Rhabdomyosarcoma Evolution of management based on Cooperative groups

Girish Chinnaswamy Paediatric oncology CMC Vellore

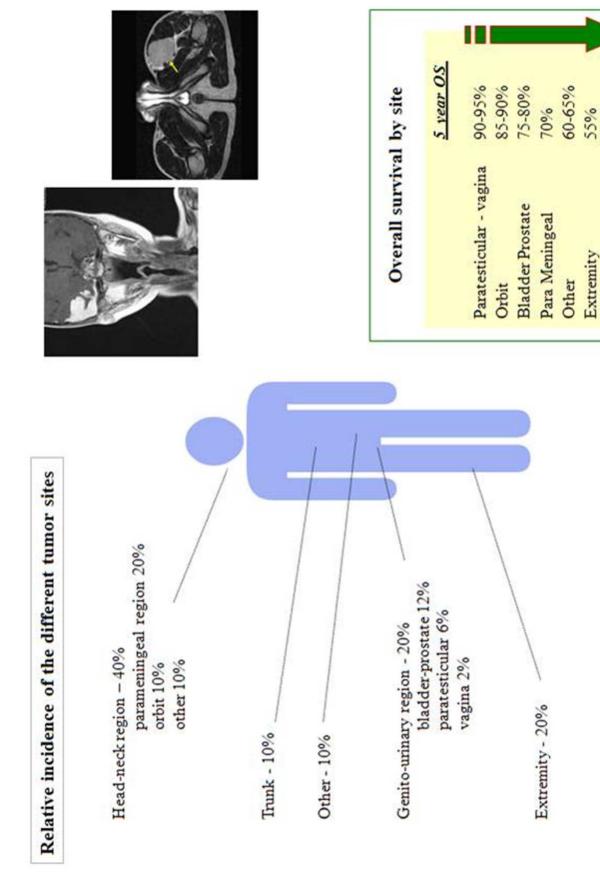
Epidemiology

- Most common soft tissue sarcoma in childhood.
 350 cases/year in USA
- 4-5% of childhood malignancies
- 5.3/million children <15 years of age
- Peak incidence in early childhood. Median age 5 years.
- Males>females

Aetiology

• Largely unknown

Histology


- Arise from primitive mesenchymal cells which are committed to develop into striated muscles
- Two major subtypes

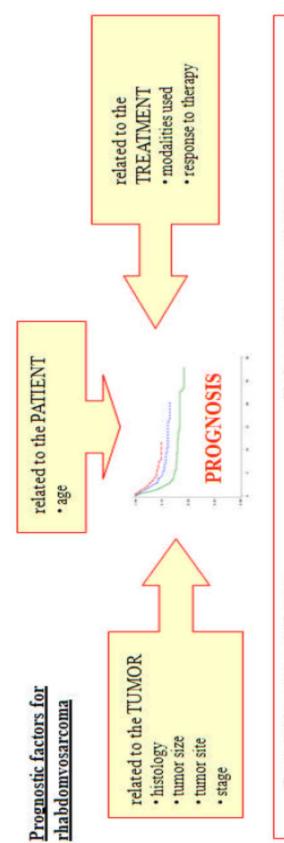
Alveolar(15-20%) Embryonal (80-85%) (Pleomorphic<1% in children)

• 1995:Modification

Superior:

Botyroid/spindle cell/leiomyomatous Intermediate:Embryonal Poor: Alveolar/solid alveolar

Molecular biology


• Two characteristic chromosomal translocations seen in alveolar subtype

-t(2;13)(q35:q14) *PAX3-FKHR* -t(1:13)(p36;q14) *PAX7-FKHR*

• Embryonal:

Loss of heterozygosity 11p15.5

Prognostic factors and risk stratification

Favourable prognostic factors

embryonal histology

initial complete resection (IRS group I) tumor confined to the organ or tissue of origin (T1) small tumor size (<5 cm) no regional lymph node involvement (N0) localized disease (M0)

age between 1 and 10 years

favourable sites:

non-parameningeal head-neck (orbital) non-bladder/prostate genito-urinary (paratesticular, vagina)

