



# **FAST Forward:** A way ahead in Breast Irradiation

Dr. Rima Pathak Associate Professor Department of Radiation Oncology Tata Memorial Centre

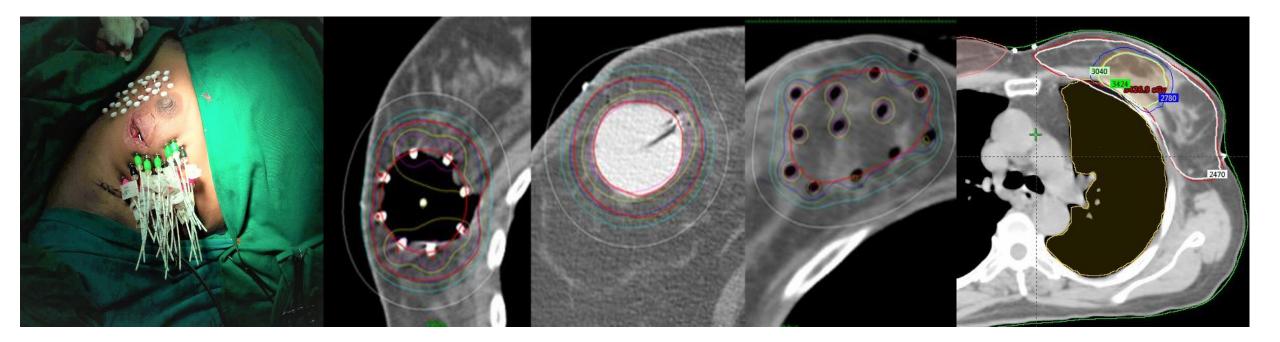


@RimaPathak1



drrimapathak@gmail.com pathakrs@tmc.gov.in

# Disclosures


• None

# Flow of the Presentation

- Introduction
- Evidence in support of moderate hypofractionation
- FAST Forward Study
- Possible future of FAST-Forward
- Applicability to Indian patients
- TMC Experience
- Cost-Effectiveness
- Summary


# Hypofractionation & Breast Cancer

• Various Forms of Hypofractionation practiced



What about Hypofractionation for the whole breast with EBRT?

# Hypofractionation & Breast Cancer



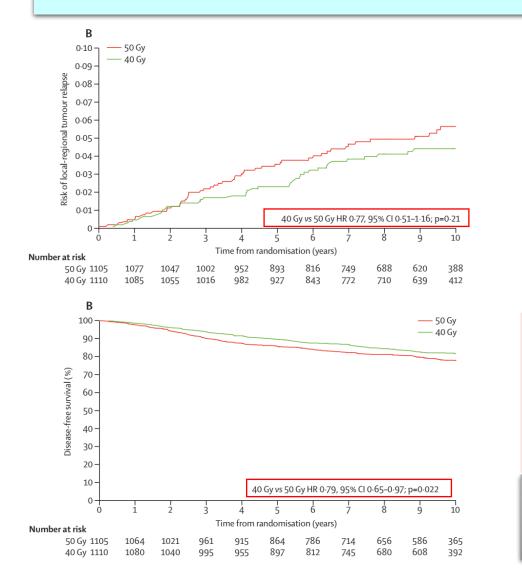
- Cohen et. al. 1952 Inop Breast cancer  $\rightarrow$  Initial reports of  $\alpha/\beta$  =3.8
- Manchester Fractionation
- 4 main Prospective RCTs (n=7095; 1986 2001)

|                            | START-P <sup>8</sup> | START-A <sup>10</sup> | START-B <sup>11</sup> | Ontario <sup>7</sup> |  |
|----------------------------|----------------------|-----------------------|-----------------------|----------------------|--|
| Years accrual              | 1986-1998            | 1998-2002             | 1999-2001             | 1993-1996            |  |
| Total number of patients   | 1410                 | 2236                  | 2215                  | 1234                 |  |
| Standard arm (Gy/fr/weeks) | 50/25/5              | 50/25/5               | 50/25/5               | 50/25/5              |  |
| Test arm A (Gy/fr/weeks)   | 42.9/13/5            | 41.6/13/5             | 40.0/15/5             | 42.5/16/3.1          |  |
| Test arm B (Gy/fr/weeks)   | 39/13/5              | 39/13/5               | n/a                   | n/a                  |  |
| Mean age (years)           | 54.5                 | 57.2                  | 57.4                  | Not reported         |  |
| Node+ (%)                  | 32.7                 | 28.8                  | 22.8                  | 0                    |  |
| Mastectomy (%)             | 0                    | 15                    | 8                     | 0                    |  |
| Tumour size $\geq T_2$ (%) | 42.5 <sup>a</sup>    | 48.6 <sup>b</sup>     | 35.9 <sup>b</sup>     | 20.0 <sup>b</sup>    |  |
| Boost (%)                  | 74.5                 | 60.6                  | 42.6                  | 0                    |  |
| Chemotherapy (%)           | 13.9                 | 35.5                  | 22.2                  | 11                   |  |
| Regional radiotherapy (%)  | 20.6                 | 14.2                  | 7.3                   | 0                    |  |

# Efficacy of Hypofractionation

• Excellent Local Control; Numerically superior to conventional Fractionation

| Trial                    | Randomisation (Gy/fraction) | % 5 year local relapse (95% CI) | % 10 year local relapse (95% CI) | >2.0 Gy fractions 2.0 Gy fractions<br>better better Hazard ratio<br>(95% CI) |
|--------------------------|-----------------------------|---------------------------------|----------------------------------|------------------------------------------------------------------------------|
| START-P <sup>9,13</sup>  | 50.0/25                     | 7.9 (5.4-10.4)                  | 12.1 (8.8-15.5)                  | Age <50yrs 0.84 (0.62, 1.15)                                                 |
|                          | 42.9/13                     | 7.1 (5.4-10.4)                  | 9.6 (6.7-12.6)                   | Age ≥50yrs 1.07 (0.83, 1.38)                                                 |
|                          | 39.0/13                     | 9.1 (6.4–11.7)                  | 14.8 (11.2-18.3)                 | Breast conserving 0.97 (0.80, 1.19)   Mastectomy 0.91 (0.46, 1.81)           |
| START-A <sup>10,13</sup> | 50.0/25                     | 3.4 (2.3-5.1)                   | 6.7 (4.9-9.2)                    | pN- 1.10 (0.86, 1.40)                                                        |
|                          | 41.6/13                     | 3.1 (2.0-4.7)                   | 5.6 (4.1-7.8)                    | pN+ 0.80 (0.57, 1.11)                                                        |
|                          | 39.0/13                     | 4.4 (3.1-6.2)                   | 8.1 (6.1-10.7)                   | Grade 1 0.96 (0.51, 1.82)<br>Grade 2 1.07 (0.72, 1.59)                       |
| START-B <sup>11,13</sup> | 50.0/25                     | 3.3 (2.4-4.6)                   | 5.2 (2.7-5.2)                    | Grade 3 0.86 (0.59, 1.25)                                                    |
|                          | 40.0/15                     | 1.9 (1.2-3.0)                   | 3.8 (2.7-5.2)                    | No cytotoxics 1.09 (0.86, 1.38)   Cytotoxics 0.81 (0.57, 1.14)               |
| Ontario <sup>12</sup>    | 50.0/25                     | 3.2 <sup><i>a</i></sup>         | 6.7 <sup>b</sup>                 | .4 .6 .8 1 1.2 1.4 1.6 1.8 2                                                 |
|                          | 42.5/16                     | $2.8^{a}$                       | 6.2 <sup>b</sup>                 | Hazard Ratio (95% Cl)                                                        |


