HISTORICAL PERSPECTIVE OF MULTIPLE MYELOMA

Barlogie B et al. *N Engl J Med*. 1984;310:1353; Berenson JR et al. *N Engl J Med*. 1996;334:488; Alexanian R et al. *Ann Intern Med*. 1986;105:8; Bergsagel D. *Cancer Chemother Rep*. 1962;21:87; Salmon SE et al. *Cancer Chemother Rep*. 1967;51:179; Rousselot P et al. *Cancer Res*. 1999;59:1041;McElwainTJ, Powles RL. *Lancet*. 1983;2:822

TREATMENT APPROACH BASED ON

PERFORMANCE STATUS,AGE,CO MORBIDITY

CONVENTIONAL CHEMOTHERAPY NEWER DRUGS:-THALIDOMIDE,LENALIDOMIDE,BORTEZ OMIB AUTOLOGUS/ALOGENIC STEM CELL TRANSPLANT+HIGH DOSE THERAPY

AVAILABILITY OF SIBLING DONOR PT & PHYSICIAN PREFERENCE

EUROPEAN BLOOD AND MARROW TRANSPLANTATION GROUP

	CR	PR	MR	NO CHANGE	PROGRESSIVE DISEASE (REQUIRE 1/MORE)	RELAPSE (REQUIRE ATLEAST 1 OF FOLLOWING)
MONOCLONAL PROTEIN FROM BLOOD-2 DETERMINATION FOR 6 WEEKS	DISAPPEAR -2 DETERMINATION FOR 6 WEEKS	>50% REDN	>25% TO 49% REDN	NOT MEETING THE CRITERIA OF MR/PD	>25% INCREASE,ABSOLUT E INCREASE OF AT LEAST 5 G/L	REAPPEARANCE
URINARY LIGHT CHAIN(24 HRS) -2 DETERMINATION FOR 6 WEEKS	DISAPPEAR	>90% REDN OR < 200 MG	50-89% OR >200 MG		>25% INCREASE,ABSOLUT E INCREASE OF AT LEAST 5 G/L OR >200 MG/24 HRS	
PLASMA CELL IN B.M	< 5%				>25% INCREASE,ABSOLUT E INCREASE OF 10%	>5%
LYTIC BONE LESION	NO INCREASE IN SIZE/NUMBER	NO INCREASE IN SIZE/NUMBER	NO INCREASE IN SIZE/NUMBER		INCREASE IN SIZE	NEW LESION/INCREAS E SIZE OF LESION
SOFT TISSUE PLASMACYTOMA	DISAPPEAR AT LEAST FOR 6 WKS	>50% REDN	25 TO 49%		NEW BONE LESION/SOFT TISSUE, HYPERCALCEMIA	NEW LESION/INCREAS E SIZE OF LESION HYPERCALCEMIA

nCR:-same as CR but immunofixation shows monoclonal protein

INTERNATIONAL MYELOMA WORKING GROUP UNIFORM RESPONSE CRITERIA

- <u>STRINGENT COMPLETE RESPONSE</u>:-CR+NORMAL FREE LIGHT CHAIN ASSAY RATIO+ABSENCE OF CLONAL CELLS IN BONE MARROW BY IHC
- <u>COMPLETE RESPONSE</u>:-NEGATIVE IMMUNOFIXATION ON SERUM & URINE AND DISSAPEARANCE OF ANY SOFT TISSUE PLASMACYTOMA & <5% PLASMA CELL IN BONE MARROW
- VERY GOOD PARTIAL RESPONSE(vgpr):-SERUM AND URINE M PROTEIN DETECTABLE BY IMMUNOFIXATION BUT NOT ON ELECTROPHORESIS, OR >/= 90% REDUCTION IN SERUM M PROTEIN + URINARY M PROTEIN(< 100 MG/24 Hrs)
- <u>PARTIAL RESPONSE</u>:-> 50% DECREASE IN SERUM M PROTEIN & DECREASE IN 24 HRS URINE M PROTEINBY 90% OR TO <200MG/24 HRS

- NON SECRETORY MYELOMA:->50% DECREASE IN DIFFERENCE BETWEEN INVOLVED AND UN INVOLVED FREE CHAIN LEVELS.IF SERUM AND URINE PROTEIN,FLC NOT MEASURES>50% DECREASE IN PLASMACELL IN BONE MARROW OF >30%

