PARCER Trial: An opportunity to reduce toxicity in early cervical cancer

Final Analysis

NCT01279135/CTRI2012/120349

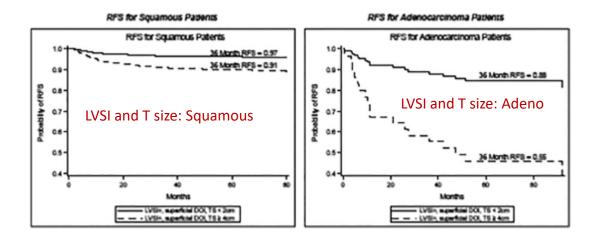
Supriya Chopra, MD Professor, Radiation Oncology schopra@actrec.gov.in

Department of Radiation Oncology and Medical Physics and Gynecology Disease Management Group Tata Memorial Centre, Mumbai, India

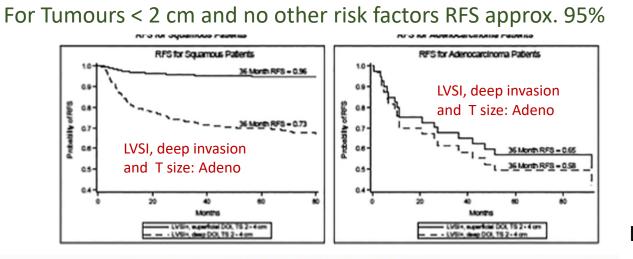
Journal of Clinical Oncology, 2021

Disclosures

Research Funding PARCER Trial


Department of Science and Technology, India Department of Atomic Energy, Clinical Trials Centre, India.

Other Research Funding


Varian International Terry Fox International Department of Atomic Energy Clinical Trials Centre, India.

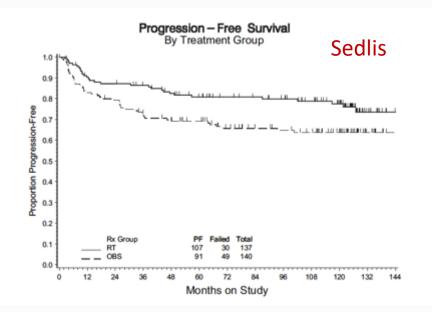
GOG 49,92,141 (Surgery Alone Arms)

Surgery Alone is an Ineffective Treatment for Women with Cervix Cancer IB1-IIA1

Tumours even less than 4 cm have poor outcomes with Surgery Alone

Levinson, Gynec Oncology 2020

Beyond Sedlis—A novel histology-specific nomogram for predicting cervical cancer recurrence risk: An NRG/GOG ancillary analysis


Vascular	Invasion	Tumor	SCC			AC				
Invasion	Depth	Size	RFS (3 yr, CI)	Sedlis Criteria (+/-)	nomogram recurrence risk	RFS (3 yr, Cl)	Sedlis Criteria (+/-)	nomogram recurrence risł		
N	Superficial	(<2 cm)	0.98 (0.96,1)	- /	<5%	0.96 (0.90, 1.00]	<u> </u>	<5%		
N	Middle	(<2 cm)	0.91 (0.87,0.95)	- /	18%	0.97 (0.92, 1.00]	_ /	<5%		
V	Deep	(<2 cm)	0.86 (0.79,0.93)	_ /	32%	0.95 (0.87, 1.00]	_ /	6%		
N	Superficial	(2-4 cm)	0.97 (0.95,1)		<5%	0.86 (0.70, 1.00]	<u> </u>	24%		
N	Middle	(2-4 cm)	0.88 (0.84,0.93)	-	22%	0.89 (0.77, 1.00]	-	20%		
V	Deep	(2-4 cm)	0.82 (0.75,0.89)	-	38%	0.83 (0.66, 1.00]	-	26%		
V	Superficial	(≥4 cm)	0.94 (0.9,0.99)		10%	0.81 (0.59, 1.00]		34%		
N	Middle	(≥4 cm)	0.78 (0.7,0.86)	+	28%	0.85 (0.70, 1.00]	+	30%		
V	Deep	(≥4 cm)	0.66 (0.58,0.75)	+	42%	0.77 (0.56, 1.00]	+	36%		
1	Superficial	(<2 cm)	0.97 (0.94,0.99)	_	<5%	0.88 (0.71, 1.00]	<u> </u>	20%		
1	Middle	(<2 cm)	0.86 (0.8,0.92)	_	22%	0.91 (0.78, 1.00]		18%		
(Deep	(<2 cm)	0.78 (0.7,0.88)	+	38%	0.85 (0.70, 1.00]	+	22%		
(Superficial	(2-4 cm)	0.96 (0.92,1)	-	8%	0.65 (0.32, 1.00]		40%		
(Middle	(2-4 cm)	0.82 (0.76,0.89)	+	26%	0.71 (0.48, 1.00]	+	38%		
(Deep	(2-4 cm)	0.73 (0.65,0.81)	+	40%	0.58 (0.36, 0.96]	+	42%		
(Superficial	(≥4 cm)	0.91 (0.84,0.99)	+	14%	0.55 (0.19, 1.00]	+	50%		
(Middle	(≥4 cm)	0.67 (0.57,0.79)	+	32%	0.63 (0.37, 1.00]	+	46%		
1	Deep	(≥4 cm)	0.52 (0.43,0.64)	+	46%	0.47 (0.24, 0.95]	+	52%		

Comparison of 3 yr RFS, nomogram recurrence risk, and Sedlis criteria for predictor variable combinations.

Sedlis Criteria Designed to Select Patients with >30% risk of local relapse for Adjuvant Treatment

Patients with even single risk factor may have elevated risk mandating adjuvant Treatment

Outcomes following postoperative adjuvant RT+/- chemo

(Gyn Oncol 1999, Rotman IJROBP 2006)

RT vs Observation

14% vs 20% Local Relapse

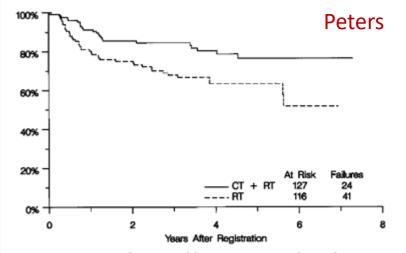


Fig 1. Progression-free survival for 127 patients randomized to receive CT + RT and for 116 patients randomized to receive RT alone.