# **UK-START Studies**

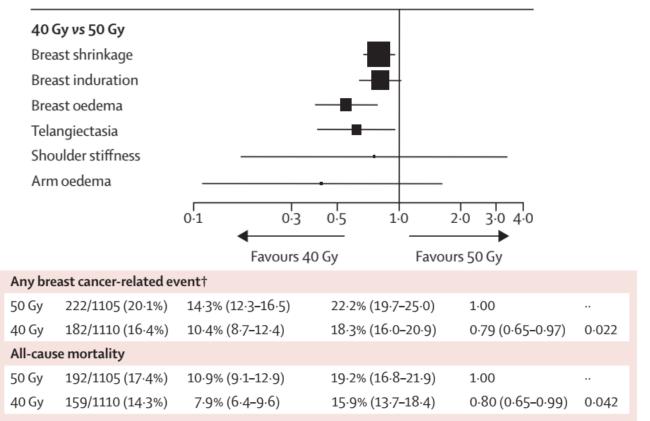

- Diverse patient populations
  - Younger
  - Post Mastectomy
  - Grade III
  - Receipt of CT
  - Regional Nodal RT (mostly SCF & upper Axilla n=470)
- Diverse End-points
  - Radiation sensitivity
  - LRC
  - Toxicity
  - DFS/ OS

Table 5. START pilot, A & B (n = 5861): patient and treatment characteristics<sup>13</sup>

|                   | Number patients |
|-------------------|-----------------|
| Age <50 years     | 1389            |
| Age = 50 years    | 4472            |
| Breast conserving | 5348            |
| Mastectomy        | 513             |
| pN-               | 4318            |
| pN+               | 1421            |
| Grade 1           | 1213            |
| Grade 2           | 2398            |
| Grade 3           | 1271            |
| No cytotoxics     | 4346            |
| Cytotoxics        | 1480            |

# UK-START B: Efficacy & Toxicity

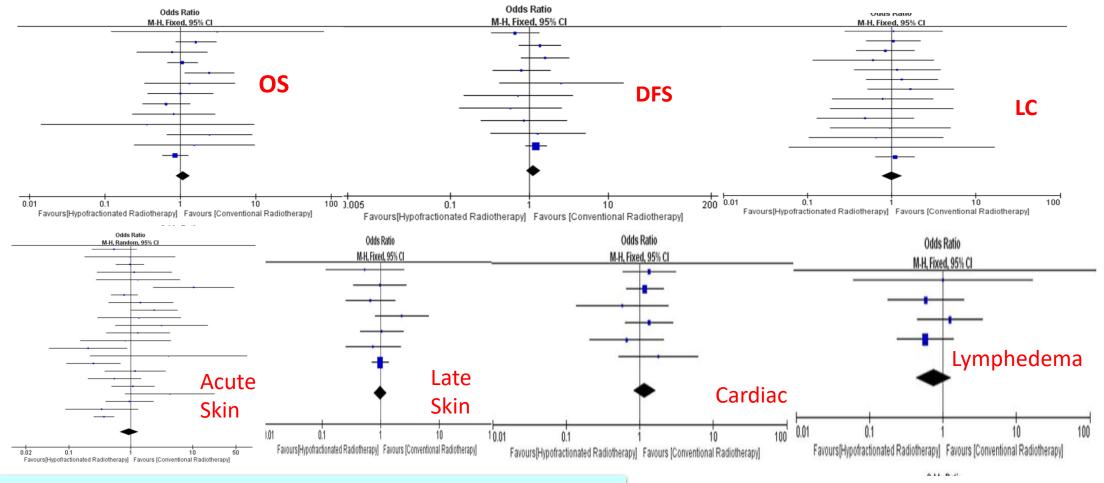




Hazard ratio (95% CI)

- Excellent Local Control, DFS, OS & Toxicity profile
- MRM/ DCIS/ Recon not well represented

#### Haviland et. al 2013 Lancet Oncol


# Mastectomy & Hypofractionation

|                       | Ko et. al. | Wang et. al.                | Chitapanarux et. al                          | Khan et. al.     |
|-----------------------|------------|-----------------------------|----------------------------------------------|------------------|
| Hypofractionation (n) | 133        | 406                         | 980                                          | 744              |
| Dose                  | 40Gy/16 fr | 43∙5 Gy in 15               | 42.4- 56Gy/16-20 fr                          | 40-44Gy/16 fr    |
| Median FU             | 5.03 yrs   | ~5 yrs                      | ~6 yrs                                       | ~3yrs            |
| Gr III toxicity       | None       | Acute Skin: 8 Vs 3%<br>(SS) | Gr ≥II Skin & Subcut<br>Significantly better | Implant loss 24% |
| 5 yr LRFS             | 97.5%      | 5yr LRFS =91.7% NS          | 5yr LRFS=96% NS                              | 3 yr LRFS=89.2%  |

- Clearly established the safety and the efficacy of hypofractionation in PMRT as expected
- Consistently better rates of toxicity

# Mastectomy & Hypofractionation

#### • Meta-analysis; 25 controlled studies (n=3871)



NS different with respect to efficacy/ toxicity postmastectomy

Liu et al. 2020 Radiation Oncology

# **DCIS & Hypofractionation**

|            | Lalani et. al.                                             | Hathout et. al. Wai et. al. Rakovitch et. a                   |                                                                         | Rakovitch et. al.                                          | Nilsson C et. al. |
|------------|------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------|-------------------|
| n=         | 638                                                        | 440                                                           | 371                                                                     | 744                                                        | 2534              |
| Dose       | 42.5Gy/16 fr                                               | 42.5Gy/ 16 fr                                                 | 40-44Gy/16 fr                                                           | 40-44Gy/16 fr                                              | 40-44Gy/16 fr     |
| Median FU  | 9.2 yrs                                                    | 4.4 yrs                                                       | 9.3                                                                     | 14 yrs                                                     | 5-14 yrs          |
| ТВВ        | 324                                                        | 125                                                           |                                                                         | 399                                                        | 2534              |
| 10 yr LRFS | 86 Vs 89% (NS)                                             | 5yr LRFS =97%                                                 | NS                                                                      | 10 yr LRFS=91%                                             | NS                |
| MVA        | Age< 45yrs, Int/<br>High nuclear<br>grade & +ve<br>margins | +ve margins,<br>premenopausal<br>status, & nuclear<br>grade 3 | comedo<br>histology, high<br>nuclear grade,<br>and close, +ve<br>margin | Age< 45yrs, Int/<br>High nuclear<br>grade & +ve<br>margins | +ve margins       |

