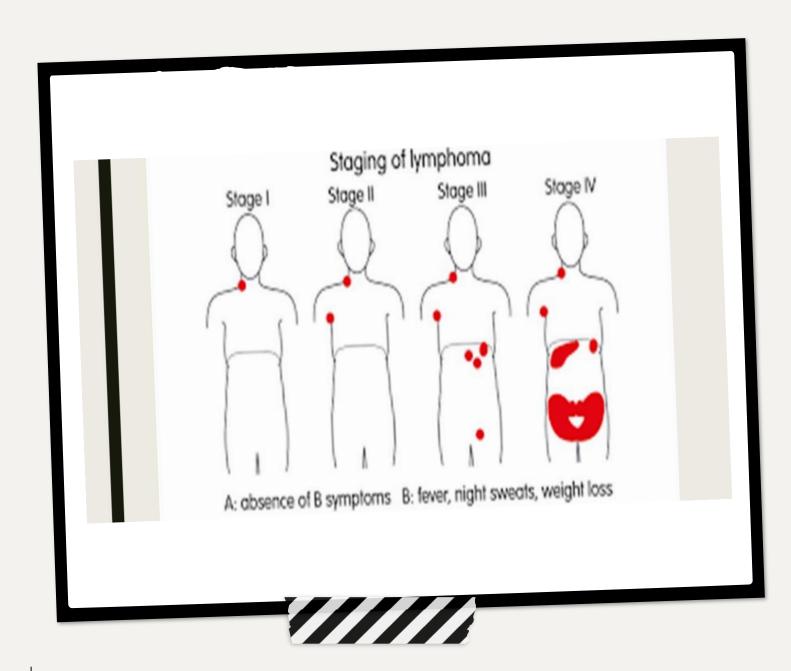
NOT TO BE MINISTERED UNTO BUT TO MINISTER

Every Gray countsmoving from IFRT to ISRT in Lymphoma

Dr Patricia Sebastian Associate Professor Department of Radiation Oncology Christian Medical College Vellore Email ID: drpat@cmcvellore.ac.in