Unfavourable prognostic factors

alveolar histology

incomplete resection / unresectability (IRS group II-III) local invasiveness (T2) large size (>5 cm) nodal involvement (N1) distant metastases at diagnosis (M1 – IRS group IV)

age over 10 years - age less than 1 years

unfavourable sites:

parameningeal region bladder and prostate, abdomen trunk extremities

European SSG Staging Systems

RISK GROUP	HIST	IRS	N	SITE	SIZE & AGE	%	EFS-OS
А	fav	I	N0	any	fav	6%	90-95%
В	fav	I	N0	any	unfav	6%	78% - 90%
С	fav	II-III	N0	fav	any	18%	72% - 88%
D	fav	II-III	N0	unfav	fav	9%	80% - 85%
E	fav	II-III	N0	unfav	unfav	27%	55% - 60%
F	fav	II-III	N1	any	any	8%	50% - 60%
G	unfav	I-II-III	N0	any	any	20%	50% - 60%
н	unfav	I-II-III	N0	any	any	6%	40% - 50%

IRS staging

IRS staging system		
	group I	completely-excised tumors with negative microscopic margins
	group II	grossly-resected tumors with microscopic residual disease and/or regional lymph nodal spread
	group III	gross residual disease after incomplete resection or biopsy
	group IV	metastases at onset

IRS V stratification

Stratification and treatment in the IRS-V study

[modified by Raney RB, et al. J. Pediatr. Hematol. Oncol. 23(4),215-220 (2001)]

Risk	Stage	Group	Site	Size	Age	Histology	Μ	Ν
Low - A	1	Ι	favorable	any	any	embryonal	0	N0
	1	II	favorable	any	any	embryonal	0	N0
	1	III	orbit only	any	any	embryonal	0	N0
	2	Ι	unfavorable	≤5cm	any	embryonal	0	N0-NX
Low - B	1	II	favorable	any	any	embryonal	0	N1
	1	III	orbit only	any	any	embryonal	0	N1
	1	III	fav. (excl. or	bit) any	any	embryonal	0	any
	2	II	unfavorable	≤5cm	any	embryonal	0	N0-NX
	3	I-II	unfavorable	≤5cm	any	embryonal	0	N1
	3	I-II	unfavorable	>5cm	any	embryonal	0	any
Intermediate	2	III	unfavorable	≤5cm	any	embryonal	0	N0-NX
	3	III	unfavorable	≤5cm	any	embryonal	0	N1
	3	III	unfavorable	>5cm	any	embryonal	0	any
	1-2-3	I-II-III	any	any	any	alveolar	0	any
	4	IV	any	any	<10yrs	embryonal	M1	any
High	4	IV	any	any	≥10yrs	embryonal	M1	any
	4	IV	any	any	any	alveolar	M1	any

Evolution of treatment

- All RMS are presumed to be micrometastatic
- Multimodality therapy/Multidisciplinary
- Optimal use of these modalities must be planned

-prognostic factors

-late effects of treatment

- All patients require chemotherapy
- Local control is necessary

 conservative approach taking into account response to chemotherapy

Chemotherapy

• Most successful regimens

VAC	Vincristine, actinomycin,cyclophosphamide
VACA	Vincristine, actinomycin, cyclophosphamide, doxorubicin
IVA	Ifosfamide, Vincristine, actinomycin
VAIA	Vincristine, actinomycin, cyclophosphamide, doxorubicin

Cooperative groups

		5yr EFS	5yr OS
Italian Cooperative Group - Associazione Italiana			
Ematologia Oncologia Pediatrica (ICG-AIEOP)			
	RMS79	55%	62%
	RMS88	63%	72%
	RMS96	67%	81%
International Society of Pediatric Oncology			
Malignant Mesenchymal Tumour Committee (SIOP-			
MMT)			
	MMT84	52%	72%
	MMT98	57%	71%
German Soft Tissue Sarcoma Cooperative Group			
(Co-operative Weichteilsarkomen Studie – CWS)			
	CSW81	70%	71%
	CWS86	79%	84%
	CWS95	67%	81%
Intergroup Rhabdomyosarcoma Study (IRS)			
	IRS I	-	55%
	(1972-1978)	E E 0/	629/
	IRS II (1978-1984)	55%	63%
	IRS III	65%	71%
	(1984-1990)	7.00/	A 1 0 (
	IRS IV (1991-1997)	78%	84%

SIOP MMT studies

- Philosophy:
 - -More intensive primary chemotherapy
 - -To reduce intensity of local therapy

SIOP 75:

- 1975-1984
- VAC pre-surgery Vs VAC post surgery
- No difference in overall survival(52%)
- Less aggressive local therapy in patients who received pre-surgery chemotherapy.

