Role of Imaging in Radiation Oncology

Sanjay Thulkar Associate Professor of Radiology Dr BR Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi

Goal of Imaging in Diagnostic Radiology

- Identification of the lesion
- Characterization
- Staging (local and distant)
- Follow-up
- Interventions (diagnostic and therapeutic)

Specificity of imaging is crucial

Accurate characterization and diagnosis

Goal of Imaging in Radiotherapy

For Treatment planning & delivery

- Delineation
- Relationship with vital structures
- Treatment planning
- Simulation and verification of plan

Sensitivity of imaging is crucial

- Accurate extent and margin depiction
- Post Treatment Imaging

Modalities

- X-ray
- CT
- MRI
- ▶ PET
- Ultrasound
- Fluoroscopy

X-rays and fluoroscopy

- Used ever since its introduction
- Simple, cheap, portable
- Only modality available till 1970s
- Perfected with long and extensive use
- Standard technique for conventional simulation

X-rays: Disadvantages

- Two dimensional, everything superimposed
- Requires at least two orthogonal views
- Visualization of tumor or normal structures are inadequate
- Highly susceptible to techniques
 - Positioning, exposure, processing
- Digital X-ray
 - Improved the quality and speed
 - Teleradiology and archiving
 - Integration with other modalities

Cross Sectional Modalities

- Ultrasound, CT, MRI
- Revolutionalized the diagnostic imaging
- Also developed radiotherapy
 - Virtual simulation
 - 3D conformal radiotherapy
 - Intensity modulated radiotherapy
 - Image guided radiotherapy
 - Brachitherapy

Ultrasound

Ultra high frequency sound waves (2-13 MHz)

Generated and received by peizoelectric crystal

Ultrasound

Advantages

- Cheap, portable, widely available
- No radiation
- Real time
- Diagnosis of simple cyst is reliable

Disadvantages

- Limited visibility through bone, air
- Small field of view
- Highly operator dependant
- Poor reproducibility

Ultrasound in Radiotherapy

- Not suitable for teletherapy planning
- Has some role in brachitherapy, IGRT
 - E.g. breast, cervix, prostate, lung, liver

CT

- Most important development since x-ray
- Changed both diagnostic radiology as well as radiotherapy
- Continuous development has increased the speed as well as resolution
- Integration with computer development for 3D display, networking, archiving

CT

- Narrow collimation x-ray beam
- Solid/ gaseous detectors
- Attenuation values in 2D slice planes are plotted for various positions of x-ray source and detectors
- Vast data is generated and integrated by powerful computers

CT

- Complete delineation of anatomy and pathology
- Integration with networking, storage, therapy planning systems and treatment units
- Accurate delineation and planning
- Color coding, virtual simulation (DRR, BEV), verification of multiple plans

Contrast agents in CT

Standard for diagnostic radiology

- Improves delineation of tumor
- Better identification of vessels and bowel
- Characterize them on basis of enhancement pattern
- Uncommonly used for planning CT
 - Disease and its extent is already diagnosed
- However, it improves tumor visibility and adjacent structures (vessels, bowel) in specific situations
 - Brain, abdomen

CT Technique

Positioning

- Flat table
- No gantry tilt
- Alignment of immobilization devices, fiducials
- Laser markers for isocenter alignment

CT Technique

- Large FOV
- Correct selection of scanning parameters
 - KV, mA, slice thickness, reconstruction algorithms
 - Window width and center
- Standard protocols are helpful
- Contrast opacification if required

3D Imaging

- Important component of 3D CRT, IMRT, IGRT
- Processing of 2D CT/MRI images
 - Various projections and display modes
- Allows segmentation
 - Tumors, organs, their margins and tissue planes evaluated from various angles
 - Correlation with landmarks, fiducials (markers/ frames)

MPR

Slice in planes other than axial

Coronal, sagital, oblique, any other

MPR

Good delineation

- Can take any 2D plane in a 3D space
 - Dose distribution curves can be plotted
 - Fails to integrate information from adjacent plane
 - Superimposition of the plan is not possible

Volumetric

- Shaded surface display (SSD)
- Maximum intensity projection (MIP)

Volume rendered (VRT)

- 3D model with various degree of opacification
- Uses opacity transfer function from fixed observer viewpoint
- Color coding

CT: Image Depiction

CT: Image Depiction

VRT for Radiotherapy

- Multiple structures and different tissue interfaces can be simultaneously visualized
- 3D treatment planning
- Superimposition of plans
- Its relationship with normal/ functionally important structures
- Display of planed target as well as skin

Prerequisite for Good 3D

- Thin, high resolution, overlapping slices
- Powerful workstation and software
- Possible with modern Multi-detector CT

MRI

- Magnetic proprieties of the tissue molecules, usually hydrogen in water molecules
- No radiation
- Direct multi planner imaging
- Better soft issue contrast

Nuclear Medicine

- Functional information (tumor viability)
- Very poor demarcation
- Not suitable for radiotherapy planning
- PET is an important development
 - Accurate assessment of viability
 - Can be integrated to CT, MRI to compliment

Interventional Radiology

- Percutaneous, minimally invasive image guided procedures
- Biopsy/ FNAC
 - Most body parts are accessible
 - Better instrumentations
 - Highly accurate
 - Diagnostic or staging laparotomies and thoracotomies have decreased