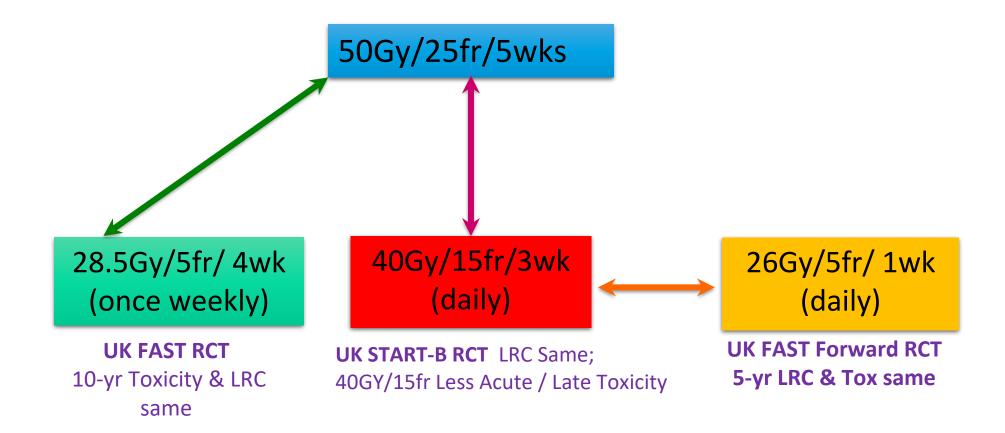
TROG 07.01 A randomized phase III study of radiation doses and fractionation schedules in non-low risk ductal carcinoma in situ (DCIS) of the breast.  $\rightarrow$  2yr QoL no difference between Conv vs mod Hypofrac (42.5/16fr)

# Reconstructed breast & Hypofractionation

- Ph-II prospective of Stage II/III
- N=69, 2010-2014
- 36.63Gy/11 fr @ 3.33Gy/fr +
- 13.32Gy/4fr e- scar boost (~60Gy BED)
- ~60% recon breast (88% TE, 7% Immediate, 5% augmentation)
- 28% Gr-II skin tox
- No Gr-III or more acute/late tox
- 6 patients implant failure (<10% vs 18-30% in literature)</li>
- Alliance A221505 (RT CHARM) → RCT 42.5Gy/16fr

|                | Grade 1         | toxicities     | Grade 2         | Grade 2 toxicities |  |  |  |
|----------------|-----------------|----------------|-----------------|--------------------|--|--|--|
|                | Acute, n<br>(%) | Late, n<br>(%) | Acute, n<br>(%) | Late, n<br>(%)     |  |  |  |
| Skin           | 37 (55)         | 20 (30)        | 19 (28)         | 0                  |  |  |  |
| Fatigue        | 15 (22)         | 12 (18)        | 8 (12)          | 2 (3)              |  |  |  |
| Pain           | 13 (19)         | 9 (13)         | 2 (3)           | 5 (8)              |  |  |  |
| Lymphedema     | 1 (2)           | 1 (2)          | 2 (3)           | 1 (2)              |  |  |  |
| Subcutaneous   | 0               | 11 (17)        | 1 (2)           | 0                  |  |  |  |
| Telangiectasia | 0               | 11 (17)        | 0               | 0                  |  |  |  |
| Other*         | 2 (3)           | 0              | 1 (2)           | 0                  |  |  |  |

\* Bronchospasm (wheezing), shoulder stiffness.


Poppe et al. IJROBP 2020

# Moderate Hypofractionation

• Similar efficacy & toxicity across patients populations



#### Intercomparison of different fractionation regimen



# **Randomized Groups**

### **FAST** (2004-2007; n=915)

- Standard: (n=302)
  - 50Gy/ 25 fr; 5 weeks
- Experimental Arm 1: (n=308)
  - 30Gy/ 5 fr; once a week, 5 weeks
  - $\alpha/\beta$  =4 for late toxicity
- Experimental Arm 2: (n=305)
  - 28.5Gy/ 5 fr; once a week, 5 weeks
  - $\alpha/\beta = 3$  for late toxicity

### FAST FORWARD (2011-2014; n=4110)

- Pilot testing: (n=30)
  - 30Gy/5 fr; 3 weeks
- Standard: (n=1368)
  - 40Gy/ 15 fr; 3 weeks
- Experimental Arm 1: (n=1370)
  - 27Gy/ 5 fr; 1 week,  $\alpha/\beta$  =3
  - Assuming No TT compensation
- Experimental Arm 2: (n=1372)
  - 26Gy/ 5 fr; 1 week,  $\alpha/\beta$  = 3
  - Assuming TT compensation
- Stratified by risk groups
- 10 or 16 Gy TBB with e-

# **Study Inclusions**

### FAST

- $\geq$  50 years
- Invasive carcinoma,
- BCS only
- margin –ve, pT<3.0 cm,
- pN0
- ER +ve allowed HT

#### Exclusion

- MRM
- Need for RNI/ TBB
- Neoadjuvant or adjuvant cytotoxic therapy

## FAST FORWARD

- $\geq$  18 years
- Invasive carcinoma,
- Any Sx, Negative margins
- pT1-3 pN0-1 (1-2)\* M0
- ER +ve allowed HT
- Her2-Neu +ve  $\rightarrow$  Trastuzumab

#### Exclusion

- ≥65yrs, pT1 G1/2, ER+ve/Her2 -ve Microinvasive disease
- Concurrent CT
- Previous Malignancy/ RT to chest
- ≥10 nodes +ve/ SCF nodes/ IMN Nodes

# **Outcome Measures**

## FAST

### • Primary:

- Change in photographic breast appearance (baseline, 2 & 5 years)
- Secondary:
- Local tumor control
- Radiation-induced changes in the breast and other later responding tissues

## FAST FORWARD

- Acute Toxicity pilot
- Primary:
- 5-yr Local Relapse rates
- Secondary:
- Prevalence of late breast toxicities at 5 years
- PROM
- Health Economics study

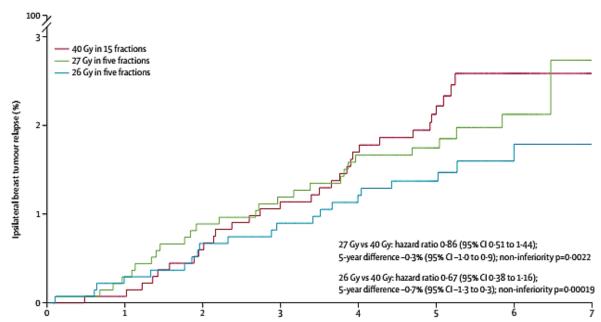
# **RT** planning

### FAST

- Supine on a BB
- Reproducibility  $\rightarrow$  orthogonal laser
- CTV: whole breast up to deep fascia, not include underlying muscle and ribcage (ESTRO)
- PTV: 1cm 3D expansion limits: midline & midaxillary line
- Max Lung: 2cm on CT/ conv simulator.
- Cardiac shielding
- Prescription: ICRU point
- Central plane Max- min dose  $\leq 10\%$
- No Cobalt RT