(Peters, JCO, 2000)

CTRT vs RT

5.5% vs 17% Local Relapse

20 year follow up of Landoni's Trial

Type of complication	Surgery	Surgery+RT	RT
No. of patients	61	108	158
Urologic			
Hydroureteronephrosis*	2 (3.3)	11 (10.1)	9 (5.6)
Ureteral fistula	1 (1.6)	-	
Urinary incontinence	2 (3.3)	4 (3.7)	-
Atonic bladder	8 (13.1)	5 (4.6)	1 (0.6)
Actinic cystitis	-	7 (6.4)	9 (5.6)
Vascular			
Pulmonary embolism	2 (3.3)	1 (0.9)	
Legs edema	-	12 (11.1)	1 (0.6)
Lymphocyst	5 (8.2)	5 (4.6)	1 (0.6)
Vascular lesion	1 (1.6)	-	-
Intestinal			
Rectal fistula	-	-	1 (0.6)
Bowel obstruction	-	6 (5.5)	2 (1.2)
Proctitis	-	-	14 (8.8)
Others			
Wound abscess	-	-	-
Abdominal hernia	4 (6.6)	4 (3.7)	2 (1.2)
Bone necrosis	-	1 (0.9)	-
Vaginal necrosis	-	-	1 (0.6)
Vaginal stenosis	-	1 (0.9)	2 (1.2)
Pelvic fibrosis	-	4 (3.7)	3 (1.8)
Uterine perforation	-	-	1 (0.6)
Peritonitis	-	1 (0.9)	-
Total	25 (40.7)	62 (56.4)	47 (29.0)

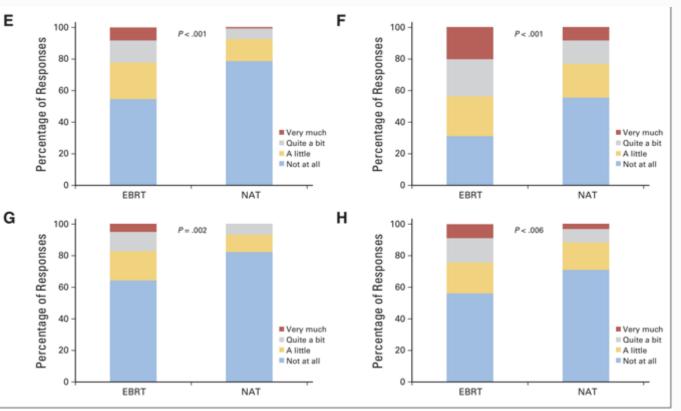
Overall Higher Adverse Events with Surgery than RT at 20 yr follow up or Surgery+RT. RT alone most favourable

Adverse Events with Adjuvant RT

• Postoperative Radiation indicated for Cervix and Endometrial Cancers

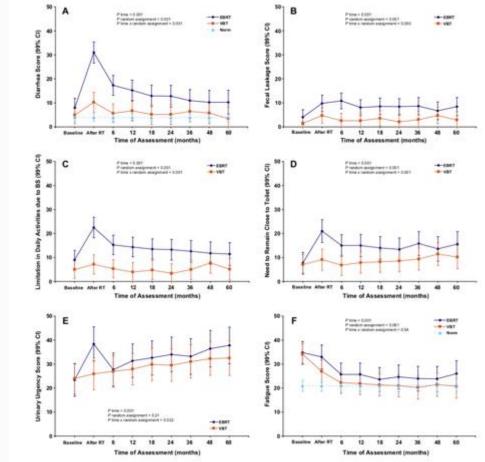
• Increase in GI symptom burden and toxicity in long term survivors after adjuvant radiation

• Associated with further increase in GI toxicity due to radiosensitizing impact of concurrent chemotherapy.


 Until 2010: RTOG 0418/ RTCMIENDOMETRE demonstrated 27-28% acute GI toxicity with IMRT: No comparator arm. No robust data on late toxicity

Late Gastrointestinal Toxicity

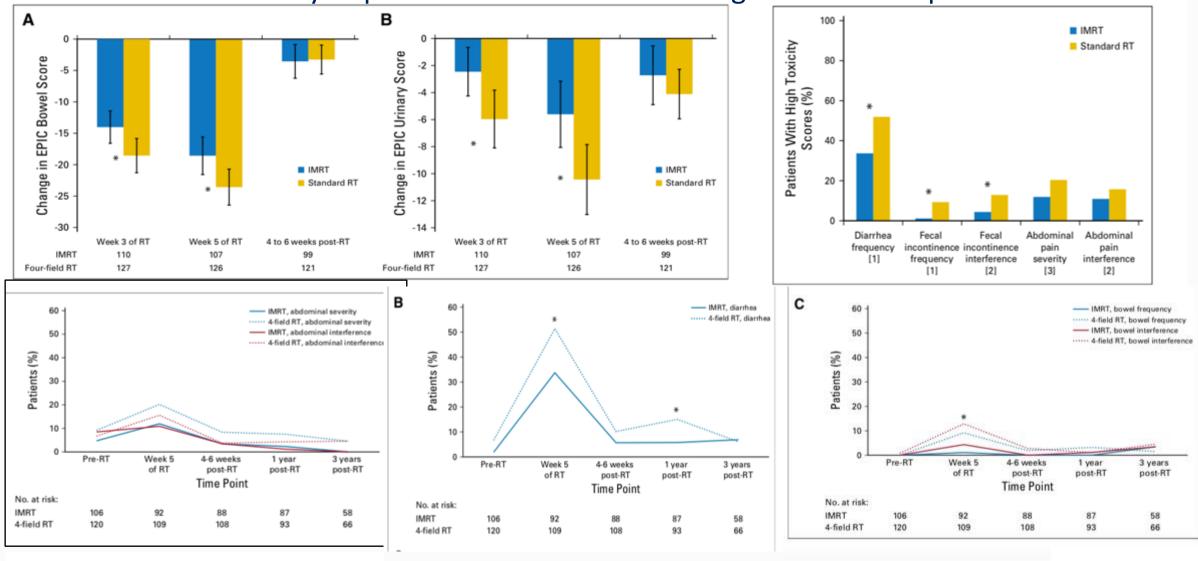
Postoperative Pelvic Radiation: CTCAE/RTOG Physician Reported Toxicity


RCT	Treatment	Late Grade III-IV Gastrointestinal Toxicity	(GI)
Rotman	Sx Sx+RT (No BT)	2.1% vs 6.6%	1
Keys	Sx Sx+RT (No BT)	0.4% vs 8%	1
Peters	Sx+ RT CT/RT+ Adj chemo	5% vs 10%	
Chen	Sx+ RT+ BT	Grade I-IV:19.2% (nonrectal GI)	+

Impact on Patient Reported QOL (GI) PORTEC I and II Endometrial Trial : EBRT (3DCRT) vs. Vaginal BT

