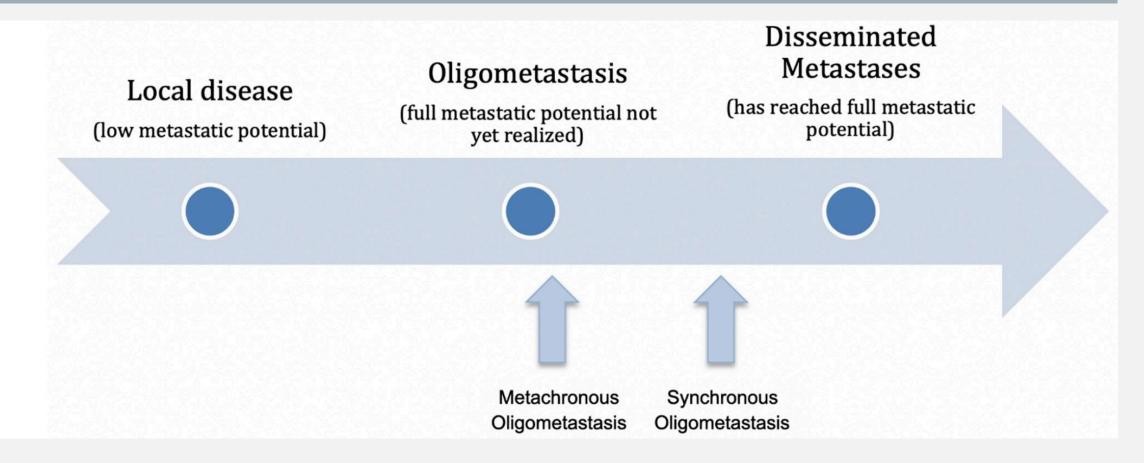


OLIGOMETASTATIC & EARLY-STAGE LUNG CANCER -UPCOMING TRENDS AND OPPORTUNITIES


Dr. Srinivas Chilukuri

Senior Consultant Radiation Oncologist Apollo Proton Cancer Centre, Chennai

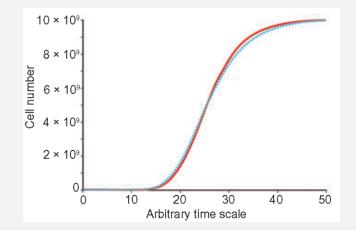
Oligometastatic paradigm

Alternate version to Halstedian & Systemic disease (Fisher and others) hypotheses

Hellman, et al JCO 1995

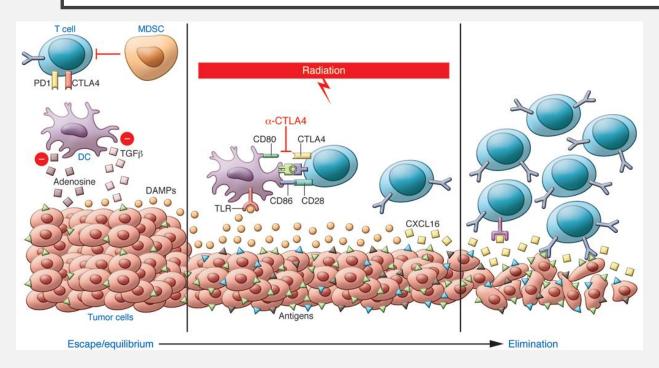
WHY IMPORTANT ?

- Imaging with high sensitivity during staging
- Frequent imaging post treatment
- 20% of NSCLC pts on FDG PET scan show occult oligometastasis
- Improvement of systemic control with targeted therapies/immunotherapy
- Results across cancers show improved outcomes with aggressive local therapies



WHY LOCAL THERAPY FOR OLIGOMETASTATIC DISEASE

Local control- Important when results in measurable benefit in overall survival.


Modification of the Norton-Simon Hypothesis

- To reduce the patient's total burden of disease in such a way that the remaining cancer within the patient's body enters into a state of relatively higher growth fraction and is thus more susceptible to systemic therapy.
- To prevent or delay as long as possible the condition of lethal tumor burden that is fatal to the patient

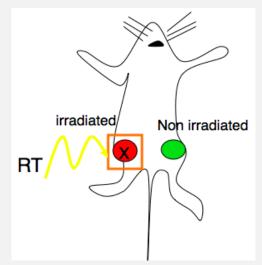
Most importantly emergence of more effective systemic therapyincreased local therapy benefits

WHY LOCAL THERAPY-ERA OF IMMUNOTHERAPY

• RT can increase antigenic expression, release pro-inflammatory cytokines that recruit immune cells, promote antigen cross-presentation, and induce tumor expression of death receptors.

PROT ON Cancer Centre

Anti-CTLA4–targeted immunotherapy can enhance the adaptive immune component by promoting antigen cross-presentation and T cell activation


At baseline, both the tumor immune microenvironment and the poor antigenicity of the tumor - escape immune recognition.

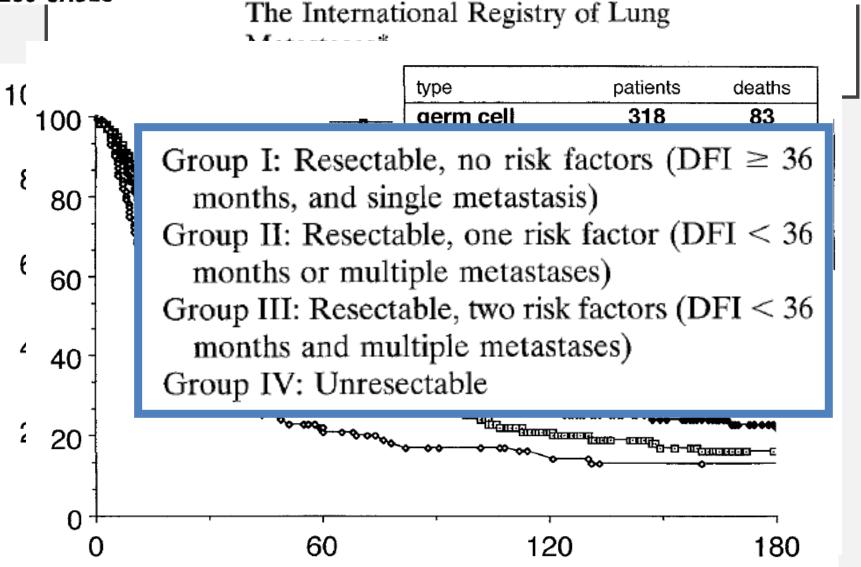
Synergistic Combination may shift the tumor immune system balance towards elimination

Local radiotherapy and granulocyte-macrophage colonystimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial

PROT©N Cancer Centres

Encouse B Golden, Arpit Chhabra, Abraham Chachoua, Sylvia Adams, Martin Donach, Maria Fenton-Kerimian, Kent Friedman, Fabio Ponzo, James S Babb, Judith Goldberg, Sandra Demaria, Silvia C Formenti

A proof-of-principle trial: Local radiotherapy and GM-CSF—an immunotherapy—to generate abscopal responses in patients with metastatic solid tumors.


• 26.8% abscopal responses

• Median overall survival: 20.98 months versus 8.33 months (responders vs. non responders).

Interpretation The combination of radiotherapy with granulocyte-macrophage colony-stimulating factor produced objective abscopal responses in some patients with metastatic solid tumours. This finding represents a promising approach to establish an in-situ anti-tumour vaccine. Further research is warranted in this area.