## FAST FORWARD

- Supine on BB or Vacuum Bag
- Only 3D CT based planning
- Planning was similar in most ways
- TBB delineation was mandatory and was strongly advised to use clips/ gold markers
- Field based PTV may be used for dosimetric reporting
- Mandatory contouring of I/I Lung, Heart
- Lymphatic arm → Brachial Plexus
- Bitangential RT/ FiF-IMRT
- Tissue heterogeneity correction applied


# Set-up Verification & QA requirements

- Daily imaging using EPID (KV/ MV)
- All displacements are corrected at each fraction
- After correction  $\rightarrow$  > 5mm difference  $\rightarrow$  repeat set-up/ re-sim
- Similar verification for all the fractions of conformal photon boost
- For e- boost  $\rightarrow$  Visual verification with skin marking
- QA and credentialing of the contouring, treatment technique assessment, homogeneity, prescription points, IMRT technique
- Assessment of Daily QC protocols, measurement of phantom\* readings
- QC Image verification protocol
- Complete verification of the 1<sup>st</sup> 3 patients treated incl CT dataset quality
- In-vivo dosimetry on the 1<sup>st</sup> day of test arm and within 1 week of control arm



# **Study Results**

#### Brunt et. al. Lancet Oncol 2020



Estimated cumulative incidence of IBTR 5 years was 2·1% (95% CI 1·4 to 3·1) for 40 Gy (expected incidence 2%), 1·7% (1·2 to 2·6) for 27 Gy & 1·4% (0·9 to 2·2) for 26 Gy Estimated absolute differences in IBTR versus 40 Gy -0·3% (-1·0 to 0·9) for 27 Gy & -0·7% (-1·3 to 0·3) for 26 Gy

|                      | Cumulative<br>number of<br>events | Estimated<br>cumulative<br>incidence by<br>5 years (95% CI) | Hazard ratio (95% CI);<br>p value | Estimated absolute<br>difference vs 40 Gy<br>at 5 years (95% Cl) |  |
|----------------------|-----------------------------------|-------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------|--|
| Ipsilateral breast t | tumour (local) re                 | lapse*                                                      |                                   |                                                                  |  |
| 40 Gy (n=1361)       | 31 (2·3%)                         | 2·1% (1·4 to 3·1)                                           | 1 (ref)                           |                                                                  |  |
| 27 Gy (n=1367)       | 27 (2.0%)                         | 1·7% (1·2 to 2·6)                                           | 0·86 (0·51 to 1·44);<br>0·56      | -0·3% (-1·0 to 0·9)                                              |  |
| 26 Gy (n=1368)       | 21 (1-5%)                         | 1·4% (0·9 to 2·2)                                           | 0·67 (0·38 to 1·16);<br>0·15      | -0·7% (-1·3 to 0·3)                                              |  |
| Locoregional rela    | pse†                              |                                                             |                                   |                                                                  |  |
| 40 Gy (n=1361)       | 43 (3·2%)                         | 2·8% (2·0 to 3·9)                                           | 1 (ref)                           |                                                                  |  |
| 27 Gy (n=1367)       | 35 (2.6%)                         | 2·3% (1·6 to 3·3)                                           | 0-80 (0-51 to 1-25);<br>0-33      | -0·5% (-1·4 to 0·7)                                              |  |
| 26 Gy (n=1368)       | 29 (2·1%)                         | 1·8% (1·2 to 2·7)                                           | 0-66 (0-41 to 1-06);<br>0-083     | -0·9% (-1·6 to 0·2)                                              |  |
| Distant relapse      |                                   |                                                             |                                   |                                                                  |  |
| 40 Gy (n=1361)       | 59 (4·3%)                         | 3·8% (2·9 to 5·0)                                           | 1 (ref)                           |                                                                  |  |
| 27 Gy (n=1367)       | 69 (5.0%)                         | 4·7% (3·7 to 6·0)                                           | 1·16 (0·82 to 1·64);<br>0·41      | 0-6% (-0-7 to 2-3)                                               |  |
| 26 Gy (n=1368)       | 76 (5·6%)                         | 5·1% (4·0 to 6·4)                                           | 1·27 (0·90 to 1·79);<br>0·17      | 1·0% (-0·4 to 2·9)                                               |  |
| Any breast cancer    | -related event‡                   |                                                             |                                   |                                                                  |  |
| 40 Gy (n=1361)       | 119 (8.7%)                        | 7·8% (6·5 to 9·4)                                           | 1 (ref)                           |                                                                  |  |
| 27 Gy (n=1367)       | 112 (8-2%)                        | 7·2% (5·9 to 8·7)                                           | 0-93 (0-71 to 1-20);<br>0-56      | -0-6% (-2-2 to 1-5)                                              |  |
| 26 Gy (n=1368)       | 114 (8-3%)                        | 7·5% (6·2 to 9·0)                                           | 0-94 (0-73 to 1-22);<br>0-65      | -0·4% (-2·1 to 1·6)                                              |  |
| All-cause mortalit   | ty                                |                                                             |                                   |                                                                  |  |
| 40 Gy (n=1361)       | 92 (6-8%)                         | 5·4% (4·3 to 6·8)                                           | 1 (ref)                           |                                                                  |  |
| 27 Gy (n=1367)       | 105 (7.7%)                        | 6·9% (5·7 to 8·4)                                           | 1·12 (0·85 to 1·48);<br>0·42      | 0-6% (-0-8 to 2-5)                                               |  |
| 26 Gy (n=1368)       | 90 (6-6%)                         | 5·6% (4·5 to 7·0)                                           | 0-96 (0-72 to 1-28);<br>0-78      | -0·2% (-1·5 to 1·5)                                              |  |