Diarrhoea, Fecal Urgency, Fecal Leakage, Limitation of ADL

Nout RA, JCO 2011


Nout RA, Eur J Cancer 2012

Phase II Trials IG-IMRT: Acute and Late GI Toxicity (Until 2011)

Study	Number	Follow Up	Grade II-IV Toxicity
Grigsby (2009)	20	19 mths	35% (Acute)
	EBRT		
Kabarriti (2009)	26	18 mths	15.4% (Acute)
	EBRT Only		
Barrilott (2013)	49	Wk15	<30%
RTOG 0418 (2009)	98	30 mths	3.2%
	(EBRT+BT)		
Folker MR (2013)	34	44 mths	Late: 3%
	(EBRT+ Chemo)		

Long Term Benefit for IG-IMRT was not Clear

TIME -C NRG Study Early Impact on RT. No benefit at long term follow up

Klopp JCO 2018

Yeung, JCO 2020

IG-IMRT will improve late GI toxicity free survival in patients undergoing adjuvant RT for cervix cancer.

NCT01279135/CTRI2012/120349

Study Eligibility

Inclusion Criteria

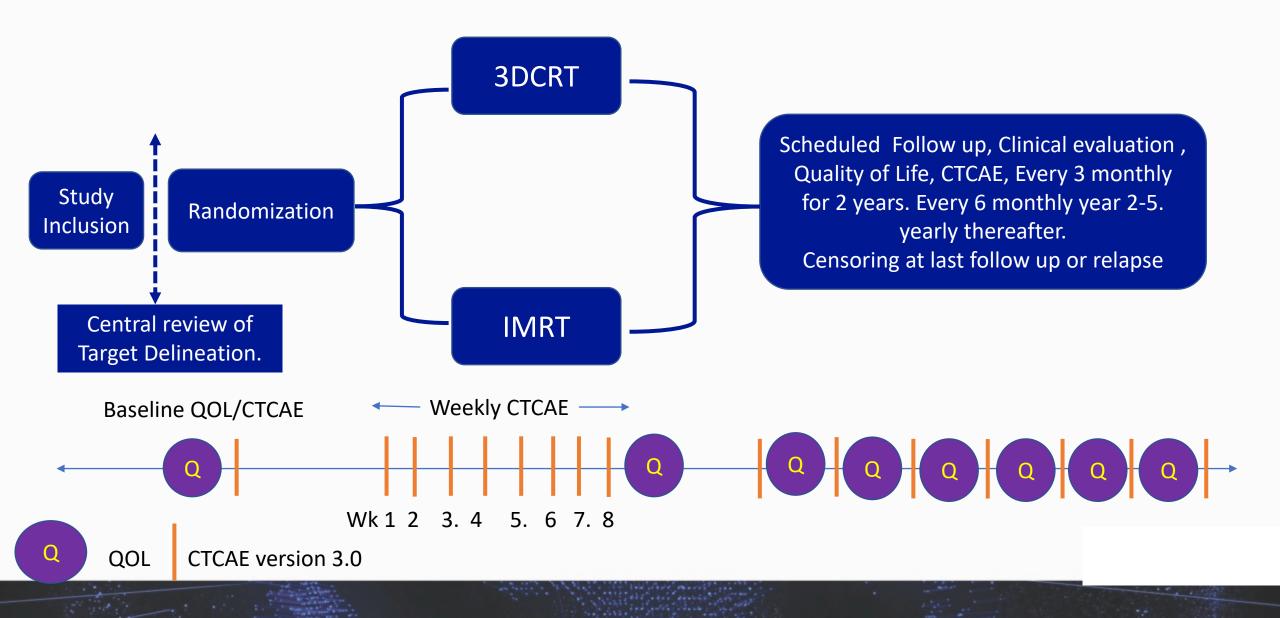
- Cervical Cancer
- Age >18 years
- Type III Hysterectomy with intermediate or high risk features
- Type I/II hysterectomy necessitating adjuvant CRT

Exclusion Criteria

- Positive Para aortic nodes or indication for extended field RT.
- History of multiple previous abdominal surgeries/radiation
- Any medical condition predisposing to bowel toxicity

Primary

•To demonstrate difference if any in GI late toxicity free survival with use of IG-IMRT (CTCAE version 3.0)


Secondary

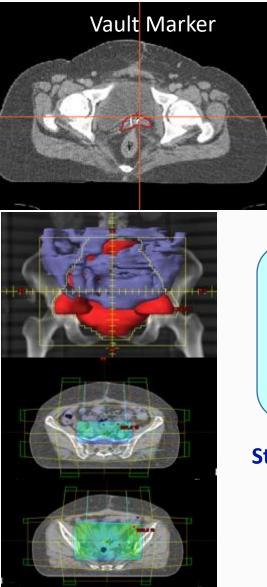
• To compare acute toxicity between 3DCRT and IG-IMRT arm

•To compare QOL between the 3DCRT and IMRT

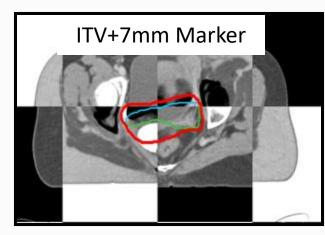
•To identify DVH characteristics that predict for late GI toxicity

Trial Schema

Sample Size


 To demonstrate 13% reduction (18% to 5%) in Late Grade ≥ II GI Toxicity at a median f/up of 36 months.

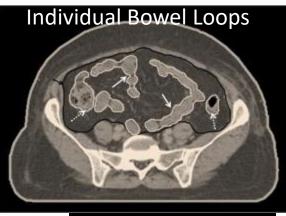
• Preplanned strata: Type of Hysterectomy and Use of concurrent chemotherapy

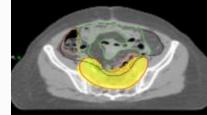

• One planned interim analysis when 50% patients reach median follow up of 18 months.