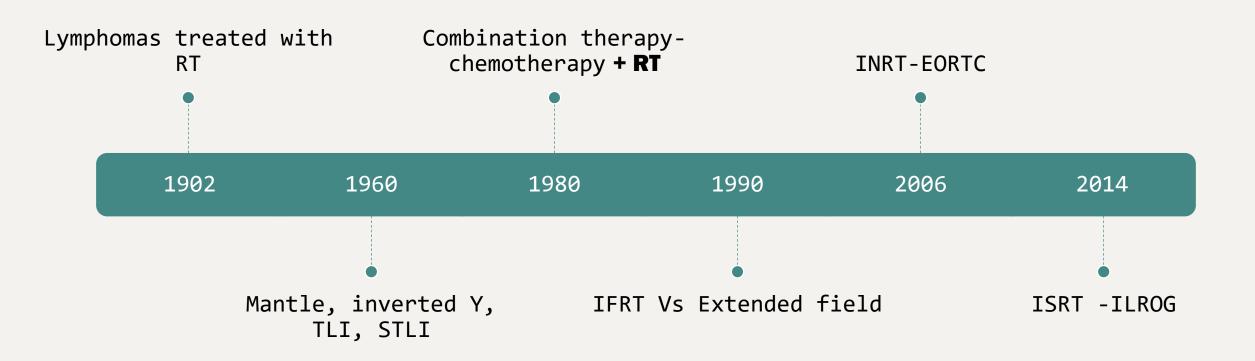
Overview

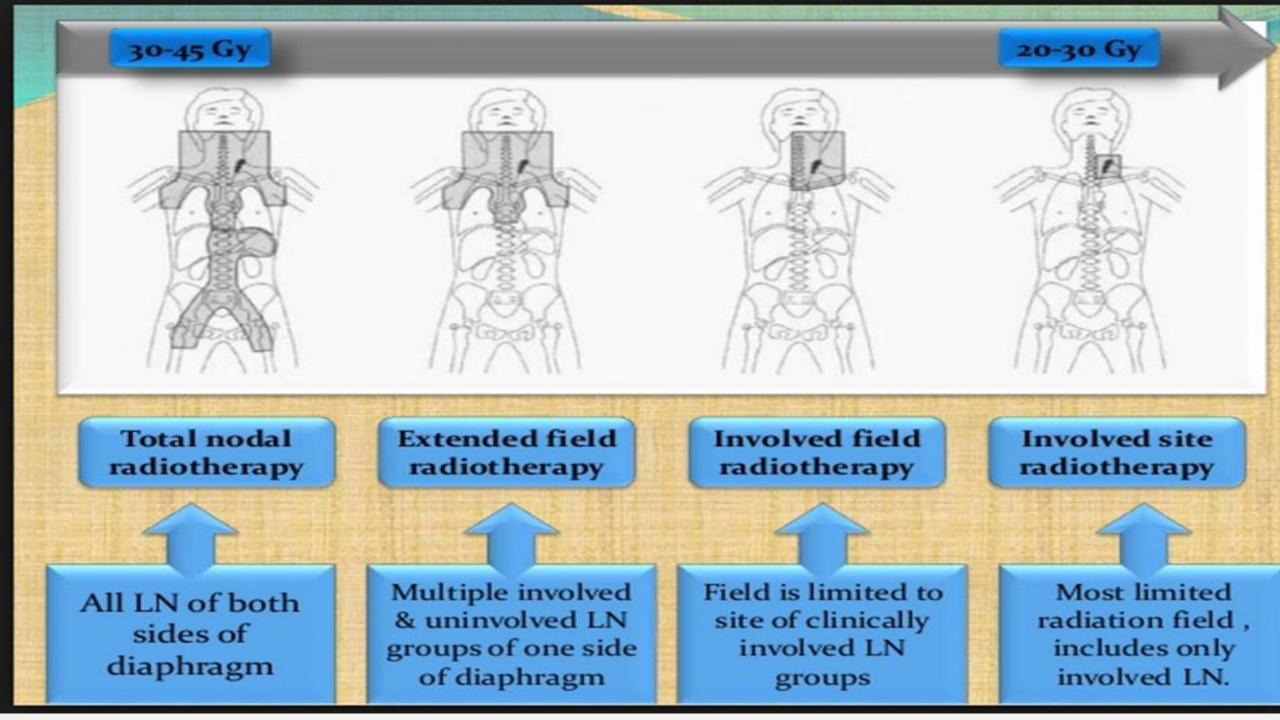

Evolution of RT in lymphomas

Toxicity

IFRT vs ISRT

Radiation dose reduction in lymphomas


How does every Gy count in RT in lymphomas?



 Lymphoma is cancer of the lymphatic system (lymph glands)

Lugano's
 classification
 (derived from
 Ann Arbor with
 Cotswolds)

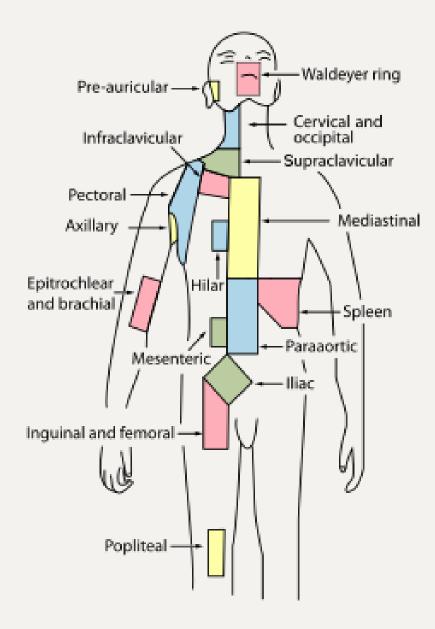
Evolution of RT in lymphomas

Indications of RT in lymphomas

RT as curative

• Early-stage indolent non-Hodgkin lymphoma (NHL) and

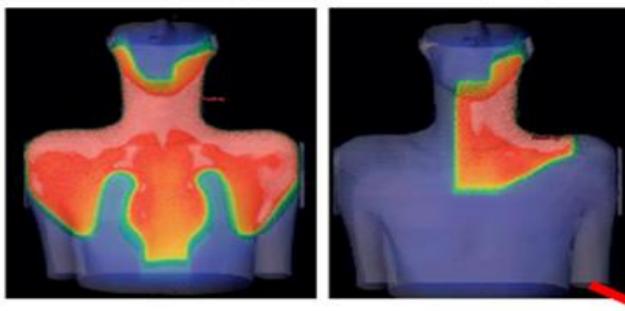
• Nodular lymphocyte-predominant HL (NLPHL)