Bortezomib: Mechanism of Action in MM

Hideshima et al. *Cancer Res* 61: 3071, 2001 Hideshima et al. *Oncogene* 20: 4519, 2001 Mitsiades et al. *Blood* 99: 4079, 2002 Hideshima et al. *J Biol Chem* 277: 16639, 2002

GENERAL TREATMENT APPROACH

available or appropriate	Induction therapy	Observation				Salvage therapy
USCT not			Maint	enance		
			Observation	Autogran	Observation	
HSCT available and appropriate	Induction therapy No Alkylator Dex/Thal+ Dex/VAD		Maintenance	Autografi	Maintenance	Salvage therapy
		collection			Observation	
		Stem cell	Autor	area di	Maintenance	
			hatograft	Hatogran	Observation	
			Autooraft 1	Autooraft 2	Maintenance	

Abella. Oncology News International. 2007;16:27; Barlogie et al. In: Williams Hematology. 7th ed. 2006:1501; Durie et al. Hematol J. 2003;4:379; MMRF. Multiple Myeloma: Disease Overview. 2006. www.multiplemyeloma.org; Rajkumar et al. Blood. 2005;106(3):812.

Risk-adapted Therapy in MM

**Low risk with β-2 microglobulin > 5.5 (in absence of renal failure)or LDH >upper limit of normal may be at higher risk.

Mayo Clin Proc 2007;82:323-341

Clinical and biologic implications of recurrent genomic aberrations in myeloma

Rafael Fonseca, Emily Blood, Montserrat Rue, David Harrington, Martin M. Oken, Robert A. Kyle, Gordon W. Dewald, Brian Van Ness, Scott A. Van Wier, Kimberly J. Henderson, Richard J. Bailey, and Philip R. Greipp

RISK STRATIFICATION

considered in selected patients

response

DRUG	DOSE	CR + PR	MED.DURATION OF RESPONSE	O.S	
MP	8MG/M2 60MG/M2 D1-4	3%+50%	18 MO	24-36 MO	SHOULD NOT USED AS INDN IN SCT
VAD	V4MG/D D-9MG/M2/D D40MG/M2 D1-4	27%+57%	0.9 mo	36 MO	
THALIDOMIDE	200MG/DAY		MED TIME TO PROGRESSION:- 14.5 MO	EVENT FREE SURV- 3MO	
DEXA	20MG/M2 40MG/M2 D1-4,9-1217- 20,EVERY 35 DAYS	37%-51%			
BORTEZOMIB DEXA	1.3MG/M2D1,D4,D8, D11 20MGD1,2,4,5,8,9, 11,12		12 MO		
DVD	D40MG/M2 D1,VCR- 2MG D1,DEXA- 40MG,D1-4		MEDIAN TIME TO PROGRESSION- 23.1 MO		

Melphalan/Prednisone Treatment

- Alkylating agent + corticosteroid dosing
 - Dosing: 0.25 mg/kg/day melphalan for 4 days
 + 20 mg prednisone tid for 6 days
 - Duration: every 4 to 6 wk
- 40% remission (at least 75% reduction in serum myeloma protein, 95% reduction in Bence Jones proteinuria and >5% marrow plasma cells)

Melphalan/Prednisone Treatment

- Median duration of remission about 2 years
- Median survival—3 years
- <10% live longer than 10 years
- NO evidence of disease cured
- Drug resistance is an issue
- Not recommended for candidates for SCT
- Full benefit takes several months

Alexanian R et al. *JAMA*. 1969;208:680 Dimopoulos *N Engl J Med*. 1994;330:7-484 http:/Myeloma.org

VAD

- Dosing
 - Vincristine: 0.4 mg/day IV daily for 4 days
 - Doxorubicin: 9 mg/m²/day IV daily for 4 days
 - Dexamethasone: 40 mg po days 1-4, 9-12, 17-20
 - Repeat cycle q 28 days \times 4 cycles
- Reduction in tumor mass: >75% in 70% pts
- Remission: 70% pts
- Median time to response: 0.9 mo
- Can be used prior to SCT

DVd versus VAD in Newly Diagnosed Myeloma

261 pts

Randomized trial

- Liposomal doxorubicin used instead of adriamycin in the VAD regimen
- Response rate:
 - 61.3% with DVd
 - -61.4% with VAD
- Toxicities were mild or moderate and equally distributed between the two treatment arms with the exception of alopecia, which was more common in VAD arm, and of palmar—plantar erythrodysesthesia, which was more common in DVd arm.