LONG-TERM RESULTS OF LUNG METASTASECTOMY: PROGNOSTIC ANALYSES BASED ON 5206 CASES

Pastorino, et al JTCVS 1997

WHY SBRT

- High doses to small, well-defined targets in extreme hypofractionated scheme with a very high biological effectiveness
- Not feasible to administer such BED in conventional fractionation.
- Apart from the usual radiobiology, the effect on vasculature adds to its biological equivalence not captured by LQ model.
- Enhanced effect on immuno-modulatory effect and abscopal effects.
- A large body of evidence now for <u>Lung</u>, <u>Brain and Liver</u>.

TABLE I. Comparison of typical characteristics of 3D/IMRT radiotherapy and SBRT.

Characteristic	3D/IMRT	SBRT
Dose/fraction	1.8–3 Gy	6–30 Gy
No. of fractions	10–30	1–5
	CTV/PTV (gross disease+clinical extension):	GTV/CTV/ITV/PTV
Target definition	Tumor may not have a sharp boundary.	(well-defined tumors: GTV=CTV)
Margin	Centimeters	Millimeters
Physics/dosimetry monitoring	Indirect	Direct
Required setup accuracy	TG40, TG142	TG40, TG142
Primary imaging modalities used for treatment planning	CT	Multimodality: CT/MR/PET-CT
Redundancy in geometric verification	No	Yes
		Strictly enforced (sufficient immobilization
Maintenance of high spatial targeting accuracy	Moderately enforced	and high frequency position monitoring
for the entire treatment	(moderate patient position control and monitoring)	through integrated image guidance)
Need for respiratory motion management	Moderate—Must be at least considered	Highest
Staff training	Highest	Highest+special SBRT training
Technology implementation	Highest	Highest
Radiobiological understanding	Moderately well understood	Poorly understood
Interaction with systemic therapies	Yes	Yes

SBRT: AAPM Task Group 101, Med Phys 2010

Stereotactic body radiation therapy: The report of AAPM Task Group 101

Med Phys 2010

ESTRO-ACROP Guideline

Equipment Staff training, credentialing Patient selection Treatment planning Dose & fractionation Image guidance Quality assurance Follow-up and imaging assessment Overview of all mandatory and recommended work-flow and equipment of SBRT for early stage NSCLC (>50% agreement).

		, , , , , , , , , , , , , , , , , , , ,	
	SBRT workflow or equipment items	MANDATORY (minimum) requirements	Recommended for best practice
STRO-	Equipment Staff teaching,	C-arm linear accelerator with volumetric in-room image guidance Respiration correlated 4D-CT	Dedicated C-arm stereotactic linear accelerator (more advanced IGRT, more precise accuracy) High-resolution MLC <10 mm
ACROP	training and credentialing	Written departmental protocols Multi-disciplinary project team for SBRT implementation and application Structured follow-up for dinical outcome assessment	Participation in dedicated SBRT teaching course (e.g. ESTRO) Participation in Vendor-organized dedicated SBRT training Hands-on training at SBRT-experienced center Supervision of first SBRT treatments by SBRT-experienced colleague
uideline	Patient selection for SBRT	Discussion in interdisciplinary tumor board Minimum ECOG 3 Minimum life expectancy of 1 year	Biopsy confirmation of malignancy
nt ling, credentialing election It planning ractionation	Treatment planning Dose and fractionation Inter- and intra- fraction image	3D conformal treatment planning Type B algorithms Respiration correlated 4D-CT imaging ITV based motion management strategy Risk adapted fractionation schemes for peripheral and œntral tumors, and for tumors with broad chest wall contact	Dynamic IMRT planning (VMAT) Use of a fixed dose inhomogeneity in PTV
dance ssurance	guidance Follow-up	Daily pre-treatment volumetric image-guidance	Daily pre-treatment 4D volumetric image-guidance (in-room 4D-CT, 4D-CBCT)
and imaging assessment	Quality assurance	Follow-up according to published guidelines FDG-PET imaging in case of suspected local recurrence	Routine biopsy confirmation of imaging-defined local failure only in patients who are likely to undergo salvage therapy
	County associative	Intensified quality assurance (mechanical accuracy of 1.25 mm and a dosimetric accuracy of 3% in a lung phantom inside the treatment field) Small field dosimetry detectors for commissioning End-to-end testing in a lung phantom Quality assurance of in-room image-guidance systems and of the 4D-CT scanner	End-to-end testing in a moving 4D lung phantom
M Guckenberger, et al Radiotherapy	Oncol 2017	Weekly checks of the mechanical accuracy of the delivery system Daily quality checks of the alignment of the IGRT system with the MV treatment beam	
			· · · · · · · · · · · · · · · · · · ·

International Journal of Radiation Oncology biology • physics

www.redjournal.org

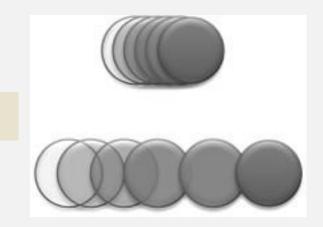
Critical Review

The Tumor Radiobiology of SRS and SBRT: Are More Than the 5 Rs Involved?

J. Martin Brown, PhD,* David J. Carlson, PhD,^{\dagger} and David J. Brenner, PhD^{\ddagger}

*Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; [†]Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, and [‡]Center for Radiological Research, Columbia University Medical Center, New York, New York

Received May 9, 2013, and in revised form Jul 14, 2013. Accepted for publication Jul 17, 2013


Int J Radiation Oncol Biol Phys, Vol. 88, No. 2, pp. 254-262, 2014

$$BED = nd \left[1 + \frac{d}{(\alpha/\beta)} \right]$$

DEFINITIONS OF OLIGOMETASTATIC SPECTRUM

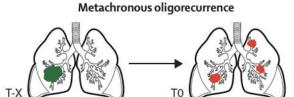
Primarily imaging driven and does not incorporate molecular info

Definitions

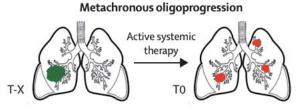
Table 1. Comparison of Recent Definitions for Oligometastatic Non-Small Cell Lung Cancer in Clinical Trials, National Treatment Guidelines, and Consensus Definitions. Moderndefinitions for oligometastatic non-small cell lung cancer have varied widely.

Author	Year	Study Type	Maximum Number of Metastases	Maximum Number of Organ Sites	Maximum Lesions in Each Organ	Intrathoracic N+ as Metastasis	Pulmonary Lesion as Metastasis	Includes Intracranial Lesions	No Disease Progression after First Line Therapy	Notes
Ashworth [5]	2014	Meta-analysis	5	NS	NS	NS	Yes	Yes	NS	
Gomez [2,3]	2016, 2019	RCT phase II	3	NS	NS	Yes	NS	Yes	Yes	
Iyengar [27]	2018	RCT phase II	5	NS	3 in lung or liver	NS	Yes	Exclude uncontrolled intracranial	Yes	
Palma [12,13]	2019, 2020	RCT phase II	5	NS	3	NS	NS	Exclude if only site of disease	Yes	Not lung cancer-specific
Dingemans [36] (EORTC-LCG)	2019	Consensus working group	5	3	NS	No	Yes	Yes	NS	
TNM stage M1a [31]	2017	Staging Guidelines	1	1	1	No	Contralateral	Yes	NA	
NCCN [34]	2021	Treatment Guidelines	3-5	NS	NS	No	Treat as second primary	Yes	NS	
ESMO [35]	2018	Treatment Guidelines	3	NS	NS	NS	Treat as second primary	Yes	NS	

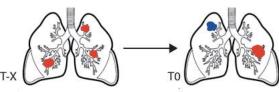
Abbreviations. NS, not specified; RCT, randomized controlled trial; EORTC-LCG, The European Organization of Research and Treatment of Cancer—Lung Cancer Group; NCCN, National Comprehensive Cancer Network; ESMO, European Society for Medical Oncology.