Consolidation RT

• ESHL and diffuse large B-cell lymphoma (DLBCL)

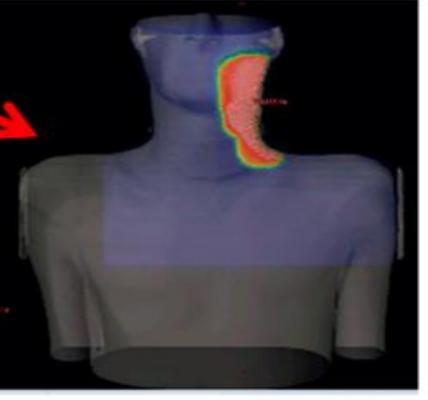
• Primary extranodal lymphoma

- Advanced stage HL or aggressive NHL- residual and/or bulky site
 - Relapsed lymphoma


 $-\Phi$ Wirth el al, ILROG Int J Radiation Oncol Biol Phys, Vol. 107, No. 5, pp. 909e933, 2020

Lymph node

Mantle field (EFRT) or involved field (IFRT)


Based on:

- 3 D planning
- Actual lymphoma involvement
- Contouring of volumes (GTV, CTV, PTV)

Based on:

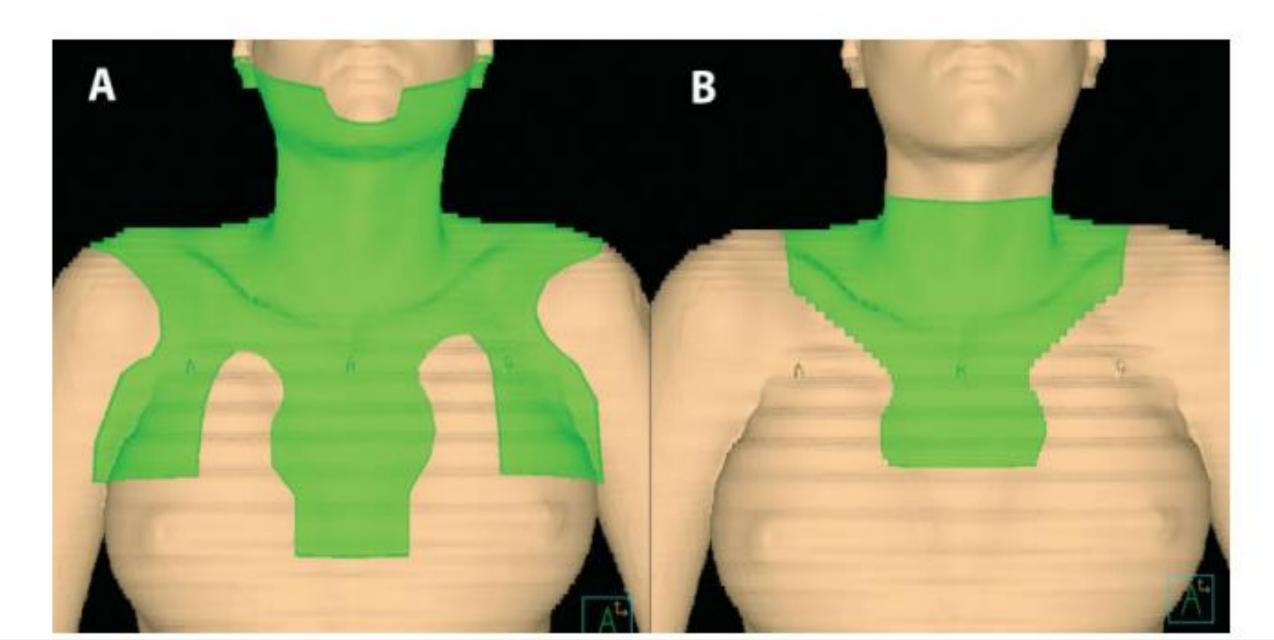
- 2 D planning
- Regions
- Bony landmarks defining fields
- "Fixed" margins

Involved site (ISRT) or involved node (INRT)

