATIC DISEASE

Pathology

WELL DIFFERENTIATED TUMOR THE SIZE OF THE TUMOR - <2 CMS WITH MORE THAN

AND NO E/O TUMOR IN THE PV .

Liver Transplantation for HCC Case report

- Case 2,
- 61 yrs old NASH related CLD Childs A, with HCC

SBRT for down staging for Ltx

Surgery for HCC Conclusion

Surgical Management of HCC is evolving

Potential cure is increasing with down staging modalities like TACE, TARE, SBRT followed by LR or LT,

Patients with PVTT or locally advanced tumours -have not hit the end of the road .

multidisciplinary approach

Genomics is becoming a part of prognostication and diagnosis

Personalised medicine and individualised treatment is the future

Liver Transplant for HCC

Some downstage patients with good tumour biology do well with LR and LT

When we expand the criteria for LDLT,

Double Equipoise ,(recipient outcomes and donor safety) Should be strictly followed

Minimum Acceptable recipient survival is contentious and Transplant Benefit , a better metric

Liver Transplant for HCC

Multidisciplinary Approach for Management of locally advanced HCC

<u>Seeking Optimal Outcomes in an Era of</u> <u>Personalised Medicine and Transplant</u> <u>Oncology Beyond Convention Yet</u> <u>Evidence Based</u>

THANK YOU

L)

H.

11