Blumenthaler, et al Cancers 2021

A De-novo oligometastatic disease


Synchronous oligometastatic disease

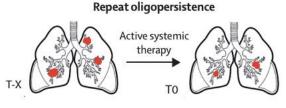
• T0: first time diagnosis of primary cancer (green) and oligometastases (red) within 6 months


- T-X: diagnosis and treatment of primary cancer (green) in a non-metastatic state
- Systemic therapy-free interval
- T0: First time diagnosis of new oligometastases (red) >6 months after diagnosis of cancer

- T-X: diagnosis and treatment of primary cancer (green) in a non-metastatic state
- Under treatment with active systemic therapy
- T0: first time diagnosis of new oligometastases (red) >6 months after diagnosis of cancer

B Repeat oligometastatic disease

Repeat oligorecurrence



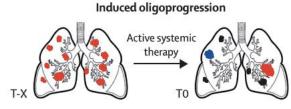
- T-X: diagnosis of oligometastases followed by local treatment or systemic treatment or both
- Systemic therapy-free interval
- T0: diagnosis of new (blue) and growing or regrowing (red) oligometastases

Repeat oligoprogression

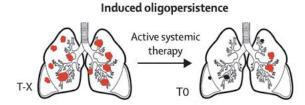
- T-X: diagnosis of oligometastases followed by local treatment or systemic treatment or both
- Under treatment with active systemic therapy
- T0: diagnosis of new (blue) and growing or regrowing (red) oligometastases



- T-X: diagnosis of oligometastases followed by local treatment or systemic treatment or both
- Under treatment with active systemic therapy
- T0: diagnosis of persistent non-progressive (red) oligometastases


C Induced oligometastatic disease

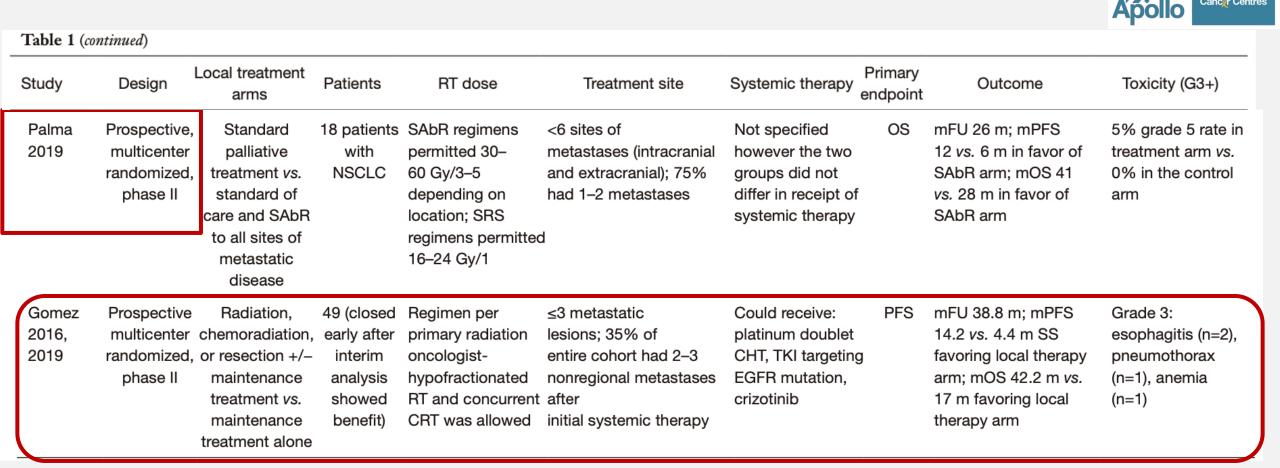
Induced oligorecurrence



- T-X: diagnosis of polymetastatic metastatic disease followed by systemic treatment with or without local treatment
- Systemic therapy-free interval
- T0: diagnosis of new (blue) and growing or regrowing (red) oligometastases, possible residual non-progressive metastases (black)

- T-X: diagnosis of polymetastatic metastatic disease followed by systemic treatment with or without local treatment
- Under treatment with active systemic therapy
- T0: diagnosis of new (blue) and growing or regrowing (red) oligometastases, possible residual non-progressive metastases (black)

- T-X: diagnosis of polymetastatic metastatic disease followed by systemic treatment with or without local treatment
- Under treatment with active systemic therapy
- T0: diagnosis of persistent non-progressive oligometastases (red), where response is worse compared with other residual metastases (black)



PROSPECTIVE STUDIES

Study	Design	Local treatment arms	Patients	RT dose	Treatment site	Systemic therapy	Primary endpoint	Outcome	Toxicity (G3+
De Ruysscher 2012	Prospective single arm, phase II	Radiation or surgery	44	Brain: 21 Gy/1; 24 Gy/3 pt undergoing resection received WBRT (30 Gy/10); lung: 54 Gy/3; other non- stereotactic regimens included (EQD2 >60 Gy)	1–4 sites, extra/ intracranial disease; 97.5% had 1–2 lesions treated	92.3% received platinum-based CHT	and	mFU 27.7 m; mPFS 12.1 m; mOS 16.7 m; 2-yr OS 23.3%; 3-yr OS 17.5%	Acute esophagitis 15%; cough 2.6%
Collen 2014	Prospective single arm, phase II	SBRT	26	SAbR: 50 Gy/10	1–5 metabolically active sites; extra/ intracranial disease. 46% >1 lesion treated; 46% >1 organ involved	65.4% received platinum-based induction CHT	CMR rate	mFU 16.4 m; mPFS 12.2 m; mOS 23 m; 1-yr PFS 45%; 1-year OS 67%; CMR 30%; OMR 60%	Acute cough 8%; late none
lyengar 2014	Prospective single arm, phase II	SBRT	24	SAbR: 19–20 Gy/1, 27–33 Gy/3, 35– 40 Gy/5	<7 sites, extracranial disease (<4 in liver and lung each); 62.5% >3 lesions treated	100% concurrent erlotinib (50– 150 mg/day)	6-m PFS	mFU 11.6 m; mPFS 14.7 m; mOS 20.4 m	Grade 3 24%***; grade 4 4%**; grade 5 13%*
lyengar 2018	Prospective, randomized, phase II	SAbR+ maintenance CHT <i>vs.</i> maintenance CHT alone	•	SAbR: 18–24 Gy/1, 24.6–33 Gy/3, 30–37.5 Gy/5. Hypofractionated: 45 Gy/15	Primary disease plus up to 5 extracranial sites with no more than 3 sites in the liver or lung	Maintenance therapy: docetaxel, bevacizumab, gemcitabine, pemetrexed, erolitinib	PFS	mFU 9.6 m; mPFS 9.7 vs. 3.5 m SS favoring local therapy arm. mOS not reached in local therapy arm vs. 17 m in maintenance arm	Similar grade 3+ toxicity profiles between the two arms. 2 grade 3 AE and 1 grade 4 AE in maintenance arm; 4 grade 3 AE in local therapy arm****
Theelan 2018	Prospective randomized phase II	Pembrolizumab after SAbR to a single tumor site <i>vs.</i> pembrolizumab alone	76	SAbR: 24 Gy/3	Only extracranial lesions treated with SAbR; >1 metastatic lesion with size <5 cm	Pembrolizumab (200 mg/kg every 3 weeks)	ORR	mFU 23.6 m; 12-week ORR 36% vs. 18 NS favoring SAbR arm; mPFS 6.6 m vs. 1.9 m favoring SAbR arm; mOS 15.9 m vs. 7.9 m favoring SAbR arm	35 grade 3+ toxicities in the experimental arm and 37 grade 3+ in the control arm; no difference between the arms