DESPITE BETTER RESPONSE RATE, NO SURVIVAL BENEFIT HAS SHOWN WITH MORE AGGRESSIVE COMBINATION CT AS COMPARED TO MP.

 IF IMMIDIATE CYTO REDUCTION IS ESSENTIAL (for renal failure or lytic bone lesion):-COMBINATION OF VBMCP(vcr,carmustine,mel,ctx,pdn)

ECOG4A03	N E				
ajkumar SV et al. <i>Blood</i> .	W	T D	RR-58% VS 42%		
004;104(part 1):63a L abstract 205] Y	L V	D			
FM 99-06 Trial Design	D I	MP MPT MEL 100 X2	CR-3%,14%,18%	OVER ALL SURVIVAL 80% 70%	DVT 6%,9%,4%
Palumbo A et al. <i>Blood.</i>	A	МРТ		EVENT FREE	
2004;104(part 1):63a	N	MP	80% VS 48%	SURVIVAL 26 MO 68% Vs 32%	DVT 19% Vs2%
Dimopoulos, et al.	0	DVD(LIPOSOMAL DOXO)	R.R-61.3 Vs 61.4		
Annais of Oncology S 14:1039-1044, 2003	S F	VAD	%		
Alexanian R et	D			Median	
1969;208:680		MP	RR- 50-53%	survival–3 years	

REGIMEN

Transplant Candidates: Most Commonly Used Induction Regimens

VAD

- Cumbersome
- Toxicity
- 55-65% RR
- 85% of effect secondary 4 to Dex

Dexamethasone

Oral

 Less toxicity than VAD or Thal/Dex

43% RR

Thal/Dex

Oral

- Increased toxicity compared to Dex
- 64-72% RR

Transplant candidates should <u>not</u> receive alkylator-based therapy

Alexanian R. *Blood*. 1992;80:887-890; Anagnostopoulos ASH 2001 Rajkumar SV. *JCO* 2002; Weber *JCO* 2003 Rajkumar, et al. *Blood* 2004: 104 (part 1):63a (abstract 205)

TABLE 54.8B Thalidor			de Regimens in Ne	wly Diagnosed	I Multiple My	reloma	
Study	Phase	N	Regimen	CR/VGPR	CR + PR	1-yr Survival	Reference
Rajkumar (Mayo)	п	50	Thal + Dex	N/R	64%	N/R	JCO 2002
Weber (MDACC)	11	28	Thal	N/R	36%	N/R	JCO 2003
		.40	Thal + Dex	16%	72%		
Cavo	11	71	Thal + Dex	17%	66%	N/R	Hematologica 200-
Rajkumar, E1A00	III	103	Thal + Dex	4% (CR)	63%	80%	JCO 2006
Rajkumar, MM003	III	470	Thal + Dex	44%	69%	80%	ASH 2006
Palumbo	111	129	MP-T	36%	76%	87%	Lancet 2006
Facon	III	124	MP-T	50%	81%	88%	ASCO 2006
Barlogie	III	323	TT2 + Thal	69%	83%	92%	NEJM 2006
Goldschmidt	111	203	TAD	7%	80%	N/R	ASH 2005
Offidani	п	50	ThaDD (Thal + PLD + Dex)	56%	84%	89%	Blood 2006
Borrello	п	27	Thal + Bort	22%	82%	N/R	ASH 2006
Wang	п	36	Thal + Bort + Dex (VTD)	19%	92%	N/R	ASH 2005

TABLE 54.9B

Lenalidomide Regimens in Newly Diagnosed Multiple Myeloma

Study	Phase	N	Regimen	CR/VGPR	CR + PR	1-yr Survival Rate	Reference
Rajkumar; Lacy	п	34	Len + Dex	56%	91%	90%	Blood 2005; ASH 2005
Nicsvizky	П	42	Len + Dex + clarithro	51%	94%	86%	ASCO 2006
Rajkumar, E4A03 Arm A	ш	223	Len + std-dose Dex	NA	NA	87%	ASCO 2007
Rajkumar, E4A03 Arm B	ш	222	Len + low-dose Dex	NA	NA	96%	ASCO 2007
Palumbo	1/II	21	Len + MP (MP-R)	48%	81%	100%	EHA 2007