• 218 patients needed (240 with attrition accounted)

Treatment

3DCRT


50 Gy/ 25#/5 weeks +/- Cisplatin


CT Based Brachytherapy (HDR 6 Gy x 2#)

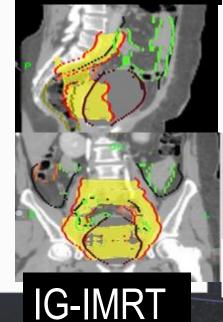
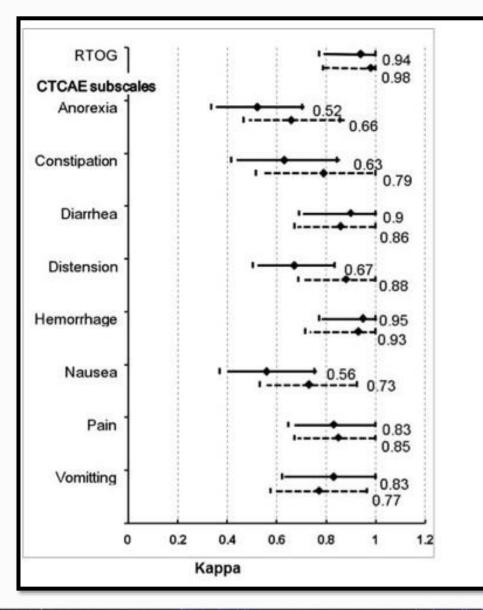
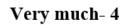

Strict Bowel Constraints in IG-IMRT (V15,V40)

Image guidance in both arms


CTCAE v 3.0 baseline and F/U

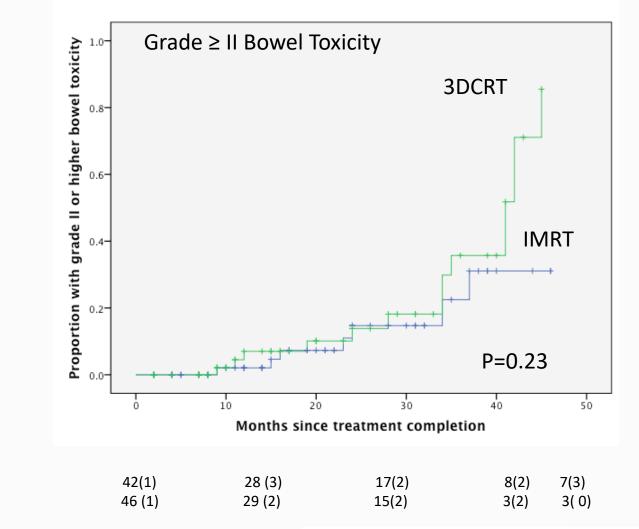
Late Toxicity Assessment


- 11 GI Items of CTCAE version 3.0
- Additional GU, Lymphedema, Vaginal, Constitutional scales used
- Inter-rater agreement of GI subscales validated prior to study initiation.
- PI led study team performed all the toxicity scoring
- Patients censored for primary endpoint assessment at relapse.

Longitudinal Capture of Treatment Related Toxicity and QOL Parameters (CTCAE and EORTC QLQC30 and Cx 24)

R.NO.	TFU	6	12	18	24	36	48	60	72	84	96
51 (QOL)	48	1	2		1	2	1				
51 (QOL) 51 (CTCAE)	-10	0	3		0	1	0				
219(QOL)	24	1	3		3						
219(CTCAE)		3	3		2						
18(QOL)	60	1	1	3	2	1		1			
18(CTCAE)		1	1	2	0	0		0			
170(QOL)	30	3	2		3						
170(CTCAE)		2	1		1						
6(QOL)	96	2	2	1	1	1		1		1	2
6(CTCAE)		1	0	1	1	0		0		0	0
35(QOL)	84	1	3	1	1	1	2		2	1	
35(CTCAE)		0	1	0	0	0	0		0	0	
56(QOL)	72	1	1	1	1	1	2	1	1		
56(CTCAE)		0	0	0	1	0	0	0	0		
42(QOL)	72	1	1	2	1	2	1	2	2		
42(CTCAE)		0	0	0	0	0	1	0	0		

Toxicities captured across multiple scales : 11 GI/5 GU and others

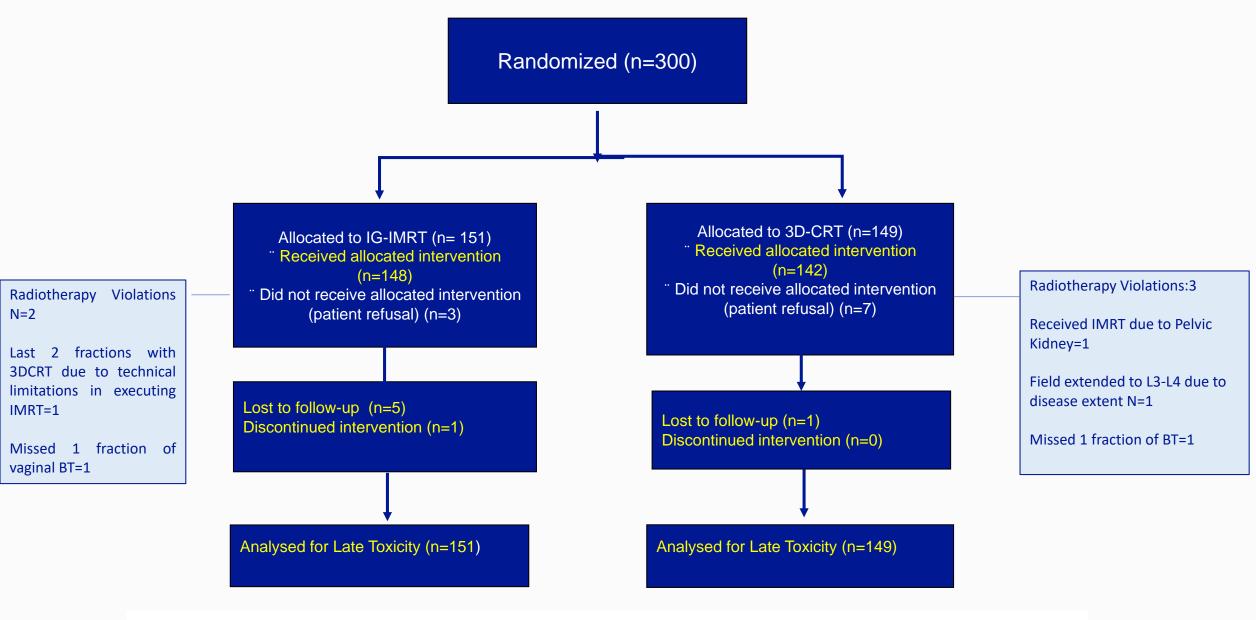

Planned Interim Analysis: 2015

- Primary endpoint 24% vs 11%, p=0.12).
- Alpha spending 0.03.
- Final Sample Size amended
- A total of 43 events needed (N=300).
- p=0.047 reserved for final analysis

Number at Risk (Number of Events)

3DCRT (n=56)

IMRT (n=61)



Presented at ASTRO Plenary Session 2015

Planned Accrual completed in October, 2019.

Median Follow up of 48 months was reached.

Study Closed for Final Analysis 31st January,2020.