PROT N Cancer Centres

 Table 1 Outcomes from completed prospective for patients with oligometastatic and oligoprogressive NSCLC

PROT N Cancer Centres

Study	Disease	Design	Estimated accrual	Treatment	Lesion number	Location	Primary endpoint	Secondary endpoint
NRG-LU-002 (NCT03137771)	Oligometastatic NSCLC	Randomized multicenter phase II/III	378	MST <i>vs.</i> local consolidative therapy + plus	1–3	Extracranial	PFS, OS	Time to in-field failure, duration of maintenance
Mutation n	egative			MST**				chemotherapy, time to new lesior
SARON (NCT02417662)	Oligometastatic NSCLC	Randomized multicenter phase III	340	SACT <i>vs.</i> SACT + conventional RT or SAbR	1–5; max of 3 organs	Intracranial and extracranial	OS	PFS, toxicity, LC, QoL
SABR COMET 10 (NCT03721341)	Oligometastatic NSCLC	Randomized multicenter phase III		SC <i>vs.</i> SC + SAbR		Intracranial and extracranial		QoL, toxicity, PFS, time to new metastasis
OMEGA (NCT03827577)	Oligometastatic NSCLC	Randomized phase III		Local ablative therapy <i>vs.</i> conventional treatment		Intracranl and extracranial	OS	N/A*

PROT N Cancer Centres

DOIO

*, not specified on clinicaltrials.gov; **, MST can include immunotherapy. RT, radiation; OS, overall survival; PFS, progression-free survival; LC, local control; SACT, systemic anti-cancer therapy; SAbR, stereotactic ablative radiotherapy; MST, maintenance systemic therapy; QoL, quality of life; SC, standard of care; TKI, tyrosine kinase inhibitor.

Study	Year	Trial Type	Number of Patients	Control Treatment	Intervention Treatment	Primary Endpoint	Reported Outcomes	Notes
Northstar [39,42]	2018 ^a	RCT Phase II	143 ^c	Osimertinib alone	Osimertinib + surgery and/or radiation	PFS	Ongoing	EGFR- mutated cancers

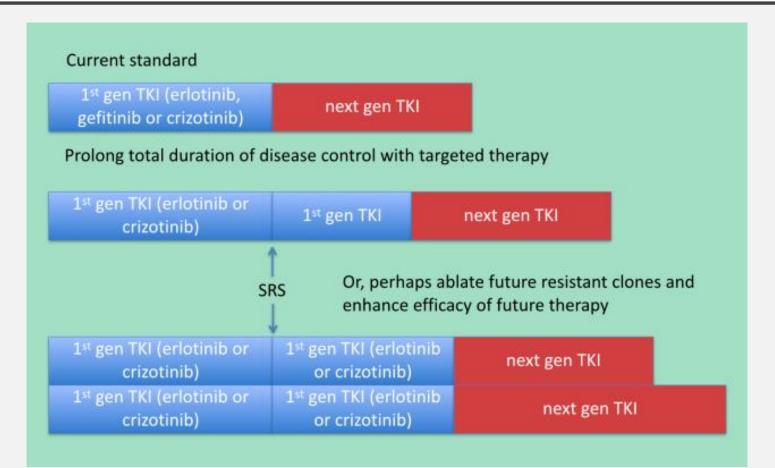

Immunotherapy and SABR for Oligometastases

 Table 1 (continued)

	-									
Study	Design	Local treatment arms	Patients	RT dose	Treatment site	Systemic therapy	Primary endpoint	Out	come	Toxicity (G3+
Bauml 2019	single arm, phase II	Pembrolizumab after SAbR, surgical resection, chemoradiation, or radiofrequency ablation	45	Unspecified radiation regimens	1-4 sites; Intracrania and extracranial lesio were treated; 30 pati were treated with SA 93% had 1–2 metastases	ons 11 cycles of ents pembrolizumab	PFS	mFU 25 m; 19.1 m; mC		5 pneumonitis (one grade 4), 2 grade 3 colitis, and 2 adrenal insufficiency (o grade 3)
Study	Y	ear Tri	al Type	Number of Patients	Control Treatment	Intervention Treatment	Prim Endp	5	Reported Outcomes	Notes
Lonestar [41]	20	17 ^a RC'	T Phase III	360 ^c	Nivolumab and Ipili- mumab	Nivolumab and ipilimumab + surgery and/or radiation	OS	5	Ongoing	

OLIGO-PROGRESSIVE NSCLC

Phase II Trial of Stereotactic Body Radiation Therapy Combined With Erlotinib for Patients With Limited but Progressive Metastatic Non–Small-Cell Lung Cancer

Table 1. Baseline Characteristics of Patients	J Treated on Protoc	loc	Table 2. SBRT Treatment F	Patterns	_		Table	e 4. Patterns of	Failure		
Characeristic	No.	%	Treatment Pattern	No. %	%					No. Out of 4	
Sex			SBRT sites treated per patient							Total Evaluab	le
Female	11	46	1		33		No	Out of 21		Lesions Treated Witł	4
Male	13	40 54	2		33	Pattern		Patients	%	SBRT	.n %
Age, years	10	54	3		21						
Median	66.9	a	4		9	Sites of failure by patient					
Standard deviation	7.6		5 SPPT courses to specific cites	1	4	Within SBRT-					
	7.6 56-86		SBRT courses to specific sites 18	Lungs (35% of 52		treated area					
Range	00-00	· ر	18	sites treated)		(in-field failure	e)	3	14	3	6
Previously treated brain metastases	22	02	13	Mediastinum/hilum		Outside of SBR	{T-	10*	48	N/A	N/A
No	22	92		(25)		treated area					
Yes	2	8	,	Adrenals (13)		(OFF)					
Follow-up, months	10/	~	6	Bone/spine/chest wall (13)	ill 🛛	No failures		10	48	N/A	N/A
Mean	16.8		4	Liver/paracaval (8)			No. of	Percentage	e of	Percentage o	of 10
Standard deviation	14.5	-	3	Nonmediastinal lymph	h	OFF Sites	Failures	Total OFF		Patients With	
Range	3.4-60	.3	Ŭ	nodes (5)		 Thorax	6	43		60	
Study site			1	Kidney (1)		Liver	3	43		30	
University of Colorado	6	25	Lesions treated with specific SBRT			Brain	2	14		20	
UT Southwestern Medical Center	18	75	fractionation schemas 21	3 fx to 27-33 Gy (40)		Pancreas	1	7		10	
Survival, last follow-up		1	21	5 fx to 35-40 Gy (40)			1	7		10	
Alive	11	46	10	1 fx to 19-20 Gy (20)		Lymph node Spine	1	7		10	
Dead	13	54			-	Spine	I	/		10	
No. of previous systemic therapy regimens			Abbreviations: fx, fractions; SBRT, stereotactic	, body radiation therapy.			Modia	in PFS- I	47	ma	
1	15	63					Fieula		· · · ·	ЛЮ	
2	7	29					Media	an OS- 2	0.4	mo	
3	2	8					Tiedia		.0		
Race		1									
White, Hispanic	23	96						lv.	iongo	ar P, et al	ICC
African American	1	4						17	enga	I F, Et ai	JCC