Int J Radiation Oncol Biol Phys, Vol. 111, No. 4, pp. 841-850, 2021

Cardiopulmonary

Second malignant neoplasms

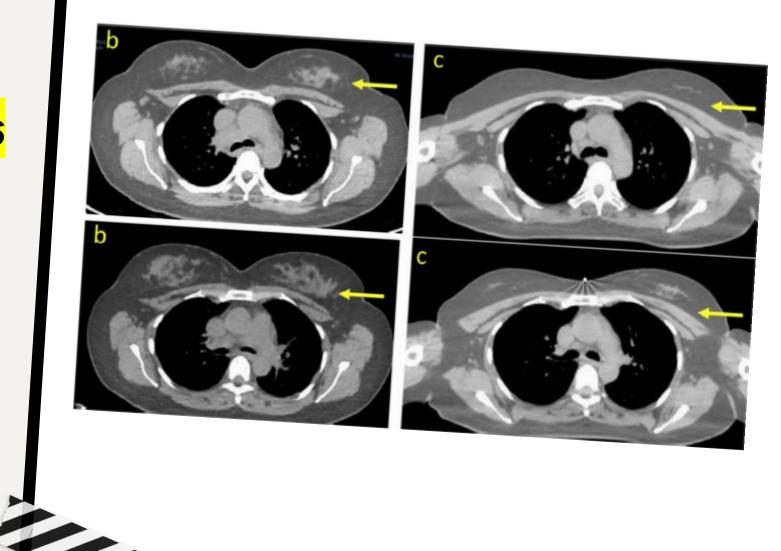

Endocrinopathies-Hypothyroidism

Int J Radiation Oncol Biol Phys, Vol. 111, No. 4, pp. 841-850, 2021

Second malignancy in HL survivors

Study (year)	n	Median followup(years)	Dose (Gy)	Relative risk (95%CI)
Bhatia (1955-86)	1380	11	20-40	5.9 (1.2-30.3)
			>40	23.7 (3.7-152.3)
Castellino(1970-86)	2742	24	<30	1.9 (0.4-8.7)
			>30	7.4 (1.8-30.3)
			<u>Field</u>	
Ng(1969-97)	1319	12	Mantle	2.1 (0.8-4.6)
			STLI	4.2 (3.4-5.1)
			TLI	5.1 (2.8-8.5)
Conway(1961-2009)	734	18	Small field	0.87 (0.28-2.66)
φ			Mantle	2.9 (1.41-5.97)