Study closed 31st January 2020 for primary analysis

Baseline Patient Characteristics

	IG-IMRT (n=151)	3D-CRT (n=149)
Age ≥ 48 <48	83 (55%)	85 (57%)
	68 (45%)	64 (43%)
BMI	69 (45.7%)	77 (51.7%)
≥ 24 <24	82 (54.3%)	72 (48.3%)
<24 Hypertension	02 (04.3%)	72 (48.3%)
Yes	13 (8.6%)	22 (14.8%)
No	138 (91.4%)	127 (85.2%)
Diabetes	6 (4.0%)	12 (8.1%)
Yes	0 (4.070)	
No	145 (96%)	137 (91.9%)
Tobacco use	6 (4.2%)	7 (4.7%)
Yes	145 (06%)	142 (05 29/)
No Previous Abdominal surgery	145 (96%)	142 (95.3%)
>1	6 (4%)	7 (4.7%)
≤1	145 (96%)	142 (95.3%)
Type of Surgery	1.10 (00 %)	112 (00.070)
Laparoscopic	11 (7.3%)	10 (6.7%)
Open	140 (92.7%)	139 (93.3%)
Type of surgery		
WH	80 (53%)	74 (49.7%)
TAH-BSO	71 (47%)	75 (50.3%)
Histology	110 (71 00)	107 (05 000)
Squamous	113 (74.8%)	127 (85.2%)
Adenocarcinoma	38 (25.2%)	22 (14.8%)
Concurrent chemotherapy Yes	117 (77.5%)	114 (76.5%)
No	34 (22.5%)	35 (23.5%)
Treatment completion as	146 (96.7%)	138 (92.6%)
intended	140 (00.7 %)	100 (02.070)
External Radiotherapy		
Recommended Chemotherapy*		
(n=231)		
Chemotherapy dose reduction	17 (11.8%)	13 (9.1%)
(overall)		
Chemotherapy 4 or more cycles	103(88%)	100 (87.7%)
Chemotherapy 3 cycles	3 (2.1%)	3 (2.1%)
Chemotherapy 2 cycles	4 (2.8%)	2 (1.4%)
Chemotherapy 1 cycle	3 (2.1%)	1 (0.7%)
Chemotherapy 0 cycle	0 (0.0%)	2(1.7%)

Balance between Test and Standard Arm

96% compliance to IG-IMRT

92% to 3DCRT

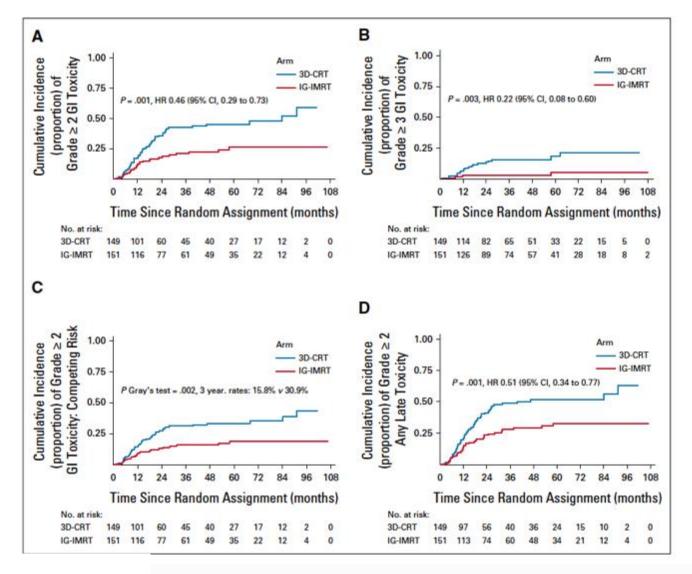
Balance in Concurrent chemotherapy recd and type of Surgery in both arms.

*=Data specified for patients only who were recommended concurrent chemotherapy and

stratified in chemo-radiotherapy subgroup.

Acute Toxicity

	3DCRT (N=149)	IG-IMRT(N=151)	P value
	Grade ≥ II Toxicity	Grade ≥ II Toxicity	
Diarrhea	27.7%	17.8%	0.04
Any Gastrointestinal Toxicity	52.5%	53.5%	0.93
Any Genitourinary Toxicity	5.7%	9.9%	0.19
Any Hematological Toxicity	33.7%	41%	0.14
Fatigue	22.7%	19.1%	0.54

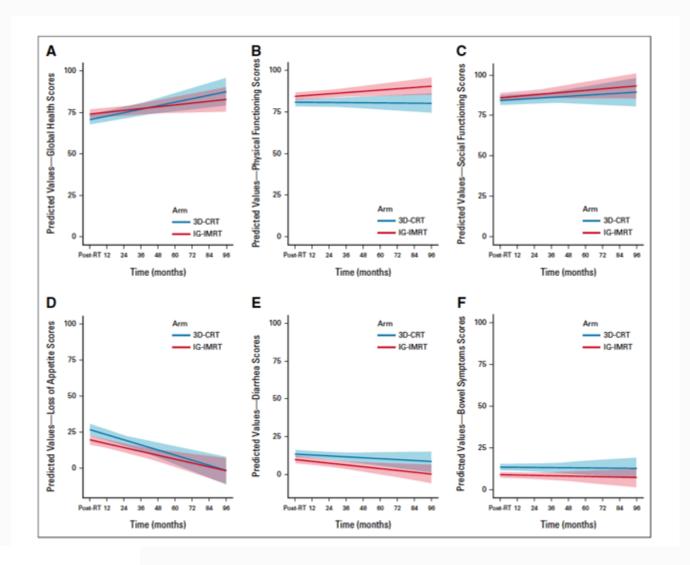

Results: Late Gastrointestinal Toxicity

	Grade ≥ II Toxicity 3DCRT	Grade ≥ II Toxicity	P value
		IG-IMRT	
Diarrhea	8%	4.3%	0.21
Anorexia	7.3%	1.4%	0.02
Nausea	1.5%	0.7%	0.62
Vomiting	4.4%	1.4%	0.17
Abdominal Bloating	27.7%	14.4%	0.01
Abdominal Pain	15.3%	10.9%	0.27
Bowel Perforation	1.5%	0.7%	0.62
Bowel Obstruction	7.3%	0.7%	0.01
Gastrointestinal Stricture	0.7%	0.7%	0.25
Rectal Bleeding	3.6%	1.4%	0.17
Malabsorption	1.5%	1.4%	0.62