Table 2 Summar	Table 2 Summary of ongoing prospective trials evaluating patients with oligoprogressive or oligometastatic NSCLC											
Study	Disease	Design	Estimated accrual	Treatment	Lesion number	Location	Primary endpoint	Secondary endpoint				
STOP (NCT02756793)	Oligoprogressive NSCLC	Randomized phase II	54	SC <i>vs.</i> SC + SAbR	1–5; 1–3 progressing lesions; max of 3 lesions in single organ	Intracranial and extracranial	PFS	OS, QoL, toxicity, LC, total time on chemotherapy, patterns of failure				
HALT (NCT03256981)	Oligoprogressive NSCLC	Randomized multicenter phase II/III	110 (phase II)	TKI <i>v</i> s. TKI + SAbR	1–3 progressive lesions	Extracranial	PFS	Time to next systemic therapy, OS, patterns of failure, toxicities, QoL				

DOSE IN OLIGOMETASTATIC SETTING

18-24Gy/1# 24-33Gy/3#, 35-40Gy/5#, 45-50Gy/15#

- Aim is not to give additional toxicity, minimal disruption to QOL
- Easy integration of SBRT with systemic chemotherapy
- Minimal interruption to systemic therapy

Constraints- Chart for comprehensive constraints

I also use **RadOncCalc** app on my phone

CONCLUSION- SBRT OLIGOMETASTATIC DISEASE

- Oligometastatic disease- increasingly being recognized
- Definition is evolving- Upto 5 sites apart from the primary with <3 in one site, seem to be acceptable as of now.
- Evidence from phase II and phase III trials show promising role of SBRT in improving PFS and OS
- SBRT in combination with immunotherapy- strong biological rationale, phase II trials promising, phase III trials underway
- Oligoprogression- definite biological rationale, phase II trials extremely promising, phase III trials underway.
- Dose to ensure easy integration with systemic therapy, and minimal toxicity

SBRT IN EARLY LUNG CANCER: WHAT'S NEW

Long term Outcomes

Most guidelines recommend it for inoperable early-stage lung cancers

Status for central tumors

Comparison with other options for operable lung cancers

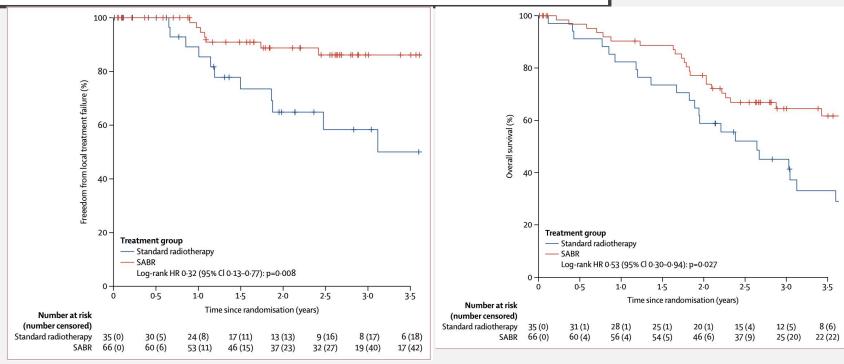
Ongoing research

Imaging assessment

Dose dependence/My preference for dose

Mediastinum, Systemic therapy with SBRT- Omissions due to lack of time

LEVEL-I EVIDENCE SBRT VS. CONV RT FOR INOPERABLE EARLY NSCLC


CHISEL Study

- PET staged TI-T2aN0M0,
- ECOG PS-0, I
- Inoperable or refused surgery
- Peripheral,
- Atleast 2cm away from chest-wall

54Gy/3#, 48Gy/4#

66Gy/33#, 50Gy/20#

101 patients, 2:1 Randomization

ESTRO-ACROP Recommendation- : minimum PS of ECOG 3 and a minimal estimated life expectancy of one year for SBRT patient selection

D Ball, et al Lancet Oncol 2019 M Guckenberger, et al Radiotherapy Oncol 2017

LONG TERM OUTCOMES (5 YRS)

Table 1 Published experience with SABR in operable patients with early NSCLC

					۸	3-y r	esults	4	-y resu	lts	5-y results			
Study	Year	Study design	Dose/fraction	Size (n)	Age, median [range] (years)	OS, %	PFS, %	OS, %	PFS, %	LC, %	OS, %	PFS, %	CSS, %	LC, %
Uematsu et al. $(12)^{\dagger}$	2001	Retrospective	50-60 Gy/5-10#	29	71 [54–86]	86	-		-	-		-	-	-
Chang <i>et al.</i> (STARS/ ROSEL) (9)	2015	Prospective	54 Gy/3#; 50 Gy/4#; 60 Gy/5#	31	67.1 [43–82]	95	96	_	-	-	-	-	-	-
Komiyama <i>et al.</i> (16)	2015	Retrospective	32-70 Gy/4-15#	661	75	-	-	79	-	_	—	-	_	_
Timmerman <i>et al.</i> (RTOG 0618) (2)	2013, 2018	Prospective	54 Gy/3#	26	72.5 [54–88]		-	57	56	96	-	. 	-	-
Lagerwaard et al. (11)	2012	Retrospective	60 Gy/3#; 60 Gy/5#; 60 Gy/8#	177	76 [50–91]	84.7	81		-	-	51.3	-	-	-
Onishi <i>et al.</i> (13)	2011	Retrospective	45–72.5 Gy/3–10#	87	74	-	-	-	-	-	69.5		76.1	86.7
Shibamoto <i>et al.</i> (15) [†]	2015	Prospective	44 Gy/4#; 48 Gy/4#; 52 Gy/4#	60	77 [29–89] [‡]	-	-	_	-	-	66	_	74	88
Nagata <i>et al.</i> (JCOG 0403) (8,17)	2015, 2018	Prospective	48 Gy/4#	64 (3 y); 40 (5 y)	79 [§]	76.5	54.5	-	-	-	54	s .).	-	85.4 ¹
Eriguchi <i>et al.</i> (10)	2017	Retrospective	40 Gy/5#; 50 Gy/5#; 60 Gy/5#	88	79 [55–88]	86	-	0. .2	-		69	-	88	93
Schonewolf <i>et al.</i> $(14)^{\dagger}$	2018	Retrospective	BED ≥100 Gy ₁₀	34	73 [55–92]	-	-	-	-	-	45.3	82.4	91	96.7

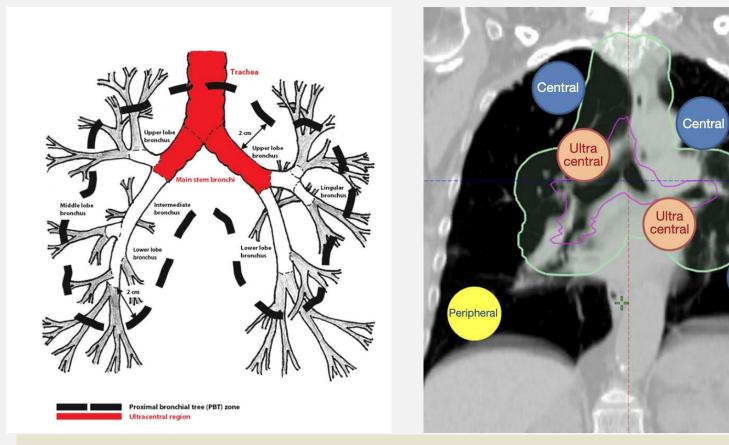
CP Daniels, et al TCLR 2019

SBRT WITHOUT A BIOPSY

ESMO Guidelines [Vansteenkiste J, Ann Oncol 2014]