TABLE 54.10B

Bortezomib Regimens in Newly Diagnosed Multiple Myeloma

Study	Phase	N	Regimen	CR/VGPR	CR + PR	1-yr Survival	Reference
Richardson	п	63	Bort	10%	40%	N/R	ASCO 2006
Jagannath	п	48	Bort \pm dex	19%	90%	80%	Br/H 2005
Harousseau	п	48	Bort + dex	31%	66%	N/R	Haem 2006
Harousseau	ш	79	Bort $+$ dex	43%	82%	N/R	ASH 2006
Rosinol	п	40	Alternating Bort/Dex	22%	64%	N/R	ASCO 2007
Borrello	п	27	Bort + Thal	22%	82%	N/R	ASH 2006
Wang	п	36	Bort/TD (VTD)	19%	92%	N/R	ASH 2005
Mateos	1/11	60	MP-V	43%	89%	87%	Blood 2006
Oakervee	Ш	21	PAD	29%	95%	N/R	Br/H 2005
Orlowski	п	29	Bort + PLD	28%	79%	N/R	ASH 2006
Jakubowiak	п	28	Bort + PLD + Dex	53%	89%	N/R	ASH 2006
Barlogie	п	303	TT3 with bort	80%	90%	92%	ASCO 2007

N/R = Not reported.

Copyright © 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins

WITH COMBINATION CT

- LOW INCIDENCE OF CR
- INCIDENCE OF SURVIVAL LESS
- HOW TO ACHIEVE
 - ? HIGH DOSE (MELPHALAN 140-200mg/m2)

Randomized Comparison of Conventional vs. High Dose therapy

For newly diagnosed myeloma

		Pat (n)	CR (%)	EFS (median, mo)	OS (median, mo)
Attal	Conv	100	5	18	37
	HDT	100	22	27	52% [†]
Barlogie	Conv*	116		22	48
	HDT	123	40	49	62
Fermand	Conv HDT\	91 94		13 39	24 64.6
Bladé	Conv	83	11	34.3	66.9
	HDT	81	30	42.5	67.4
Child	Conv	200	8.5	19.6	42.3
	HDT	201	44	31.6	54.1

*Conventional historical controls

Attal M et al. *N Engl J Med.* 1996;33 Barlogie B et al. *Blood.* 1997;89:789 Fermand J et al. *Blood.* 1998;92:3131 Lenhoff S et al. *Blood.* 2000;95:7 Bladé J *Blood.* 2001;98:815a Child JA et al. *N Engl J Med.* 2003;348:1875

Transplant versus Conventional Chemotherapy

Attal M. N Engl J Med 1996; 335:97; Child J. N Engl J Med 2003; 348:1875

Single vs Double Autologous Transplantation

		CR (%)	EFS (median, mos)	OS (median, mos)
Fermand et al	Single Double	37 42	No difference	No difference
Attal et al	Single Double	49 63	25 30 p=.3	48 58 p=.01
Bologna 96	Single Double	35 48 p=NS	21.5 31	No difference*
Hovon 24	Single Double	13 28	20 22	55 50 ns

* Overall survival was improved for pts not achieving CR or near CR with first Auto

Fermand JP et al. Blood 2001; 98: 815a Attal M, et al. NEJM 2003; 349: 2495 Fermand JP Mult Myeloma 2004, Torino Italy Cavo M. Mult Myeloma 2004, Torino Italy Sonneveld. Mult Myeloma 2004, Torino Italy Sonneveld P et al. ASH 2004, abst 948 DESPITE IMPROVEMENT IN REMISSION,NO IMPROVEMENT IN SURVIVAL. ALL PTS EVENTUALLY RELAPSE.