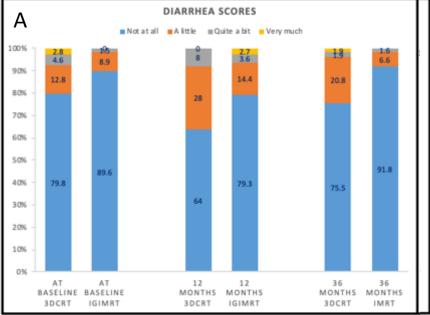
Results: Non Gastro-Intestinal Late Toxicity

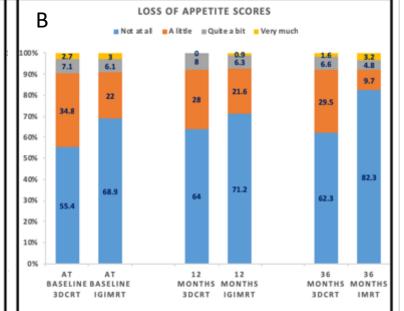
	3DCRT Grade ≥ II Toxicity	IG-IMRT Grade ≥ II Toxicity	P value
Cystitis	7.5%	5%	0.60
Urinary Frequency	4.4%	1.4%	0.33
Urinary Incontinence	2.2%	0.7%	0.37
Bladder Spasms	1.5%	0%	0.25
Any Genitourinary Toxicity	11.8%	6.5%	0.21
Lymphedema	1.5%	1.4%	1.0
Fatigue	13.9%	5.1%	0.01
Constitutional Symptoms	8.1%	2.2%	0.03
Vaginal Stenosis	5.9%	1.4%	0.06
Second Cancers	1.5%	0%	0.25
Toxicity Related Death	2.1%	0.7%	0.31

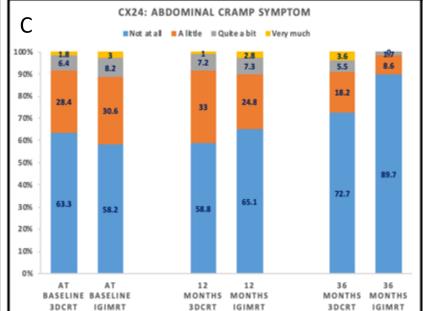
Physician Reported Adverse Effects: PARCER Phase III Trial

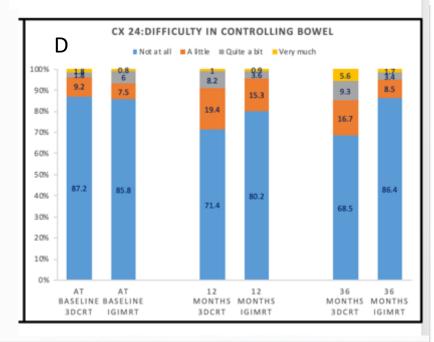

Chopra, JCO, 20121

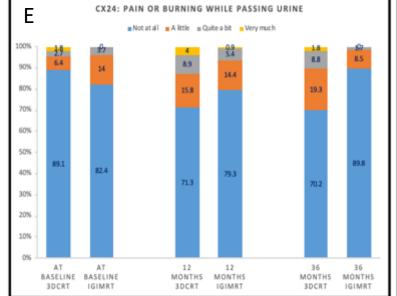
Subgroup Analysis

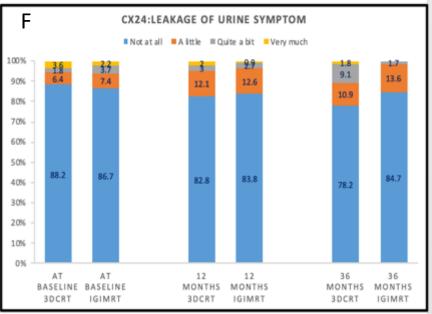

	Events/	Patients		HR	Interaction
Subgroup	IG-IMRT	3D-CRT		(95% CI)	Р
Age, years					
< 48	12/67	25/64		0.42 (0.21 to 0.84)	.633
≥ 48	17/83	29/85		0.51 (0.28 to 0.93)	
BMI, kg/m²					
< 24	14/82	28/72		0.43 (0.23 to 0.82)	.700
≥ 24	15/69	26/77	-	0.52 (0.27 to 0.99)	
Route of surgery					
Laproscopic	1/11	2/10		0.41 (0.04 to 4.59)	.750
Open	26/140	49/139		0.48 (0.30 to 0.77)	
Concurrent CT					
CT + RT	20/117	41/114		0.40 (0.23 to 0.68)	.237
RT alone	9/34	13/35		0.75 (0.32 to 1.76)	.2.07
Type of surgery					
Wertheim's hysterectomy	20/80	29/74		0.59 (0.34 to 1.05)	.183
TAH-BSO	9/71	25/75		0.32 (0.15 to 0.69)	
Acute diarrhea					
Grade 0-1	22/118	30/94		0.54 (0.31 to 0.93)	.770
Grade 2-4	7/26	20/39		0.47 (0.20 to 1.11)	
Acute GI					
Grade 0-1	17/99	30/90		0.48 (0.27 to 0.88)	.981
Grade 2-4	12/45	20/43		0.49 (0.24 to 1.02)	
Overall	29/151	54/149	\Diamond	0.46 (0.29 to 0.73)	
		0.031	1	32	
		Favors	IG-IMRT	Favors 3D-CRT	