A pre-treatment pathological diagnosis strongly recommended, unless a multidisciplinary tumour board (MDT) is of the opinion that the risk-benefit ratio of the procedure is unacceptable

ASTRO Guidelines [Videtic GMM, PRO 2017]


SABR can be delivered in patients who refuse a biopsy, have a non-diagnostic biopsy, or who are thought to be at prohibitive risk of biopsy. Patients are recommended to be discussed in a multidisciplinary manner with a consensus that the lesion is radiographically and clinically consistent with a malignant lesion based on tumor, patient, and **environmental factors**

Asian clinical practice consensus [Bai C, Chest 2016]

Incidence of tuberculosis in Asia favors (i) a lesser reliance on PET scanning, and (ii) greater use of non-surgical biopsy over surgical diagnosis or surveillance

CENTRAL TUMORS

Nomenclature of central and ultra central is less important than the actual tolerance and predicted doses to the proximal bronchial tree, vasculature, esophagus, heart etc.


No Fly Zone Timmerman, et al (JCO 2006); 46% severe toxicities vs. 17% in peripheral tumors **Fly careful zone** Senthi S, et al (Radiother Oncol 2013): If BED3 <210Gy- Risk of grade 5 tox <1%

Central

Study		Definition of Ultra- central	Dose/Fractionation	2-yr Local Control	Toxicity
HILUS Phase II, (n=65)	2021	≤ 1 cm from PBT	56 Gy/8 fx (100%) 150% hotspot	83%	Grade 3+: 34% Grade 5: 15%
Breen, 2021 (n=	110)	GTV abutting PBT, trachea; PTV overlap PBT, trachea; GTV ≤ 1 cm from PBT	50 Gy/5 fx (57%) 60 Gy/8 fx (15%) 48 Gy/4 fx (13%)	84%	Grade 5 (4%)
RTOG 0813, 2019 (n=120)		≤ 2cm from PBT	50-60 Gy/5 fx	87.9-89.4%	7.2% DLTs
Raman, 2018 (n:	=26)	PTV overlapping PBT, trachea, esophagus, pulmonary vein/artery	60 Gy/8 fx (77%) 50 Gy/10 fx (12%)	100%	Grade 2-3: 7.9% Grade 4-5: 0%
Tekatli, 2016 (n=	47) PTV overlapping trachea or main bronchi		60 Gy/12 fx 140% hotspot	78%	Grade 3+: 38% Grade 5: 13%
Li, 2014 (n=82)		Dose constraints for 50 Gy in 4 fx not met	70 Gy/10 fx (100%)	96.2%	Grade 3: 3.6% Grade 5: 1.2%
	Lindberg K, et al.	Thorac Oncol. 2016 Jul;11(7):1081-9. J Thorac Oncol. 2021 April 3. Epub. Oncol. 2014 Aug;112(2):256-261	Breen WG, et al. Radiother Oncol. 2021 Bezjak A, et al. J Clin Oncol. 2019 May Raman S, et al. Clin Lung Cancer 2018	20;37(15):1316-1325.	

Table 2 Recommended Dose Constraints

			Fraction		
Organ	Metric	5/6	8/10	15	
Spinal canal	Max	30 Gy	32 Gy	39.5 Gy	
Spinal canal PRV (3 mm)	Max	32 Gy	34 Gy	42 Gy	
Esophagus	Max	40 Gy	45 Gy	50.5 Gy	
	5 cc	35 Gy	40 Gy	48 Gy	
Brachial plexus	Max	32 Gy	39 Gy	50 Gy	
Heart	Max	62 Gy	64 Gy	66 Gy	
	10 cc	50 Gy	60 Gy	62 Gy	
Trachea	Max	62 Gy	64 Gy	66 Gy	
	10 cc	50 Gy	60 Gy	62 Gy	
Proximal bronchus	Max	62 Gy	64 Gy	66 Gy	
	10 cc	50 Gy	60 Gy	62 Gy	
Non-GTV lung	Mean	< 12 Gy	< 12 Gy	< 14 Gy	
Aorta and major vessels	Max	62 Gy	64 Gy	64 Gy	
	10 cc	50 Gy	60 Gy	60 Gy	
Stomach and intestines	Max	40 Gy	45 Gy	50 Gy	
	10 cc	35 Gy	40 Gy	48 Gy	

MSB involved, Endobronchial invasion present

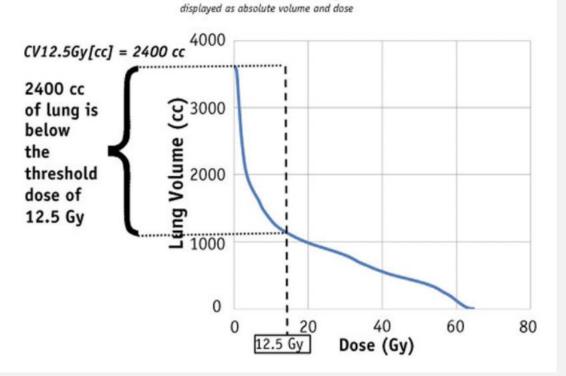
PROT N Cancer Centres

Apollo

Delivering excessive hotspots

Pt on Anti-coagulants, Bev

Abbreviations: GTV = gross tumor volume; PRV = planning organ-at-risk volume.

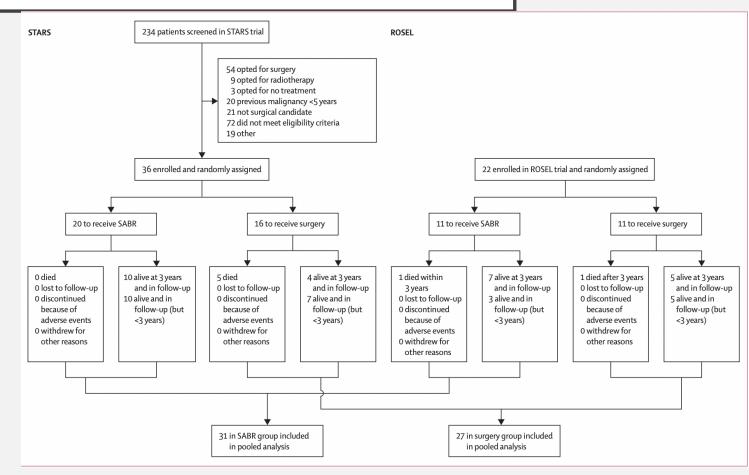

M Guilani, et al Lung Cancer 2018

LUNG CONSTRAINT?