MMT 84 study

- Aim to avoid aggressive local therapy -use only conservative surgery and chemotherapy
- Intensive chemotherapy: IVA
- 48% went into CR with chemotherapy alone
- RT given to only to patients in
 - -partial remission,
 - -parameningeal
 - -age >12 years
- High CR rate (91%) OS:68% EFS:53%
- Only 34% needed intensive local therapy

MMT 89 study

- Overall objective: Continue to reduce systematic use of local therapy
- Std/High risk:

Modify therapy for poor responders Explore role of increased Ifosfamide 6 drugs for high risk/parameningeal RMS RT: Children>Parameningeal disease No CR with surgery/chemo

MMT 89 Study

• Very good prognosis:

-completely resected at favourable sites.

-Avoid Alkylating agents

Good prognosis tumours: decrease therapy

MMT 89 study results

- Overall survival was 71%, EFS 57%
 -No better than MMT84
- However

-Local therapy 'limited' in 49% of survivors -6 drugs better in Stage 3 disease (60% OS Vs 42% in MMT84) -Pt1/Low risk disease- 2 drugs Vcr/Act D were sufficient EFS: 67% Vs 85%

MMT studies-Local control issues

- Higher local relapse rate <u>'expected'</u> when local therapy is restricted.
 However can they be salvaged subsequently?
- Worked well for orbital/bladder-prostate tumours and not for the rest
- Mature data showed that modification was necessary

-Age >3 year with alveolar
-non-parameningeal head and neck
-limb primary(>10 years)

SIOP MMT studies summary

- IVA is the best standard and high risk regimen.
- Withholding systematic-local therapy RT has been beneficial to certain subsets of patients
- Some clearly need aggressive local therapy

GPOH-CWS (German)

• CWS 4 studies

CWS-81 (1981-1986) CWS-86 (1986-1990) CWS-91 (1991-1996) CWS-96 (1996-2002)

Chemotherapy CWS Study

- CWS 81:4 drugs VACA
- CWS 86: VAIA-response rate better No improvement in survival outcomes
- CWS 91: VACA back for good prognosis EVAIA for poor prognostic group

-No benefit of adding VP16 -Intensification did not reduce RT (CWS 81-77%, 86-79%, 91-85%)

Local therapy CWS studies

- CWS-81 RT given to micro/macroscopic residual disease
- CWS-86:

RT given prior to surgery and concurrently with chemotherapy.

Degree of size reduction determined the dose Accelerated hyperfractionated RT

Local therapy CWS studies

• CWS-91

-RT stratified according T stage, response to chemo and results of second look surgery. -Accelerated hyperfractionated RT

Outcome much better in 86 and 91 (69% vs 67% Vs 41%)

Conclusions of CWS studies

- Tumour size and volume reduction with pre-op chemotherapy are prognostic value.
- Early hyperfractionated RT given simultaneously to pre-op chemo has better outcome. 32Gy is adequate
- Whether this applies to all histological types??

AIEOP/Italian studies

- RMS 79 and 88
- RMS 79: VAC/CAV 11 courses Grp 1
 12 courses Grp 2 + RT
 18 courses for alveolar/Limb
- RMS 88: VA for low risk IRS1 Increased Vincristine for II and III, Ifosfamide rather than CPM (II & III) RT was hyper fractionated

Outcome-AIEOP studies

- Outcome RMS 79: 64%(OS) and 53%(EFS)
- RMS 88: 82% (I), 72%(II), 59%(III)
- Improved outcomes

Embryonal parameningeal Large primary, node negative

Conclusion:

Low risk no need for anthracyclines/Alkylating agents

Intensification improved outcomes in high risk.

Present European strategy

EpSSG RMS 2005

RISK GROUP	HIST	IRS	N	SITE	SIZE & AGE	%	EFS-OS	LOW RISK
A	fav	I	N0	any	fav	6%	90-95%	VA VA
В	fav	I	N0	any	unfav	6%	78% - 90%	STANDARD RISK
С	fav	II-III	N0	fav	any	18%	72% - 88%	IVA+VA or IVA ± RXT
D	fav	II-III	N0	unfav	fav	9%	80% - 85%	
E	fav	II-III	N0	unfav	unfav	27%	55% - 60%	IVA + RXT stop-therapy
F	fav	II-III	N1	any	any	8%	50% - 60%	1° random HIGH RISK 2° random
G	unfav	I-II-III	N0	any	any	20%	50% - 60%	IVADo + RXT maintenance VNR-oral CTX
Н	unfav	I-II-III	N0	any	any	6%	40% - 50%	IVADo + RXT + VNR-oral CTX
								VERY HIGH RISK

Intergroup Rhabdomyosarcoma study group (USA)