Chopra, JCO,2021


Quality of Life

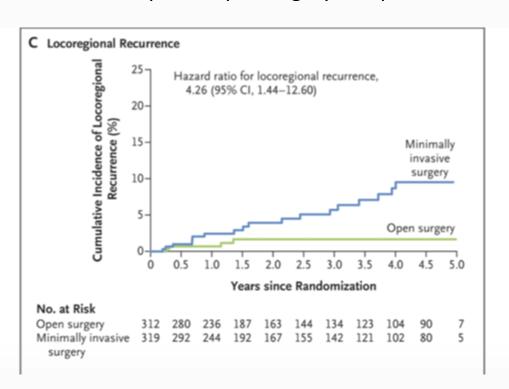



Chopra, JCO, 2021

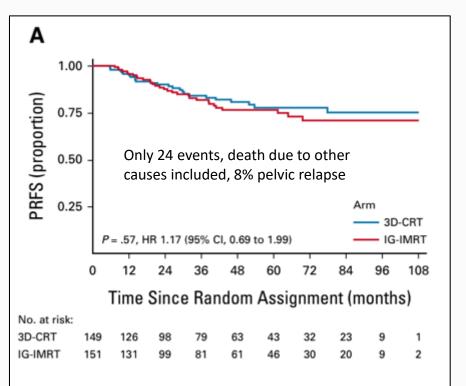


Impact of Surgical Advances on Adverse Events

Intraoperative complications


	M	15	0	RH				
Study	Events	Total	Events	Total	Odds Ratio	OR	95%-CI	Weight
Lee et al.	1	30	1	30		1.00	[0.06; 16.76]	1.1%
Steed et al.	9	71	9	205	÷	3.16	[1.20; 8.31]	4.8%
Frumovitz et al.	5	35	1	54		8.83	[0.99; 79.18]	0.8%
Li et al.	8	90	3	35		1.04	[0.26; 4.17]	4.6%
Uccella et al.	4	50	2	48		2.00	[0.35; 11.46]	2.2%
Zakashansky et al.	2	30	2	30		1.00	[0.13; 7.60]	2.2%
Boggess et al.	0	51	2	49		0.18	[0.01; 3.94]	3.0%
Ko et al.	0	16	1	32		0.64	[0.02; 16.50]	1.2%
Estape et al.	3	49	0	14	·	2.18	[0.11: 44.78]	0.8%
Maggioni et al.	8	40	0	40	· · · · · · · · · · · · · · · · · · ·	- 21.18	[1.18; 380.90]	0.5%
Malzoni et al.	1	65	1	62		0.95	[0.06; 15.58]	1.2%
Papacharalabous et al.	3	14	1	12		3.00	[0.27: 33.49]	1.0%
Sobiczewski et al.	2	22	5	58		1.08	[0.19; 5.91]	2.9%
Schreuder et al.	1	13	1	14		1.08	[0.06; 19.31]	1.0%
Lee et al.	3	24	6	48		1.00	[0.23; 4.40]	4.1%
Sert et al.	4	42	0	26		6.19	[0.32; 119.95]	0.6%
Taylor et al.	0	9	3	18		0.23	[0.01; 5.03]	2.7%
Gortchev et al.	0	119	1	175		0.49	[0.02; 12.05]	1.4%
Nam et al.	20	263	15	263		1.36	[0.68; 2.72]	16.3%
Park et al.	1	54	1	112	·	2.09	[0.13: 34.13]	0.8%
Campos et al.	4	16	0	14		10.44	[0.51; 213.52]	0.5%
Lim et al.	1	18	0	30		5.23	[0.20; 135.40]	0.4%
Park et al.	6	115	5	188		2.01	[0.60; 6.76]	4.2%
Bogani et al.	3	65	2	65		1.52	[0.25; 9.44]	2.2%
Chen et al.	1	56	3	44		0.25	0.02; 2.48]	3.9%
Asciutto et al.	2	64	9	185		0.63	0.13; 3.00]	5.3%
Ditto et al.	1	60	0	60		3.05	[0.12: 76.39]	0.6%
Xiao et al.	1	106	3	48		0.14	[0.01; 1.41]	4.8%
Park et al.	4	186	0	107		5.30	[0.28; 99.43]	0.7%
Shah et al.	2	109	3	202		1.24	[0.20; 7.54]	2.4%
Corrado et al.	4	240	2	101		0.84	[0.15; 4.66]	3.3%
Guo et al.	7	412	2	139	<u> </u>	1.18	0.24; 5.77]	3.5%

Category	MIS	ORH	OR (95% CI)	P value	I ² (%)
Transfusion	301/2490	494/4408	0.34[0.22,0.53]	< 0.001	72.3
Intraoperative complicatio	ns				
Bladder damage	25/2279	24/4009	1.28[0.75,2.19]	0.3	0
Cystotomy	32/586	14/677	2.27[1.23,4.20]	0.002	0
Bowel injury	12/1479	8/3449	2.15[0.95,4.89]	0.041	0
Subcutaneous emphysema	7/246	0/207	4.36[0.94,20.29]	0.008	0
Nerve injury	2/1181	5/802	0.51[0.14,1.93]	0.343	0
Ureteral injury	22/2519	24/4520	1.05[0.61,1.76]	0.959	0
Vessel injury	21/2328	27/4112	1.01[0.59,1.73]	0.753	0
Postoperative complication	s				
Wound infection	5/1380	104/3277	0.15[0.08,0.28]	<0.001	0
Incisional hernia	7/898	7/811	0.93[0.34,2.51]	0.803	0
Pelvic infection and abscess	30/1713	78/3396	0.40[0.26,0.63]	<0.001	39.9
Lymphedema	13/791	19/619	0.48[0.24,0.98]	0.03	0
Lymphocyst	40/1614	35/1194	0.73[0.46,1.15]	0.123	8.4
Intestinal obstruction	37/2490	281/4070	0.30[0.21,0.43]	<0.001	0
Pulmonary embolism	0/508	7/558	0.36[0.09,1.48]	0.025	0
Deep vein thrombosis	31/2289	78/3886	0.56[0.35,0.88]	0.01	0
Fistula	38/2203	17/1904	1.69[0.02,2.79]	0.011	0
Urinary tract infection	33/764	44/799	0.56[0.34,0.91]	0.013	3


Yilin Li, PLOS One 2021

MIS had a negative effect in increasing the complications of cystotomy, bowel injury, subcutaneous emphysema, and fistula.

Advances in Surgical Techniques vs Advanced Radiation Techniques : Postoperative Setting Disease Control

Laparoscopic Surgery vs Open

IG-IMRT vs 3DCRT

Approx 30% use of adjuvant RT +/-chemo in both arms

100% use of adjuvant RT based on risk grouping

Detriment in Oncological Outcomes with Advances in Surgical Techniques

Ramirez, NEJM 2018

Chopra S, JCO, 2021

Summary

- IG-IMRT is superior to 3DCRT in reducing Late GI toxicity in women undergoing postoperative pelvic RT.
- Greater Benefit of IG-IMRT in those receiving concurrent chemotherapy though study underpowered to conclude on this subgroup.
- Statistically significant reduction in acute diarrhea.
- No difference in disease related outcomes or Genitourinary Toxicity.
- IG-IMRT should represent the new standard of care for postoperative pelvic RT.

Development of MOSES Reanalysis of Phase III PARCER trial with MOSES.

Supriya Chopra, Nilesh Ranjan, Mayuri Charnalia

Background for Developing Time Weighted Toxicity Reporting System

- Classical CTCAE method of toxicity reporting relies on WORST Grade in an organ system.
- ✓ Cumulative effect of evolution of toxicity and multiplicity of events within an organ system not considered.
- ✓ Modest to Low Correlation between Physician and Patient reported outcomes in terms of QOL.
- ✓ Alternative methods of toxicity reporting in literature LAPERS , Tox T, TAMES, Total toxicity burden.

Hypothesis

Time weighted CTCAE scores provide a better description of symptom burden. This may better correlate with QOL.