2578 CANCER December 1, 2007 / Volume 110 / Number 11

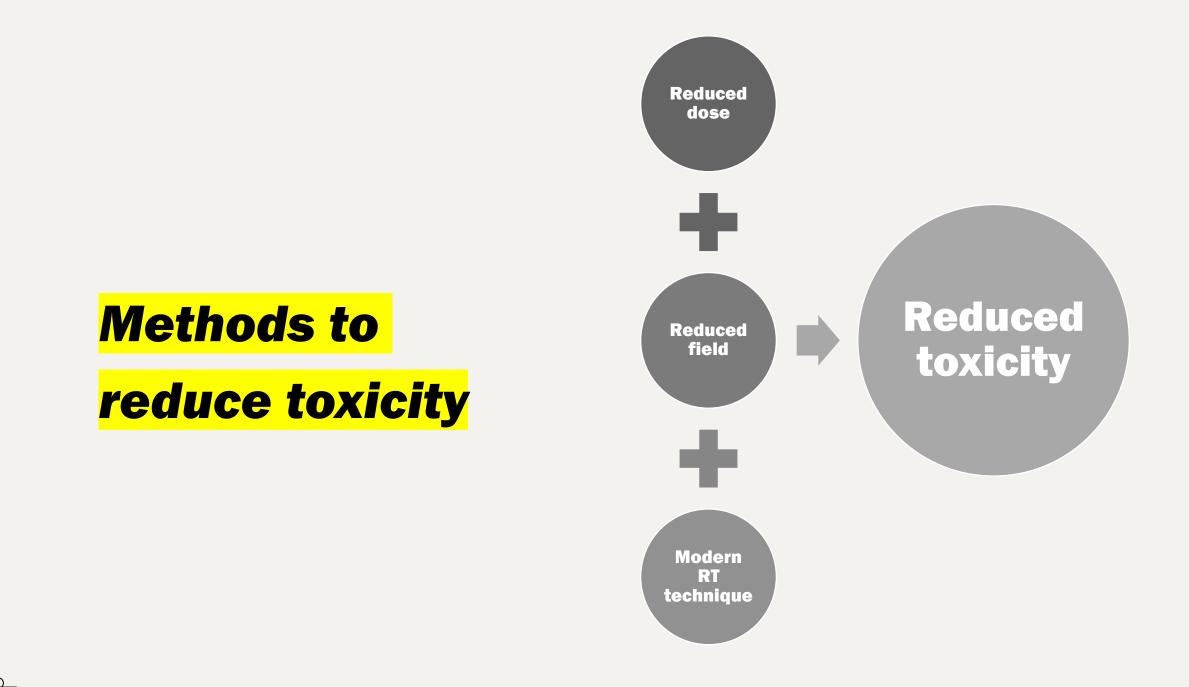


Arm position and

volume of breasts

B-arms above

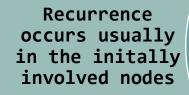
C-arms by the sides



Wirth el al, ILROG Int J Radiation Oncol Biol Phys, vol. 107

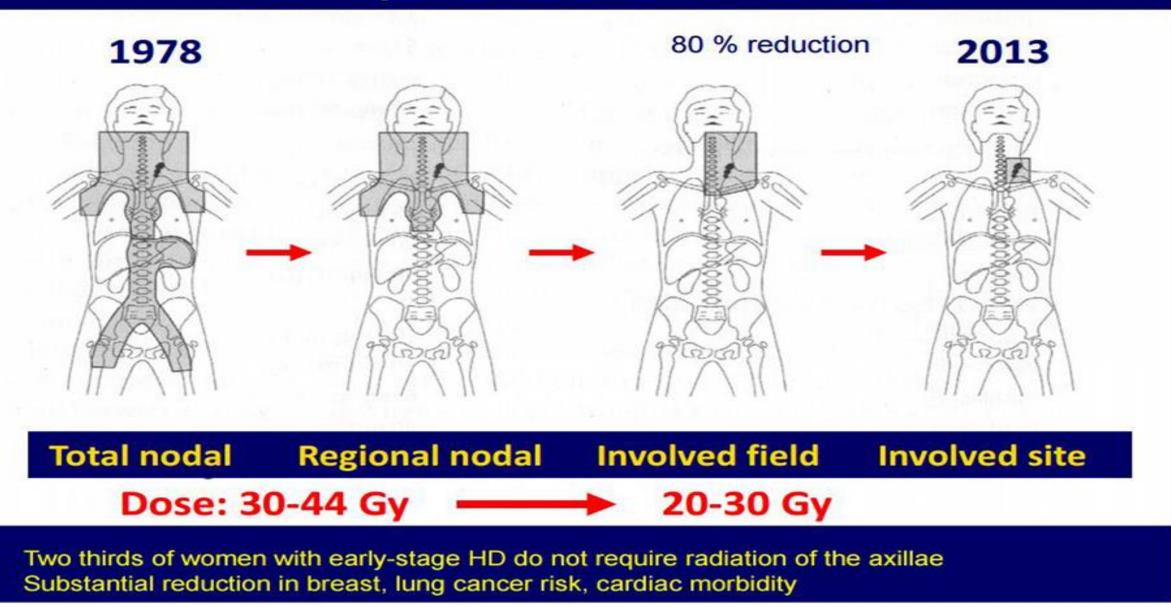
<u>nn 909e933</u>, 2020

Cardiac event in HL survivors


Study (year)	n	Median followup(years)	Mean dose to heart (Gy)	Rate ratio (95%CI)
Cutter(1965-95)	1852	19	0	1.0 (0.2-4.9)
			>0-30	1.5 (0.5-3.9)
			31-35	3.4 (1.9-6.0)
			36-40	5.5 (4.0-7.7)
			>40	12.1 (5.1-28.9)
van Nimwegen (1965-95)	2617	19	0	1.00 (0.6-1.67)
			1-5	1.14 (0.62-2.10)
			5-14	2.14 (1.28-3.58)
			15-19	2.76 (2.10-3.59)
			20-24	2.79 (2.23-3.49)
			25-34	3.21 (2.52-4.09)
			35-45	2.54 (0.96-6.69)

Region or organ	Field coverage
Supraclavicular	Unilateral or bilateral cervical/supraclavicular region
Mediastinum	Including bilateral medial supraclavicular LNs and lung hila
Axilla	Including the supraclavicular and infraclavicular LNs
Spleen	Spleen
Para-aortic LNs	Para-aortic LNs
Pelvis	Inguinal/femoral/external iliac regions