Interventional Radiology

Tumor ablation

- Radiofrequency ablation (RFA)
- High energy focused ultrasound (HIFU)
- Liver, bones, lung, kidney

Chemo-embolization

- Liver, head-neck, bones
- Chemo-embolisation of HCC, neuro-endocrine metastases
- Radio-embolization
 - Rhenium, Yittrium

Interventional Radiology

- Palliation and supportive
- Catheter drainage
 - Abscess, effusion
 - PTBD, nephrostomy, gastrostomy
 - Can be used for brachitherapy
- Recanalisation & stenting
 - Airway, GI tract, biliary
- Pain management
 - Neurolysis
 - Vertebroplasty

Resolution of Imaging Modality

Spatial resolution

- Ability to differentiate and identify two closely spaced structures
- Directly determines delineation
- Unit: line pairs per mm
 - Mammography 20 lp/mm
 - CT 2-3 lp/mm

Resolution of Imaging Modality

Temporal resolution

- Ability to differentiate and update two closely occurring events
- Important for interventional procedures, functional assessment (heart, vessels, respiration)
- In radiotherapy, crucial for brachitherapy and dynamic image guided radiotherapy (IGRT)
- Unit: frames or slices per second
- Modalities with high temporal resolution
 - Ultrasound, fluoroscopy (up to 40/ seconds)
 - MDCT and MRI (up to 10/ second)
- Spatial and temporal resolutions are usually inversely related

Functional Imaging

- Nuclear medicine
 - SPECT, PET
- MRI
 - Spectroscopy, BOLD, Diffusion/ perfusion
- Uses in Radiotherapy
 - Viability of tumor
 - Differentiation of tumor from necrosis , surrounding inflammation and edema

Image Fusion

- Images from two modalities superimposed and fused
 - Two complimentary modalities
 - Same modality at various time/ patient to atlas
- Integrates information from various modalities
 - Display of bones/ fiducials (CT)
 - Improved delineation of margins and tissue planes (MRI)
 - Depiction of viable part of the tumor (PET)

Image Fusion

Difficult, far from ideal

 Exact replication of scanning parameters for two different modalities is not possible

Prospective

- Controlled scan geometry
- Use of fiducials (markers/ frames)

Retrospective

- Subjective/ Quantitative
- Matching of landmarks, curves or surfaces
- Re-slicing of second image data set along the planes of first imaging data set

Post processing for Fusion

- Color wash superimposition
- Composite image

Steps in radiotherapy

- Orthogonal x-ray/CT for initial reference
- Fluoroscopic simulation to correlate beam geometry with anatomic structures
- CT/MR with patient immobilization and markers to define target volume, vital structures
- Dose prescription and set of RT fields designing
- 3D visualization of tumor fields and anatomy: BEV
- Verification simulation or DRR for reference image
- Portal imaging by treatment machine and comparison with reference images for set up accuracy

Image management

- Large number of 2D and 3D images are generated at every step
- Manual management and analysis is cumbersome

Management

- Use of servers and networks (LAN, WAN, Net)
- Security and access concerns
- Uniform digital format (DICOM-RT)

Automated image analysis

- Volume identification
- Indentify anatomic structures and planes
- Identification of spinal cord, lungs
- Auto window level and range setting
- Identification of external contour and markers
- Image fusion

Post Treatment Imaging

- To assess response to treatment
- To monitor treatment complications
- Follow-up
- Difficulties
 - Differentiation of fibrosis from viable residual tumor
 - Post treatment changes may mimic recurrence

Post RT changes

- Thickening of skin and platysma
- Reticulation of subcutaneous fat and deep fat layer
- Increased density of fat
- Retropharyngeal oedema
- Sialadenitis
- Atrophy of lymphatic tissue

Post RT complications

- Osteo-radionecrosis
- Laryngeal necrosis
- Fibrosis induced laryngeal dysfunctions
- Radiation myelopathy
- Radiation pneumonitis
- Radiation enteritis
- Infection
- Fistula formation
- 2nd malignancy

Post RT complications

LARYNGEAL NECROSIS OSTEORADIONECROSIS

Post RT complications

POST RT ABSCESS FISTULA

OROCUTANEOUS FISTULA

Radiation Enteritis

- Thickening of Ibowel folds
- Mucosal ulcerations
- 'Ribbon' or toothpaste bowel
- Stenosis, adhesion and/ or fistula

© 2008 Elsevier Inc.

RT pneumonitis

Acute (up to 3 months)

- Ground glass opacities with ill defined nodule
- Confirm to RT field, sharp margins
- 3D conformal RT: Mass like consolidation
- Chronic
 - Develops by 6-12 months
 - Stabilizes by 2 years
 - Fibrosis

Post RT Breast

- Diffuse increased density of breast
- Benign dystrophic calcifications

Recurrence

- Early changes difficult to distinguish from changes induced by RT
 - soft tissue mass at primary site and /or as enlarged nodes
- Post RT imaging should be deferred for 6 weeks at least

Conclusion

- Tumor imaging is an essential component to develop an optimal treatment plan
 - Multimodality imaging has improved the accuracy and efficacy of planning, delivery and verification of radiotherapy
- Imaging is also required to assess response to the treatment and to monitor complications

Thank You