Study Population for Prospective Cohort

- Patients included in Phase III RCT of 3DCRT vs IG-IMRT (postop RT in cervix cancer; PARCER)
- Symptomatic for toxicity either on physician or patient assessment
- Patients with at least 12 months of follow up
- At least 3 QOL scores available after baseline QOL (with 6 months post treatment representing the baseline QOL)

Steps in MOSES Calculation

- ✓ 6 symptoms selected (Most common and had corresponding QOL item).
- ✓ MOSES score calculated. (Σ P x S): example to follow
- ✓ ROC performed against substantial symptom on QOL symptom item/ role functioning (50% adapted from LAPERS)
- ✓ MOSES score cut off in our population that provided good Sens/Spec for symptomatic on QOL : 0.20 (0.14-0.22).
- ✓ After sensitivity analysis for both cut off of MOSES and QOL MOSES = 0.20 retained as discriminator.
- ✓ For Multiple symptoms / patient C-MOSES score calculated
- ✓ C MOSES = (MOSES symptom1+ MOSES Symptom 2+...3+...4) . Cut off of 0.70 against QOL

Output Twitter Type in your Twitter handle here!

MOSES Score Calculation

At month	6	9	12	15	18	21	24	27	30	33	36	42	48	54	60	72	84	TFU	MAX GRADE
Patient A	3	0	3	3	3	3	2											24	3
Patient B	0	3	No f/u	0	0	0	0	No f/u	0	1	No f/u	No f/u	0	No f/u	No f/u	0	0	84	3
	10 fold difference i								e in M	1OSES score									
Patient A: Final score for diarrhoea = $\Sigma P \times S$									• Patient B– Final score for diarrhoea = $\Sigma P \times S$										
=P(0) * S(0)+P(I) * S(I)+P(II) * S(II)+P(III) * S(III)+P(IV) * S(IV)+P(V)								V)	=P(0) * S(0)+P(I) * S(I)+P(II) * S(II)+P(III) * S(III)+P(IV) * S(IV)+P(V) * S(V)										
* S(V)											= (73.5/84 * 0) + (6/84 * 1) + (0/84 * 2) + (4.5/84 * 3) + (0/84 * 4) + (0/84 * 5)								
= (3/24 * 0) + (0/24 * 1) + (3/24 * 2) + (15/24 * 3) + (0/24 * 4) + (0/24 * 5)																			
= 0+0+0.25+1.88+0+0									= 0+0.07+0+0.16+0+0										
											= <u>0.23</u>								
= <u>2</u>	<u>13</u>																		
@ Type in your Twitter handle here!																Ø	f #AS	TRO20	

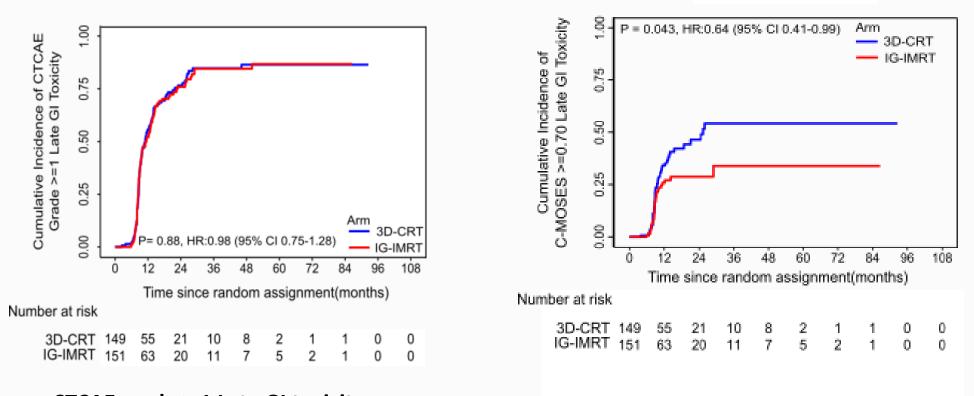
C-MOSES Score Calculation

R.No.	Diarrhoea	Anorexia	Pain	Urinary Incontinence	Urinary Frequency	Fatigue	Final Score	Max Grade
Patient A	2.13	0.52	0.52	0.41	0.52	0.21	4.30	3
Patient B	0.23	0.00	0.07	0.10	0.00	0.00	0.40	3

CTCAE vs. MOSES in predicting QOL Symptom

QOL	CTC	AE maximum	grade methoo	k	MOSES Method						
Symptoms	Sensitivity	Specificity	Accuracy	p-value	Sensitivity	Specificity	Accuracy	p-value (φ*)	AUC		
Diarrhoea	50%	73%	69%	0.096	43%	94%	85 %	0.001	0.67		
Anorexia	25%	63%	51%	0.24	9%	85%	61 %	0.40	0.45		
Abdominal Pain	88%	24%	57%	0.046	58%	85%	71 %	0.001	0.76		
Urinary incontinence	65%	59%	61%	0.04	30%	91%	72 %	0.01	0.65		
Urinary frequency	63%	56%	59%	0.045	21%	91%	62 %	0.06	0.63		
Fatigue	90%	24%	76%	0.03	63%	70%	64 %	0.001	0.71		

Output Twitter Twitter Provide Active Act


PARCER reanalysis using all CTCAE Grades

✓ 21 Symptoms selected(11 GI symptoms, 5 GU symptoms, 5 other symptoms)

- ✓ MOSES score calculated.
- ✓ C-MOSES score calculated
- ✓ Patients categorized above and below as C-MOSES>= 0.70 and C-MOSES<= 0.70
- ✓ CTCAE categorized as "Grade0" and "Grade 1-4"

✓ Time to event performed between IG-IMRT and 3D-CRT arm using CTCAE and MOSES.

CTCAE vs. MOSES: Late GI Toxicity

CTCAE grade \geq 1 Late GI toxicity

C-MOSES ≥0.70 Late GI toxicity

Summary

> MOSES and C-MOSES are more accurate in predicting patient's symptoms burden(QOL).

> C-MOSES provides much more comprehensive discrimination of toxicity burden.

> As compared to CTCAE, MOSES reports higher bothersome symptom burden (25% vs 50% for any toxicity)

> MOSES allows better discrimination between treatment interventions.

> This method of toxicity reporting requires further testing and validation.

≻ Is a valuable complement to CTCAE reporting (Can miss isolated severe events)

Future Directions

- Compare MOSES with other AE scoring systems like LAPERS (EMBRACE)
- External Validation of MOSES initiated
- EMBRACE Adverse events planned to be analyzed using MOSES

(Danish Research Grant , K Tanderup, K Kirchheiner, S Spampinato, S Chopra)