Rationale of ISRT

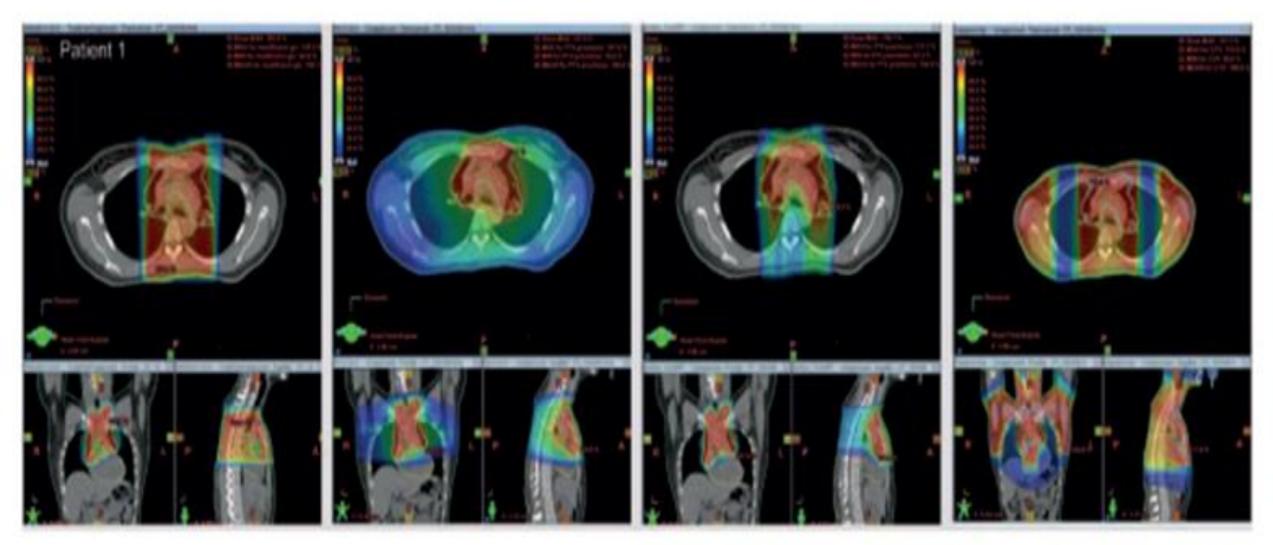

Subclinical disease treated by immunochemotherapy

Improved imaging-PETCT/MRI/CECT for delineation Improved techniques of planning and delivery of RT

IGRT(DIBH/Gating)

Shahidi et al, 2006

Transformation of RT Volumes / Doses in HL ISRT – Specht L et al IJROBP 2014



IMRT

Mantle field

Maraldo M et al. Ann Oncol 2013; 24: 2113-8

INRT Vs ISRT

INRT

• EORTC-GELA

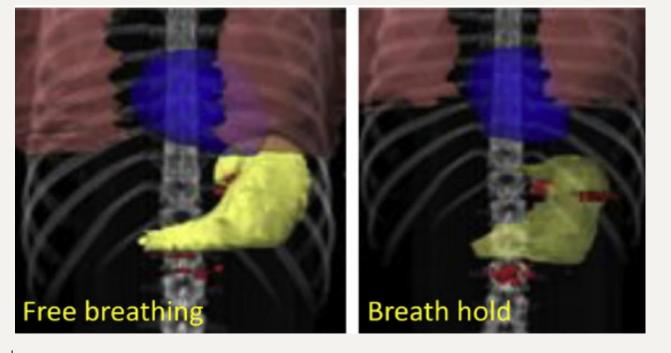
Originally involved nodes
PET in planning position prior to chemo and after

ISRT

- ILROG
- Originally involved nodal site
- Larger CTV (accomodates uncertainty in delineation)

GTV: IFRT Vs ISRT

IFRT: anatomical node **REGION** involved before chemotherapy, thus the involved field will include the entire neck including the supraclavicular fossa when a neck node was involved


ISRT: The GTV includes PET-positive **NODES** and should **be extended** to include nearby enlarged or **equivocal nodes**, particularly if disease demonstrates low FDG avidity