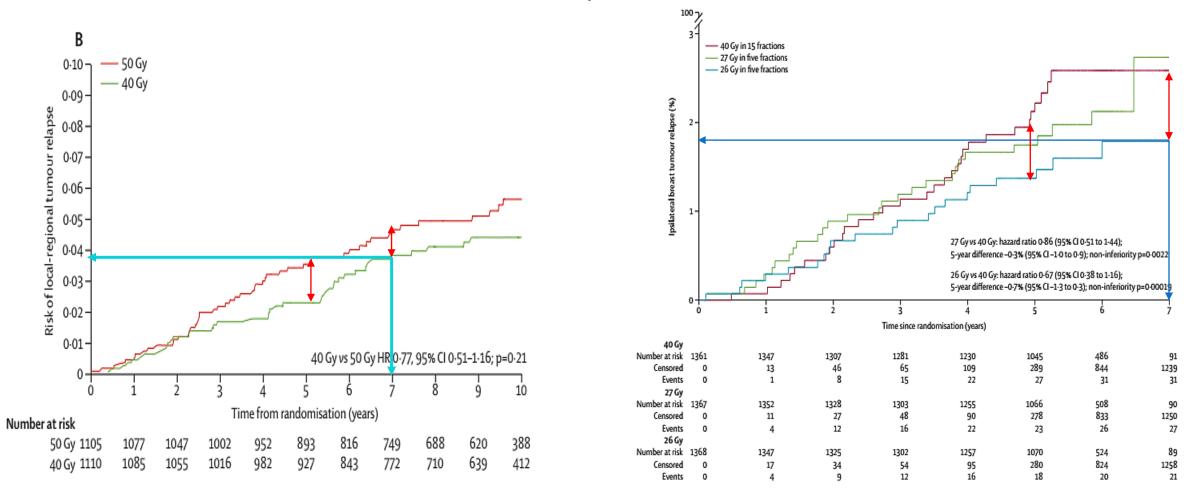
## **Physician reported NTEs**

Brunt et. al. Lancet Oncol 2020

- Similar between Standard and 26Gy arm
- Significantly higher for all the NTEs for the 27Gy arm except Breast/ CW discomfort
- 26Gy arm appears to equally safe as the 40Gy/15 fr

|   |                                                   | Number of moderate or<br>marked events/total<br>number of assessments<br>over follow-up | Odds ratio for schedule<br>(95% CI) | p value for comparison<br>with 40 Gy |
|---|---------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------|
|   | Any adverse event in the<br>breast or chest wall* |                                                                                         |                                     | -                                    |
| _ | 40 Gy                                             | 651/6121 (10.6%)                                                                        | 1 (ref)                             | -                                    |
|   | 27 Gy                                             | 1004/6303 (15-9%)                                                                       | 1-55 (1-32-1-83)                    | <0-0001                              |
|   | 26 Gy                                             | 774/6327 (12-2%)                                                                        | 1.12 (0.94-1.34)                    | 0-20                                 |
|   | Breast distortion†                                |                                                                                         | -                                   | -                                    |
|   | 40 Gy                                             | 232/5724 (4-0%)                                                                         | 1 (ref)                             | -                                    |
|   | 27 Gy                                             | 363/5953 (6.1%)                                                                         | 1-51 (1-15-1-97)                    | 0-0028                               |
|   | 26 Gy                                             | 299/5945 (5-0%)                                                                         | 1.20 (0.91-1.60)                    | 0-19                                 |
|   | Breast shrinkage†                                 |                                                                                         | -                                   | -                                    |
|   | 40 Gy                                             | 330/5728 (5.8%)                                                                         | 1 (ref)                             | -                                    |
|   | 27 Gy                                             | 503/5944 (8.5%)                                                                         | 1.50 (1.20-1.88)                    | 0-0004                               |
|   | 26 Gy                                             | 369/5943 (6-2%)                                                                         | 1-05 (0-82-1-33)                    | 0-71                                 |
|   | Breast induration<br>(tumour bed)†                |                                                                                         | -                                   | -                                    |
|   | 40 Gy                                             | 185/5713 (3.2%)                                                                         | 1 (ref)                             | -                                    |
|   | 27 Gy                                             | 304/5948 (5-1%)                                                                         | 1.56 (1.19-2.05)                    | 0-0013                               |
|   | 26 Gy                                             | 236/5937 (4-0%)                                                                         | 1.19 (0.90-1.59)                    | 0-23                                 |
|   | Breast induration<br>(outside tumour bed)†        | -                                                                                       | -                                   | -                                    |
|   | 40 Gy                                             | 45/5712 (0-8%)                                                                          | 1 (ref)                             | -                                    |
|   | 27 Gy                                             | 137/5943 (2-3%)                                                                         | 2.79 (1.74-4.50)                    | <0-0001                              |
|   | 26 Gy                                             | 97/5930 (1-6%)                                                                          | 1.90 (1.15-3.14)                    | 0-013                                |
|   | Telangiectasia                                    | -                                                                                       | -                                   | -                                    |
|   |                                                   |                                                                                         |                                     |                                      |

Interpretation 26 Gy in five fractions over 1 week is non-inferior to the standard of 40 Gy in 15 fractions over 3 weeks for local tumour control, and is as safe in terms of normal tissue effects up to 5 years for patients prescribed adjuvant local radiotherapy after primary surgery for early-stage breast cancer.


|    |                            |                 |                  | 1001  |
|----|----------------------------|-----------------|------------------|-------|
| 26 | Gy                         | 155/6318 (2-4%) | 1-47 (1-03-2-09) | 0-032 |
|    | st or chest wall<br>omfort |                 | -                | -     |
| 40 | Gy                         | 234/6086 (3.8%) | 1 (ref)          | -     |
| 27 | Gy                         | 269/6285 (4-3%) | 1-10 (0-86-1-40) | 0-44  |
| 26 | Gy                         | 250/6309 (4-0%) | 0-98 (0-76-1-26) | 0-86  |