IRS 1	1972-1978
IRS 2	1978-1984
IRS 3	1984-1991
IRS 4	1991-1997
IRS 5	1997-

IRS studies surgical-pathological staging

Table 1. IRSG surgical-pathologic grouping system

Group	Definition
I	Localized tumor, completely removed with pathologically clear margins and no regional lymph node involvement
Π	Localized tumor, grossly removed with (a) microscopically involved margins, (b) involved, grossly resected regional lymph nodes, or (c) both
III	Localized tumor, with gross residual disease after grossly incomplete removal, or biopsy only
IV	Distant metastases present at diagnosis

IRSG staging system

Table 2. IRSG staging system

Stage	Sites of primary tumor	Tumor size (cm)	Regional lymph nodes	Distant metastases
1	Orbit, non-PM head/neck; GU non- bladder/prostate; biliary	Any size	N0, N1	M0
2	All other sites	≤5	N0	M0
3	All other sites	≤5 >5	N1 N0 or N1	M0
4	Any site	Any size	N0 or N1	M1

PM, Parameningeal; GU, genito-urinary; N0, regional nodes not clinically involved by tumor; N1, regional nodes clinically involved by tumor; M0, no distant metastases; M1, distant metastases at diagnosis.

Major conclusions from IRS studies

IRS I-IRS IV studies

- Surgical
- Radiotherapy
- Chemotherapy
- pathobiology

Surgery

- Localised completely resected-good prognosis
- Wide re-excision only if cosmetically/functionallygood outcome
- Orbit/Vagina/Bladder-favourable sites

Extensive surgery not required Chemotherapy/RT

 Paratesticlar RMS-Age is an important factor for lymph nodal spread

Radiotherapy

- No RT for Group I Embryonal RMS
- Graded doses for other groups
- Group IV; RT to both primary and metastatic areas
- Local failure rates improved with RT in head/neck, genitourinary sites
- Hyperfractionated RT: No benefit in group III
- Whole Brain RT/intrathecal chemotherapy not required in parmeningeal tumours

Chemotherapy

- No benefit of adding doxorubicin in Group III/IV
- No benefit of adding Etoposide/Cisplatin
- VAC as good as VAI or VIE
- Higher dose cyclophosphamide 2.2 gm/sq.m has better outcome in ERMS
- Topotecan has good activity in advanced RMS

Present IRS V strategy

Stratification and treatment in the IRS-V study

[modified by Raney RB, et al. J. Pediatr. Hematol. Oncol. 23(4),215-220 (2001)]

Risk	Stage	Group	Site	Size	Age	Histology	Μ	Ν	
Low - A	1	I	favorable	any	any	embryonal	0	N0	2
	1	II	favorable	any	any	embryonal	0	N0	VA ±RXT
	1	III	orbit only	any	any	embryonal	0	N0	- H
	2	I	unfavorable	≤5cm	any	embryonal	0	N0 - NX	
Low - B	1	II	favorable	any	any	embryonal	0	N1	
	1	III	orbit only	any	any	embryonal	0	N1	Et
	1	III	fav. (excl. ort	oit) any	any	embryonal	0	any	No.
	2	II	unfavorable	≤5cm	any	embryonal	0	N0-NX	$\geq \frac{1}{2}$
	3	I-II	unfavorable	≤5cm	any	embryonal	0	N1	
	3	I-II	unfavorable	>5cm	any	embryonal	0	any	
Intermediate	2	III	unfavorable	≤5cm	any	embryonal	0	N0-NX	0 -
	3	III	unfavorable	≤5cm	any	embryonal	0	N1	245
	3	III	unfavorable	>5cm	any	embryonal	0	any	N H H
	1-2-3	I-II-III	any	any	any	alveolar	0	any	1 H T
	4	IV	any	any	<10yrs	embryonal	M1	any	
High	4	IV	any	any	≥10yrs	embryonal	M1	any	HUE
0	4	IV	any	any	any	alveolar	M1	any	E Sa
									9 4 4

Other treatment strategies

- Role of Topotecan/irinotecan
- Role of Melphalan/Platinum agents
- High dose chemotherapy
- Role of maintenance therapy
- Targeted therapies

Conclusions

- Treatment of RMS in children undergoing continuous evolution and being constantly adapted
- More accurate prognostic assessment needed
- Need better selection of good prognostic group to avoid late effects
- VAC and IVA are equally effective regimens

Conclusions

- Local therapy; fundamental aspect Balance risk of relapse with long term sequelae
- Surgery: more conservative now
- 30% can be cured without RT-but identification of this group is not easy
- International collaborative studies