? CAN WE CONSIDER MAINTENANCE CHEMOTHERAPY

Maintenance with IFN after ASCT Comparable Survival in MM

In study of 899 patients, HDT (melphalan 140 mg/m² + TBI 12 Gy) vs standard dose VBMCP therapy showed no benefit for IFN maintenance

Crowley, et al. Blood. 2004;104 (part 1) [abstract 539]

Comparable Survival in MM With or Without IFN

	CR	PR	PFS	OS
ASCT	17%	93%	25 mo	62 mo
			<i>P</i> =0.05	<i>P</i> =0.8
VBMCP	15%	91%	21 mo	53 mo
+ IFN			23 mo	59 mo
— IFN			18 mo	74 mo

P=NS

52% VBMCP patients had salvage ASCT \rightarrow 59% PR (OS 30 mo) vs 23 mo w/o ASCT (P=0.05)

Crowley, et al. Blood. 2004;104 (part 1) [abstract 539]

Maintenance Prednisone

After VAD or VAD-Quinine pts were randomized to maintenance prednisone, 10 mg qod vs 50 mg qod

 Progression free survival improved at 50 mg dose
 14 mas vs. 5 mas

- 14 mos. vs. 5 mos.

Overall survival also better – 37 mos. vs. 26 mos.

Role of Maintenance Dexamethasone

- 307 pts
- Randomized trial following MP or M-Dex therapy to: Dex versus Observation
- Progression free survival better with maintenance Dex
- But no improvement in overall survival
- Further studies of maintenance therapy using novel agents needed

IFM 9920

¹Pamidronate was given at 90 mg intravenously once monthly. ²Thalidomide was given at 100 mg po qd.

Attal M, et al. Blood. 2004;104 (part 1) [abstract 535]

Maintenance With Thalidomide After ASCT for Myeloma

 Pam/Thal improved progression free, event free survival over Pam and controls

Response	Control	Pam	Pam/Thal	P Value
Median PFS, mos	27	28	> 38	.002
3-year PFS, %	34	37	56	.01
Overall survival, %	83%	78%	78%	NS

Significant benefits only if ≥90% response at randomization, and either del 13 or β₂m >3

Attal M, et al. Blood. 2004;104 (part 1) [abstract 535]

TABLE 54.8A Thalidomide Regimens in Relapsed/Refractory Multiple Myeloma								
Study	Phase	N	Regimen	Median # of Prior Tx	Median TTP (mo)	CR/VGPR	CR + PR	Ref.
Singhal	11	84	Thal	N/R	3.0 (EFS)	17%	25%	NEJM 1999
Barlogie	П	169	Thal	N/R	~5 (EFS)	20%	30%	Blood 2001
Palumbo	П	77	Thal + Dex	2	12	18%	41%	Haematol 2001
Dimopoulos	п	44	Thal + Dex	3	4.2	30%	55%	Ann Oncol 2001
Terpos	П	53	VMD-T	2	9.5	37%	60%	ASH 2006
Palumbo	$1/\Pi$	30	VMP-T	3	N/R	43%	67%	ASH 2006
TABLE	54.9A	Lena	lidomide Regimer	s in Relapsed	/Refractory	Multiple My	eloma	
			0	Median #	Median			
Study	Phase	N	Regimen	of Prior Tx	TTP (mo)	CR/VGPR	CR + PR	Reference
Richardson	1/11	24	Len	3	N/R	13%	30%	Blood 2002
Richardson	п	102	Len	>3	4.6	4%	17%	Blood 2006
Weber	ш	171	Len + dex	3	11.1	13%	59%	ASCO 2006
Dimopoulos	111	176	Len + dex	3	11.3	15%	59%	ASCO 2006
Richardson	I	36	Len + Bort	5	N/R	6%	39%	ASH 2006
Richardson	I/II	28	Len + Bort + Dex	5	N/R	6%	31%	ASH 2006
Knop	1/11	31	Len + AD (RAD)	3	N/R	5%	84%	ASH 2006
Baz	1/11	52	Len + DVD (Len + PLD + Vd)	3	12	29%	75%	Ann Oncol 2006
Morgan	п	20	RCD (Len + Cyclophos + Dex)	4	N/R	27%	65%	Br J Haemat 2007