# Comparison of START-B with FAST-Forward

Haviland et. al 2013 Lancet Oncol

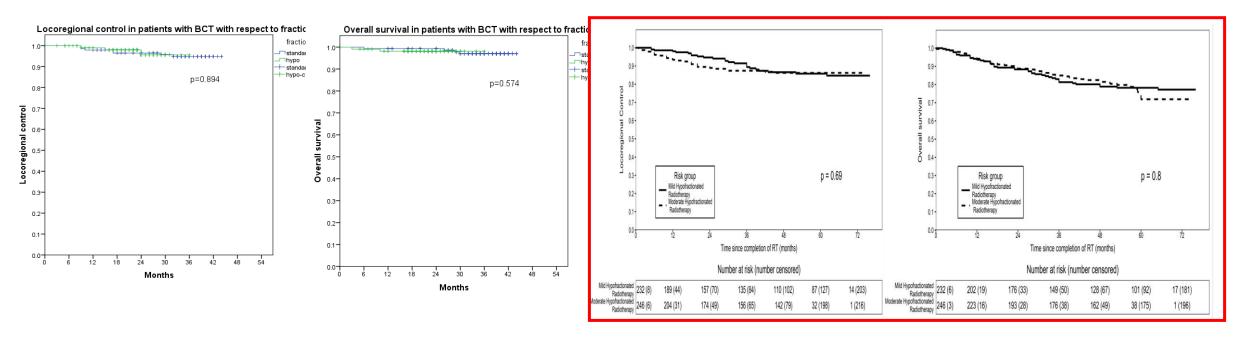
Brunt et. al. Lancet Oncol 2020

Lower Event rates & Continued separation



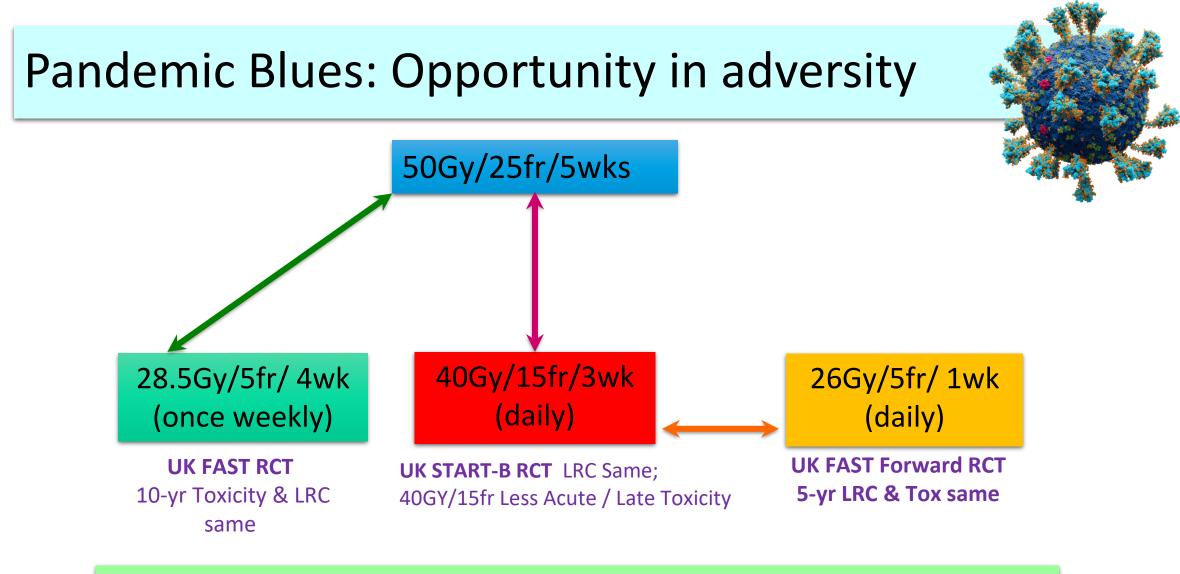
# Late Toxicity & Hypofractionation

- Cardiac toxicity is dose dependent
- Assuming an  $\alpha/\beta$  as low as 1.5
- The regimen is itself safer


| α/β | EQD2      |           |          |  |  |
|-----|-----------|-----------|----------|--|--|
|     | 50Gy/25fr | 40Gy/15fr | 26Gy/5fr |  |  |
| 3   | 50        | 45.5      | 42.64    |  |  |
| 2   | 50        | 46.7      | 46.8     |  |  |
| 1.5 | 50        | 48        | 49.7     |  |  |

- Cardiac safety→ Treatment planning & adopting DIBH/ Prone breast RT
- Long term data from UK-START  $\rightarrow$  no excess mortality
- Breast Shrinkage START-B: 10 yrs 31.2% Vs 26.2%
- Long-term results will mostly be similar to 5 year results but in the absence of retrospective evidence → Not standard

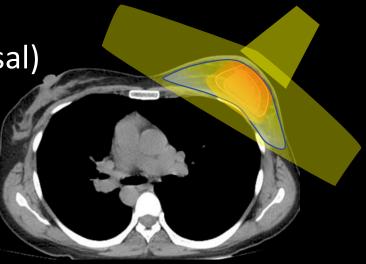
|                  | START B (n=1110)               | FAST (n=613) | FAST-Forward (n=2735)     | TMH (n=1721)              |
|------------------|--------------------------------|--------------|---------------------------|---------------------------|
| Median Age (yrs) | 61                             | 62           | 61                        | 50                        |
| T1               | 709 (63.8%)                    | 496 (80.9%)  | 1859 <mark>(67.9%)</mark> | 279 <b>(16.2%)</b>        |
| Т2               | >2cm:288 (25.9%)               | 117 (19%)    | 813 (29.7%)               | 1013 (58.8%)              |
| Т3               | NK                             | 0            | 55 (2%)                   | 429 <mark>(24.9%)</mark>  |
| Gr-I/ II         | 843 (75.9%)                    | 542 (88.4%)  | 1968 (71.9%)              | 283 (16.4%)               |
| Gr-III           | 267 <mark>(24%)</mark>         | 69 (11.2%)   | 767 <mark>(28%)</mark>    | 1438 <mark>(83.5%)</mark> |
| HR+/Her2-ve      | 976* (87.9%)                   | 613 (100%)   | 2227 (81.4%)              | 782 (45.5%)               |
| HR+/-/Her2+ve    | ~5-7%                          | 0            | 196 (7%)                  | 281 <b>(16.3%)</b>        |
| ТИВС             | ~7% (No HT)                    | 0            | 224 <mark>(8.2%)</mark>   | 301 (17.5%)               |
| BCS *            | 1018 <mark>(91.7%)</mark>      | 613 (100%)   | 2637 <mark>(96.4%)</mark> | 927 (53.8%)               |
| MRM              | 92 (8.2%)                      | 0            | 209 (7.6%)                | 794 (46.1%)               |
| pN0              | 804 (72.4%)                    | 613 (100%)   | 2234 (81.6%)              | 866 (50.3%)               |
| pN+              | 266 <mark>(24%)</mark>         | 0            | 499 <b>(18.2%)</b>        | 855 (49.6%)               |
| Boost            | 446 (43.8%)                    | 0            | 669 (24.4%)               | 883 <mark>(95%)</mark>    |
| No Boost         | 565 (55.5%)                    | 613 (100%)   | 2058 (75.2%)              | 44 (5%)                   |
| NACT             | 0 (491 adj <mark>44.2%)</mark> | 0            | 99(3.6%)adj 694: 25.3%    | 763 (44.4%)               |
| No NACT          | 1110 (100%)                    | 613 (100%)   | 2634 (96.3%)              | 958 (55.6%)               |

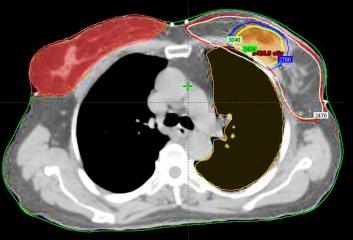

# Hypofractionation: TMH Experience

- Adopted as a policy since 2014 for all patients receiving RT to breast/ chestwall +/- SCF
- Unpublished data Courtesy Dr. Ashwini Budrukkar & Dr. Niranjan Dash
- Conventional Vs Hypofractionated RT → no significant differences in LFS, LRFS and OS Fewer Hospitalizations from RT induced Gr-III toxicity increased throughput/ quality Rx



3 year LFS for BCT (n=268) 97 & 97.6%; OS: 97 & 98.1%


5 year LFS for MRM (n=478) 85.8 & 86.2%; OS: 78.2 & 71.9%




33Gy/5fr Tumour Bed48Gy/15fr tumour bed32Gy/5fr tumour bedRadio-biologically equivalent SIB dose used in TMH for cases requiring boost