Critical Volume 12.5Gy-Volume receiving 12.5Gy or less

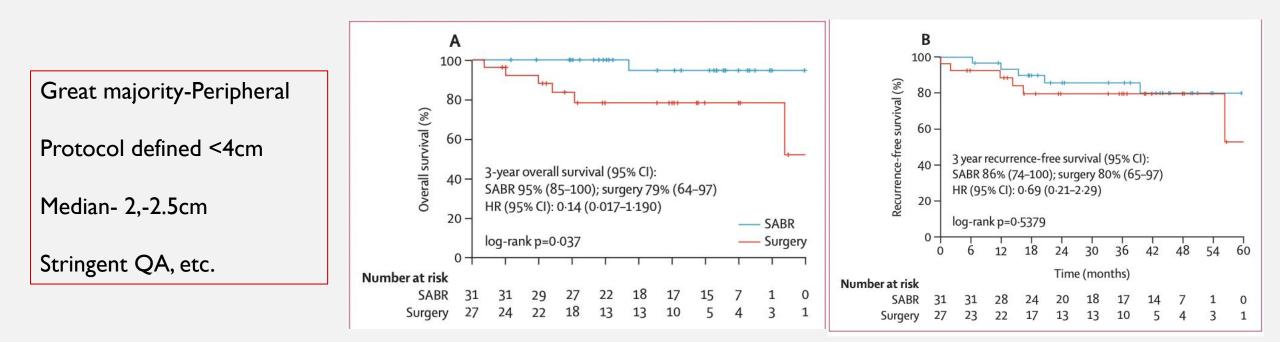
Constraint for 5#- 1500cc/1.5L

Dose-Volume Histogram

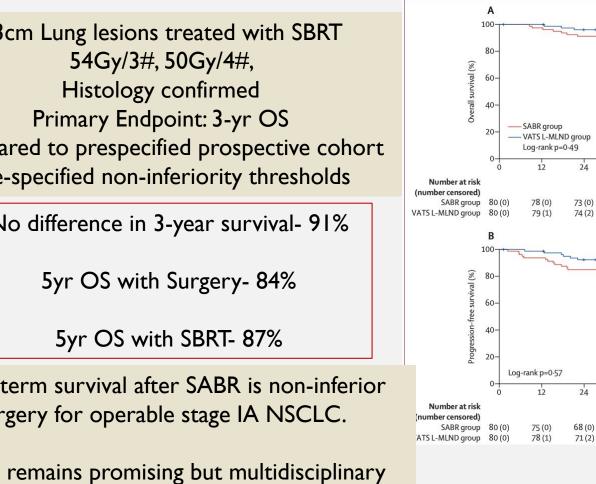

Ritter, et al IJROBP 2017

SBRT - OPERABLE EARLY STAGE NSCLC

- Prospective, & retrospective studies, have shown efficacy and safety of SABR in operable stage I NSCLC.
- Indirect comparison show similar OS but confounded because of selection bias.
- 3 phase 3 RCTs comparing the two treatments have failed to complete accrual.


Despite limitations, this pooled analysis is the only available randomised evidence comparing SABR with surgery in patients who are fit for surgery.

Joe Chang, Lancet Oncol 2015


SBRT – OPERABLE EARLY STAGE NSCLC

Stereotactic ablative radiotherapy for operable stage I non-small-cell lung cancer (revised STARS): long-term results of a single-arm, prospective trial with prespecified comparison to surgery

7 1 1 6			
Zubrod performance status	== (6)		
0	55 (69%)	<3cm Lung	र le
1	25 (31%)		4G
Histology			
Squamous cell carcinoma	13 (16%)	Hi	isto
Adenocarcinoma	63 (79%)	Prima	arv
NSCLC, not otherwise specified	4 (5%)		-
Tumour stage		Compared to p	ore
T1aN0M0	52 (65%)	Pre-specifie	dr
T1bN0M0	28 (35%)	i i e-specifie	I D
Tumour size, cm	1.83 (0.56)		
Tumour site		No differe	enc
Left lower lobe	10 (13%)		
Left upper lobe	18 (22%)	_	~
Right lower lobe	11 (14%)	5yr	05
Right middle lobe	3 (4%)		
Right upper lobe	38 (47%)	-	~
Tumour location		5yı	r C
Central	26 (33%)		
Peripheral	54 (67%)	 Long-term sur 	`vi v
Baseline smoking status		U	
Current	16 (20%)	to Surgery for	0
Former	50 (63%)		
Never	14 (18%)	SABR remains	ים
Baseline FEV1, % predicted	85.8% (19.1)		•
Baseline FVC, % predicted	94.4% (16.5)	management i	S S
Baseline DLCO, % predicted	81.4% (16.9)	U	
	. , -,		

strongly recommended

Joe Chang, et al Lancet Oncol 2021

60(4)

66 (2)

45 (13)

60(4)

35 (10)

51(5)

69 (4)

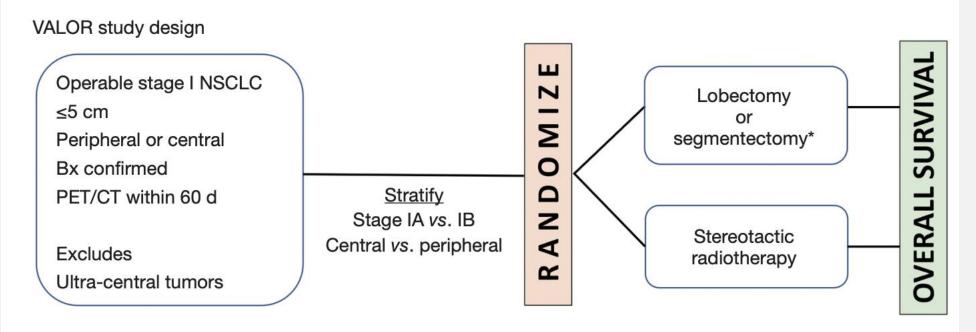
68(2)

51 (15)

61(4)

54 (5)

11 (28)


37 (14)

9 (26)

35 (14)

ONGOING RESEARCH

* wedge resections not allowed

STABLE-MATES- cT <4cm, SBRT vs SLR vs. Choice, 3 yr OS Primary endpoint,

POSTLIV- cT <3cm, SBRT vs. SLR, 2yr Local Control Primary endpoint

PROT[®]N Cancer Centres

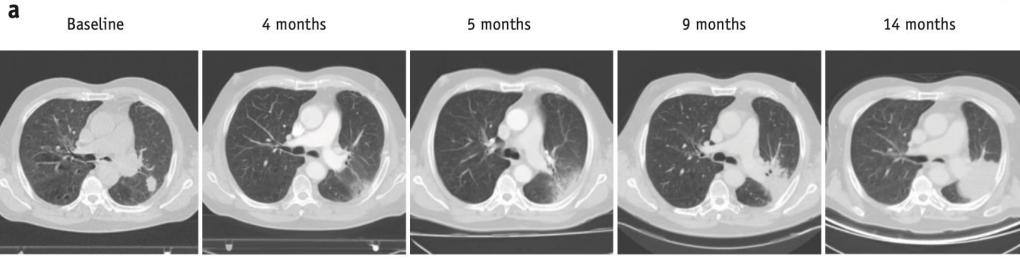
IMAGING Post Sbrt

Table 2: Early and Late CT Patterns after Lung SBRT

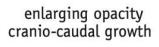
Early: up to 6 months Diffuse consolidation pattern Diffuse ground-glass pattern Patchy ground-glass pattern Patchy consolidation and ground-glass pattern No change Late: after 6 months Modified conventional pattern Scarlike pattern Masslike pattern No change