CTV in ISRT

RT	СТV
 Early-stage indolent non- Hodgkin lymphoma (NHL) and Nodular lymphocyte- predominant HL (NLPHL) 	evident sites plus an adequate volume to encompass potential adjacent subclinical disease
• ESHL and diffuse large B-cell lymphoma (DLBCL)	disease sites evident at diagnosis
• Primary extranodal lymphoma	entire involved organ because extranodal lymphomas often display an infiltrating or multifocal pattern
 Advanced stage HL or aggressive NHL- residual and/or bulky site 	any residual GTV plus a subset of disease sites at elevated risk of harboring subclinical disease after systemic therapy
 Relapsed lymphoma 	some or all relapse sites and selected sites of prior disease involvement

Considerations in ISRT

• PET-CT + contrast CT +/- MRI

• DIBH for mediastinal and stomach locations

+ Wirth el al, ILROG Int J Radiation Oncol Biol Phys, Vol. 107, No. 5, pp. 909e933, 2020

Evidence for

reduced dose

• Hodgkins: German Hodgkin Study Group HD1, HD5, HD10 and HD11 recommends 20 Gy for Early stage favourable and 30 Gy for

unfavourable Hodgkins

VOLUME 28 · NUMBER 27 · SEPTEMBER 20 2010

JOURNAL OF CLINICAL ONCOLOGY

Intensified Chemotherapy and Dose-Reduced Involved-Field Radiotherapy in Patients With Early Unfavorable Hodgkin's Lymphoma: Final Analysis of the German Hodgkin Study Group HD11 Trial

Hans Theodor Eich, Volker Diehl, Helen Görgen, Thomas Pabst, Jana Markova, Jürgen Debus, Anthony Ho, Bernd Dörken, Andreas Rank, Anca-Ligia Grosu, Thomas Wiegel, Johann Hinrich Karstens, Richard Greil, Normann Willich, Heinz Schmidberger, Hartmut Döhner, Peter Borchmann, Hans-Konrad Müller-Hermelink,

Reduced dose radiotherapy for local control in non-Hodgkin lymphoma:

Lisa Lowry^a, Paul Smith^a, Wendi Qian^b, Stephen Falk^c, Kim Benstead^d, Tim Illidge^e, David Linch^f, ^a Haematology Trials Group, University College London Cancer Trials Centre, UK; ^b MRC Clinical Trials Unit, London, UK; ^c Bristol Oncology and Haematology Centre, UK; ^d Department

naematology (reas Group, University Conege London Curcer Trans Centre, UK, MRC Currical Trans Ont, London, UK, Briston Oncology and Internationary Centre, UK, Department of Oncology, Cheltenham General Hospital, Gloucestershire, UK; * School of Cancer and Imaging Sciences, University of Manchester, UK; * University College London Cancer Institute, b) oncodegy, Chenemian General Prosphan, Goucestershine, OK, School of Cancer una maging Sciences, University of multimester, OK, Oniversity Conege Lonion Cancer Institute, UK; # Academic Unit of Clinical Oncology, Weston Park Hospital, Sheffield, UK; ^h HMDS, St. James Institute of Oncology, Leeds, UK; ⁱ Mount Vernon Cancer Centre, Department of Clinical

Disease and stage	PET-CR post chemotherapy	PR post chemotherapy
Early stage indolent nodal or extranodal lymphoma	24-30 Gy (RT alone)	
Early stage HL	30 Gy	36-40 Gy
low-risk, limited-stage DLBCL	30-36 Gy	36-40 Gy
Advanced-Stage Aggressive NHL	30-36 Gy	36-50 Gy (PET positive residual)
Advanced-Stage Aggressive HL	30 Gy	36-45 Gy (PET positive residual)
Relapsed/Refractory Aggressive NHL	30-36 Gy	40-55 Gy (If RT is the sole salvage)
Relapsed/Refractory Aggressive HL	30 Gy	36-45 Gy(If RT is the sole salvage)

Constraints

	Optimal*	Acceptable [†]	If necessary [‡]	Avoid
Heart (89, 145, 146)			
Mean (Gy)	<5	5-10	10-18	Coronary arteries and left ventricle
V15	<10%	10%-25%	25%-35%	
V30		<15%	15%-20%	
Lung (147)				
V5	<35%	35%-45%	45%-55%	
V20	<20%	20%-28%	28%-35%	
Mean (Gy)	<8	8-12	12-15	
Thyroid (148)				
V25	<62.5%			Whole thyroid
Breast				-
Mean (Gy)	<4	4-15	>15	Glandular tissue
V4	<10%	10%-20%	>20%	
V10		<10%	>10%	

* For favorable disease, small-volume early stage lymphoma.