# **TMH** Experience

- >1100 women (median age 49yrs; ~40% postmenopausal)
  - ER/PR +ve/ Her2 -ve ~50%
  - Triple +ve ~15%
  - Her2 enriched ~10%
  - TNBC ~20%
- ~50% recd NACT; 68% recd Adj CT; >95% recd CT
- Nearly all Her2 +ve patients recd. at least conc Trastuzumab
- ~50% MRM; Oncoplasty in 8% cases,
- 70% FF/ 30% F
- RNI  $\rightarrow$  ~75%; TBB among pts with BCS: ~85%
- 60-70%  $\rightarrow$  with Fif-IMRT, DIBH <5%, Inv IMRT ~25%
- TBB  $\rightarrow$  SIB ; PMRT  $\rightarrow$  Bolus all fr, no scar boost

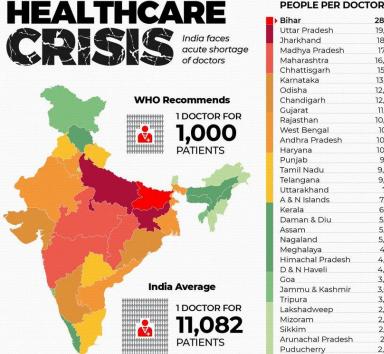





Unpublished work from the TMC Mumbai Unconventional Fractionation Registry

# Acute Toxicity

- Skin
  - Gr 0 15%
  - Gr 1 80%
  - Gr 2 4%
  - Gr 3 0.1%
- Odynophagia
  - Gr 0 60%
  - Gr 1 33%
  - Gr 2 5%
  - Gr 3 0.1%
- No Brachial Plexopathy
- No excess acute toxicity
- Toxicity for FF peaks by 2<sup>nd</sup> -3<sup>rd</sup> week




# Pyramid of Priority



# Challenges in LMICs (India)

- Large population and country with Cultural/ **Regional Diversity**
- Heterogenous practices across oncologists (Medical/Surgical& Radiation)
- Poor access to specialized healthcare and oncological training (Medical/Paramedical)
- Poor penetration of breast conservation  $\rightarrow$  Lack of RT services/ Additional expenses/ Lack of awareness
- Healthcare  $\rightarrow$  Low priority reflected in budget allocation  $\rightarrow$  Essentially Self paid
- Govt aided centres  $\rightarrow$  Lack of state-of-the-art facilities



সারায়াল

6,810 Daman & Diu 5,593 Assam 5,395 Nagaland 5,386 Meghalaya 4,791 Himachal Pradesh 4.639 D & N Haveli 4,459 3.883 Jammu & Kashmii 3.060 Tripura 3.038 Lakshadweer 2.699 Mizoram 2.458 Sikkim 2,437 Arunachal Pradesh 2.417 Puducherry 2.384 Manipur 2,358 Delhi 2.203 Source: National Health Profile 2018; figs are estimates

28.391

19.962

18.518

17,192

16.996

15.916

13.556

12.744

12.624

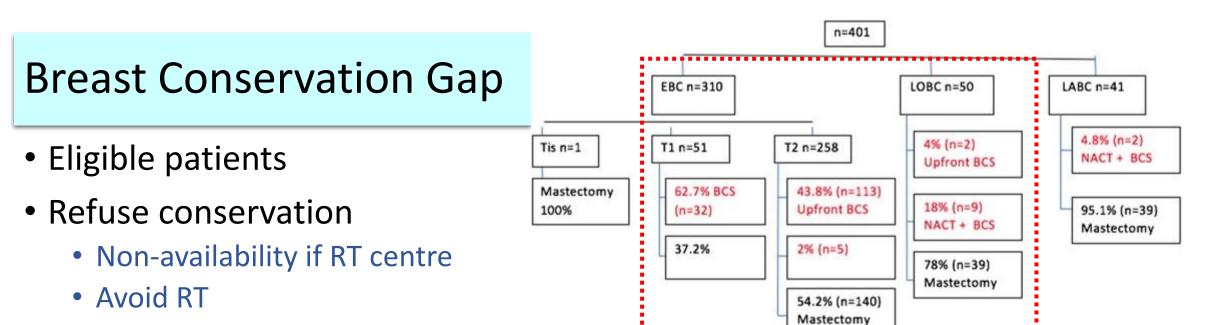
11,475

10,976

10,411

10,189

10,189


9,817

9,544

9,343

7,911

7,653



- RT Unaffordable
- Fear of recurrence



| Region     | Population            | Area of            | Number of machines available in each region (%) |          |            |            |               |          |                |                |
|------------|-----------------------|--------------------|-------------------------------------------------|----------|------------|------------|---------------|----------|----------------|----------------|
|            | of each<br>region (%) | each<br>region (%) | Simulator                                       | CT-Sim   | Telecobalt | Linacs     | RAL<br>Brachy | Tomo     | Cyber<br>Knife | Gamma<br>Knife |
| Central    | 8.10                  | 13.6               | 1 (2.5)                                         | 2 (4)    | 15 (8.3)   | 12 (3.3)   | 13 (5.2)      | 0 (0)    | 0 (0)          | 0 (0)          |
| East       | 22.33                 | 12.8               | 4 (10)                                          | 1 (2)    | 20 (11.1)  | 22 (6)     | 16 (6.4)      | 1 (12.5) | 0 (0)          | 0 (0)          |
| North      | 24.82                 | 20.5               | 15 (37.5)                                       | 13 (26)  | 42 (23.3)  | 85 (23.3)  | 65 (26)       | 1 (12.5) | 3 (42.9)       | 5 (71.4)       |
| North-East | 3.57                  | 7.8                | 1 (2.5)                                         | 3 (6)    | 10 (5.6)   | 6 (1.6)    | 6 (2.4)       | 0 (0)    | 0 (0)          | 0 (0)          |
| South      | 21.09                 | 19.4               | 12 (30)                                         | 18 (36)  | 50 (27.8)  | 150 (41.1) | 88 (35.2)     | 3 (37.5) | 4 (57.1)       | 1 (14.3)       |
| West       | 20.09                 | 26.0               | 7 (17.5)                                        | 13 (26)  | 43 (23.9)  | 90 (24.7)  | 62 (24.8)     | 3 (37.5) | 0 (0)          | 1 (14.3)       |
| Total      | 100                   | 100                | 40 (100)                                        | 50 (100) | 180 (100)  | 365 (100)  | 250 (100)     | 8 (100)  | 7 (100)        | 7 (100)        |