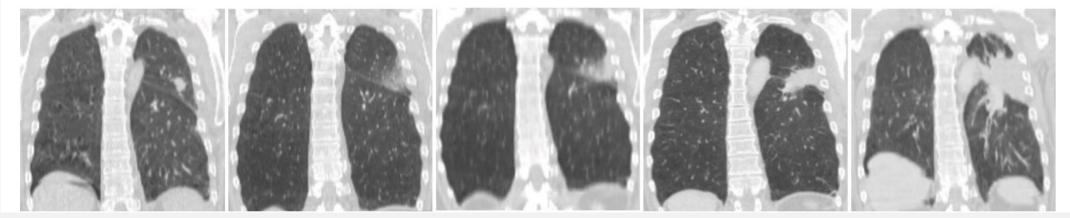
Recurrences	Local	Regional	Distant
VU Univ Med Center 676 patients; median Follow-up 33 months	10.5 %	12.7%	20%
MD Anderson Hospital 912 patients; median Follow-up 59 months	11%	12%	21%

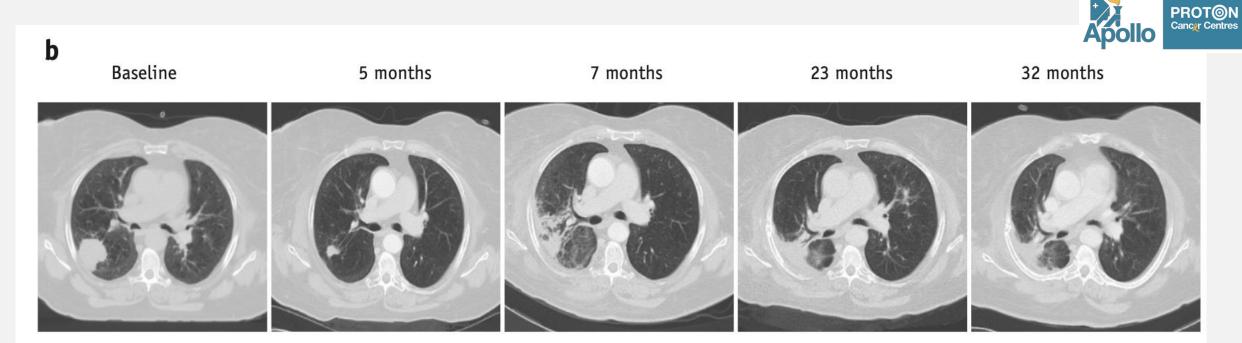
Senthi S, et al Lancet Oncol 2012 Brooks E, et al IJROBP 2017


Bulging Margins, Cranio-caudal growth- Most Important ones to note

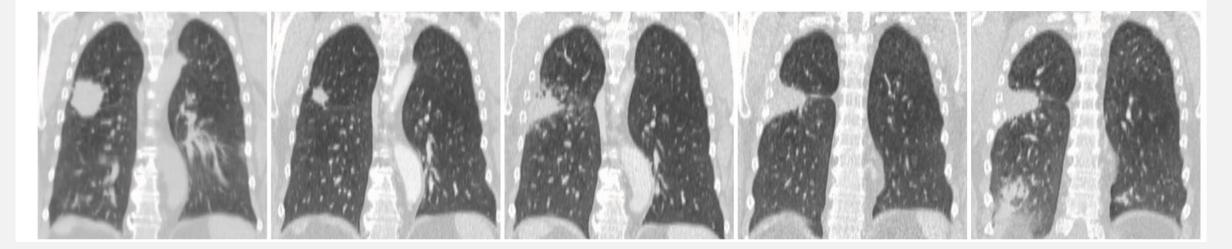
Sensitivity (%)		Specificity (%)			
Huang et al ⁴⁰	Peulen et al ⁴⁹	Huang et al ⁴⁰	Peulen et al ⁴⁹		
92	100	67	31		
67	62	100	77		
100	92	83	50		
83	85	83	100		
42	85	100	100		
67	15	96	100		
92	100	83	50		
	Huang et al ⁴⁰ 92 67 100 83 42 67	Huang et al ⁴⁰ Peulen et al ⁴⁹ 92 100 67 62 100 92 83 85 42 85 67 15	Huang et al ⁴⁰ Peulen et al ⁴⁹ Huang et al ⁴⁰ 92 100 67 67 62 100 100 92 83 83 85 83 42 85 100 67 15 96		


Heike Peulen, et al IJROBP 2016


SA Mattonen, et al BJR 2016



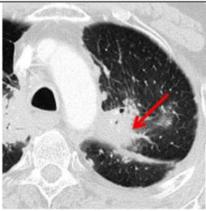
bulging margin linear margin disappearance loss of air bronchogram sequential enlarging opacity enlarging opacity >12 months



sequential enlarging opacity enlarging opacity >12 months

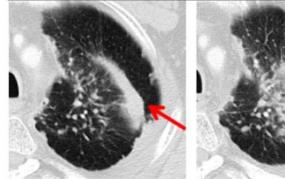
enlarging opacity cranio-caudal growth

Enlarging opacity



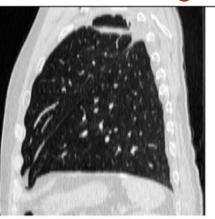
60 months post-SABR

Loss of air bronchograms



10 months post-SABR

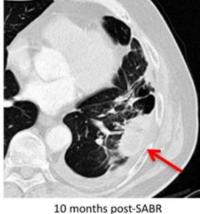
21 months post-SABR

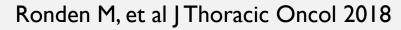

Loss of linear margins


25 months post-SABR

28 months post-SABR

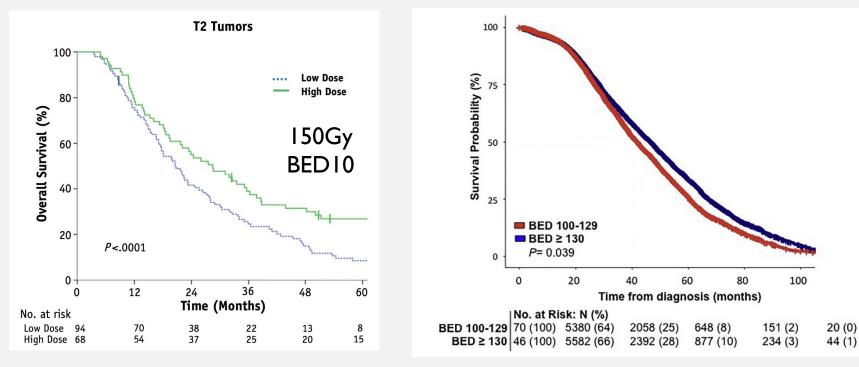
Cranio-caudal growth


10 months post-SABR



16 months post-SABR

5 months post-SABR



DOSE OF SBRT FOR EARLY STAGE LUNG

Treatment effect OR Impact of tumor burden

The usual BED10 >100Gy has been an accepted standard

Koshy M, et al IJROBP 2015

Moreno, et al JTO 2020

MY PREFERENCE FOR DOSE FRACTIONATION

Characteristic	Dose/Fraction
Small, Peripheral, <3cm, Away from the chest wall	54Gy/3#
>3cm, Peripheral, broad-based attachment to chest wall	60Gy/5#
Central Tumors, select ultra central tumors	60Gy/8#

CONCLUSION FOR EARLY-STAGE LUNG CANCER

Standard of care in inoperable early-stage lung cancers, improved OS compared to std fractionation

Robust long-term outcomes

Caution preferred while treating central and ultra central, most can be treated safely

Comparable outcomes so far with lobectomy and other surgical approaches

Imaging after SBRT- tricky, need to learn and educate our colleagues (radiologists regarding treatment effects)

Higher BED10 >130Gy seem to be better, need further validation.

Ongoing research will further refine our understanding