[†] For bulky mediastinal disease.

Relapse/refractory disease setting. Adapted with permission from Dabaja et al.⁴⁹

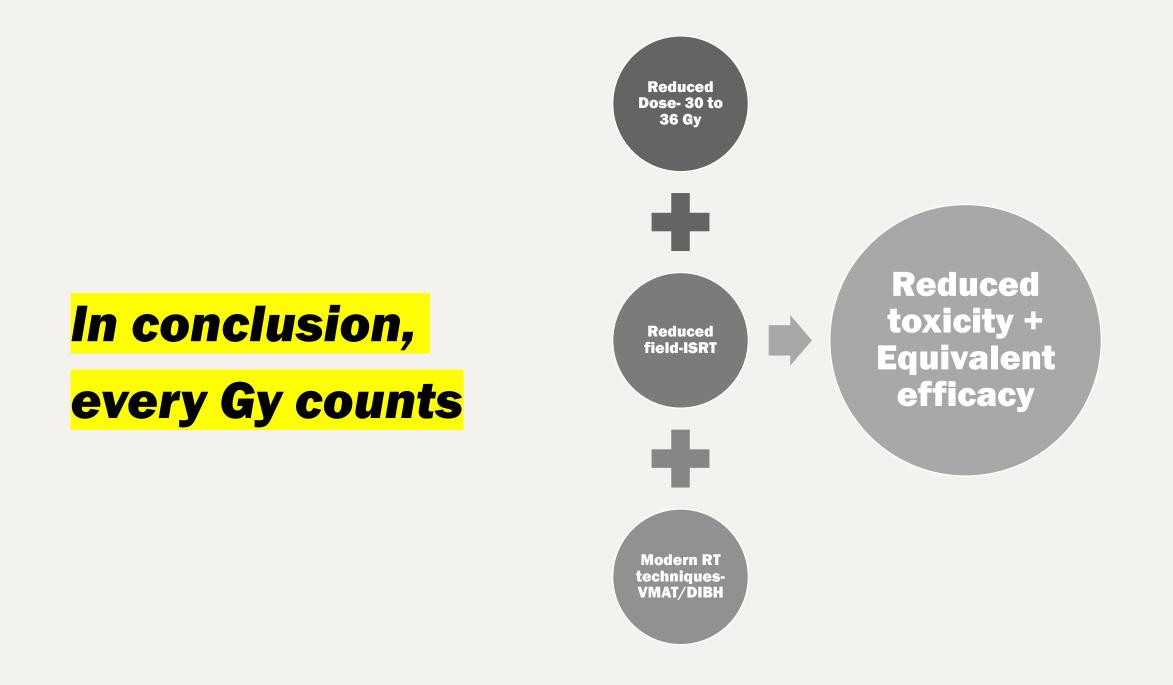
✤ Wirth el al, ILROG Int J Radiation Oncol Biol Phys, Vol. 107, No. 5, pp. 909e933, 2020

Benefits/risks of ISRT

Favorable outcomes with de-escalated radiation therapy for limited-stage nodular lymphocyte-predominant Hodgkin lymphoma

Chelsea C. Pinnix,¹ Sarah A. Milgrom,¹ Chan Yoon Cheah,²⁻⁴ Jillian R. Gunther,¹ Ethan B. Ludmir,¹ Christine F. Wogan,¹

Key Points
Short-term data
suggest that stage
I/II NLPHL can be
treated with ISRT
without a negative
impact on disease-free
survival.


14 MAY 2019 x VOLUME 3, NUMBER 9

Abstracts / Clinical Oncology 31 (2019) e8ee13

Involved site radiotherapy (ISRT) versus involved field radiotherapy (IFRT) in treating lymphoma: A single centre experience Beshar Allos, Devinda Jayathilake, Anjali Zarkar, Andrea Stevens

n	Relapse (%)	In field relapse (%)
IFRT-56	27.8	5.6
ISRT -138	11.6	6.2

Conclusion: Our retrospective analysis clearly shows no detriment to outcomes by switching to ISRT technique. In-field relapse rates are comparable between the two techniques thus validating the now common practice of ISRT in Lymphomas.

Highest cure rate with primary therapy

Fewest complications for optimal survivorship

Thank you!