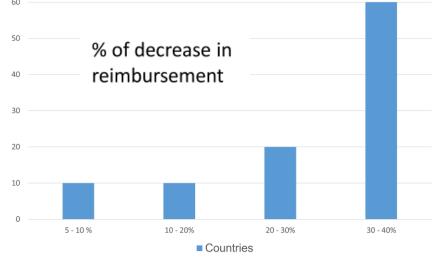
States included in each region: Central: Chhattisgarh, Madhya Pradesh, East: Bihar, Jharkhand, Orissa, West Bengal, North: Chandigarh, Delhi, Haryana, Himachal Pradesh, Jammu and Kashmir, Punjab, Uttar Pradesh, Uttarakhand, North-East: Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Tripura, South: Andhra Pradesh, Karnataka, Kerala, Puduchery, Tamilnadu, Telengana, West: Goa, Gujarat, Maharashtra, Rajasthan, States not included: Andaman & Nicobar Islands, Sikkim, D & N Haveli, Daman & Diu, Lakshadweep; CT: Computed tomography, RAL: Remote after-loading

# **Mitigation Strategies**

Increase the RO to Patient Ratio

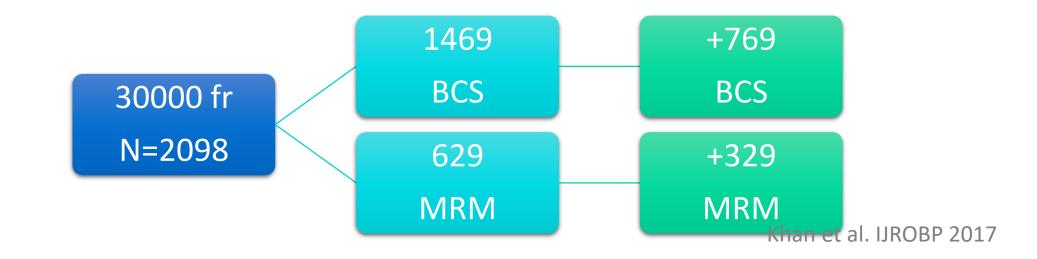
Improve the patient to machine ratio

Reduce the direct + indirect cost of RT

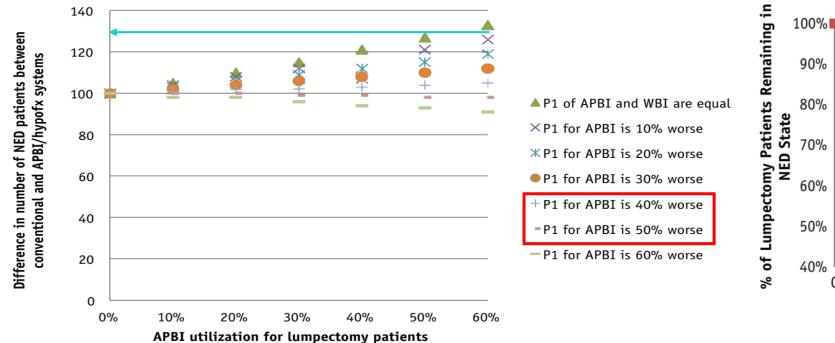

Improve Awareness of breast conservation safety

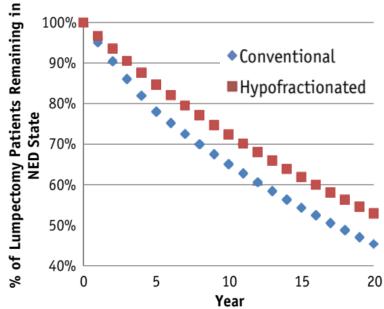
# Cost of RT

- Cost of healthcare → rising due to rapid technological advancement
- Misconception  $\rightarrow$  Costs of RT driven by cost of equipment
- Labour-intensive planning & delivery → Wages drive costs
- Misconception for complex plans → RT planning will become more significant driver of cost than delivery
- Planning 1 time process << Time for delivery remains high and adds cost of QA
- Cost of RT essentially driven by total treatment time
- 25% case load breast ca  $\rightarrow$  Major impact


# Impact of Hypofractionation on Cost

- Physician
  - US/Europe Remuneration structure → Fixed fee / Fee-for-service
  - ROs in 77% countries → 10 to ~40% reduction in revenue due to adoption of hypofractionation
- Loss of revenue from Medicare reimbursement
  - OZ $\rightarrow$  ~\$2000/ pt , USA $\rightarrow$  \$4300
- Indirect cost:
  - Transportation (average number of miles/ day, the average reimbursement rate per mile)
  - Parking costs,
  - Loss of hourly wages by hours spent during treatment & displacement





# Cost Effectiveness of 5 fr for LMIC?

- Boscoe et al.  $\rightarrow$  >75 km for treatment are ~ 1.4 times more likely to choose mastectomy
- Geographic & logistic barriers  $\rightarrow$  precluded from BCS
- Markov Chain modelling using data from SKMCH Pakistan (APBI eligible)
- Simulate the real-life implications of a major change in treatment strategy
- External validity of the model  $\rightarrow$  15-yr OS results from EBCTCG/Oxford meta-analyses



# Impact on OS (Society)





- Absolute gain in OS ~4% and DFS ~7% at 15 years
- OS after BCS improved from 54% to 62%
- Improvement in OS at population level → Limited access
- Future studies should evaluate this for common malignancies

## Benefits of Ultra-hypofractionated RT

### Patient

- Reduced hospital visits → Reduce infection risk
- Reduced expenditure on stay and travel to the hospital
- Lower toxicity  $\rightarrow$  Lower expenses
- Improved access to RT without compromising outcomes → Increased acceptance to BCS
- Reduced treatment interruptions
- Improved QOL  $\rightarrow$  Priceless

- Reduced hospital visits → Reduce infection risk & PPE use
- Improved access to care: number of patients that can be treated in limited hours & resources
- Reduced working hours of the machine & its running cost (Electricity/ Water/ HR)
- Improvement in quality of the treatment → lower rates of toxicities & higher patient satisfaction
- Early Breakeven

Hospital



# Summary

- Pre-requisite for Hypofractionated RT → Strict QA → Uniform treatment policies & standard planning & treatment techniques
- FAST- Forward RT arm 26Gy/5 fr  $\rightarrow$  safe and effective as 40Gy/15 fr
- Planned with techniques routinely used in most centres (Fif-IMRT/ 3DCRT)
- Like START studies  $\rightarrow$  Like FAST Forward studies
- TMC Mumbai experience of UHF-RT  $\rightarrow$  Unique aspect SIB further reducing the TT
- Early results suggest : ISO-EFFECTIVE, ISO-TOXIC, & COST-EFFECTIVE
- Beyond pandemic currently: Highly select population
- FAST  $\rightarrow$  Favorable patient population (Low risk)
- FAST FORWARD  $\rightarrow$  EBC, Node negative, No NACT, Favorable biology
- In future  $\rightarrow$  5 or fewer fractions may be the way forward!

# Acknowledgements

- Dr. JP Agarwal
- Dr. Rajiv Sarin, Dr. Tabassum Wadasadawala & Dr. Revathy Krishnamurthy
- Breast DMG Members  $\rightarrow$  Team effort
- Residents of Breast Unit
- Ms. Ashwini Khandavalli (Research Associate)
- Patients