TABLE 54.10A

Bortezomib Regimens in Relapsed/Refractory Multiple Myeloma

Study	Phase	$_N$	Regimen	Median # of Prior Tx	Median TTP (mo)	CR/VGPR	CR + PR	Reference
Richardson	п	188	Bort	>3	-7	10%	27%	NEJM 2003
Richardson	ш	333	Bort	2	6.2	4%	43%	NEJM 2005; ASH 2005
Richardson	111	132	Bort	1	7	6%	45%	ASCO 2006
Richardson	1/11	28	Len + Bort + Dex	5	N/R	6%	31%	ASH 2006
Berenson	1/11	35	Bort + Mel	3	8	6%	47%	<i>JCO</i> 2006
Harrousseau	ш	324	Bort + PLD	≥ 2	9.3	36%	48%	ASH 2006; ASCO 2007
Chanan-Khan	п	23	Bort + PLD+ Thal (VDT)	5	10.9	23%	65%	ASH 2006
Terpos	п	53	VMDT (Bort + Mel + Thal + Dex)	2	9.5	37%	60%	ASH 2006
Morgan	п	11	Bort + Cyclo + Dex	3	N/R	27%	64%	ASH 2006
Palumbo	1/11	30	Bort + MPT (VMPT)	3	N/R	43%	67%	ASH 2006
Baz	1/11	52	Len + DVD	3	12	29%	75%	Ann Oncol 2006

N/R = Not reported.

RADIATION

•TOTAL BODY IRRADIATION:-8 TO 12 Gy

•FOR CONDITIONING BEFORE TRANSPLANT

•IFM TRIAL 9502, IFM-M140-TBI, TORORNTO PROTOCOL:-INCREASED

•HEMI BODY IRRADIATION:-5 TO 8Gy

•FOR PALLIATION IN CHEMOREFRACTORY PTS.NO ROLE OF SEQUENTIAL HEMIBODY RT AS SYSTEMIC TREATMENT

•LOCAL EBRT FOR PALLIATION

•RELIEF OF SPINAL CORD COMPRESSION

•40 % MM PTS REQUIRE PALLIATIVE RT TO RELIEVE FROM BONE PAIN

•ROLE OF RT IN PREVENTING IMPENDING PATH FRACTURE IS UNCLEAR.(LESION AT HIGH RISK OF PATH # SHOULD UNDERGO SURGERY

FOLLOWED BY RT FOR RESIDUAL DISEASE.)

RADIOIMMUNOTHERAPY APPROACH

•153 SAMARIUM-ETHYLENE DIAMINE TETRAMETHYLENE PHOSPHONATE, 166 HOLMIUM-DOTMP.

•HETEROGENEITY OF UPTAKE IN SKELETON

IFM95 Mel 200 vs Mel-TBI

	Mel-TBI	Mel 200
Ν	147	147
Deaths	3.6%	0%
CR	29%	35%
CR+VGPR	43%	55%
EFS	ND	ND
OS	Worse	Better

RADIATION FOR PAIN

- LOCAL FIELD, NOT THE WHOLE BONE
- NO DIFFERENCE IF WITH CT/WITHOUT CT
- LONGER FRACTIONATED REGIMEN-BETTER PAIN CONTROL THAN SINGLE FRACTION
- EXTENT OF DISEASE BY MRI IN PLASMACYTOMA
- SPINAL PLASMACYTOMA:-2 VERTEBRA ABOVE AND 2 VERTEBRA BELOW
- NO NECESSITY TO INCLUDE REGIONAL L.N IN SOLITARY PLASMACYTOMA
- EXTRAMEDULLARY PLASMACYTOMA THE REG.L.N INVOLVEMENT INCIDENCE:-10-20%:- CONTROVERSIAL TO GIVE PROPHYLACTIC RT TO REG.L.N
- RT FIELD:-2 TO3 CM FROM GROSS TUMOR
- DOSE:- OSSEOUS AND EXTRA OSSEOUS LESION:- 40 TO 45GY
 - PAIN RELIEF:- 10-25 Gy(RESPONSE RATE:-96%)
- NO DOSE RESPONSE AFTER 10 Gy

FOLLOW UP

- MGUS:-REPEAT PROTEIN STUDIES APPROXIMATELY EVERY 6 MO FOR 2-3 YRS, ANNUALY THER AFTER.
- SMM:-EVERY 3 MOWITH SERUM PROTEIN ELECTROPHORESIS ,BLOOD COUNT AND CREATININE AND SKELETAL SURVEY AT 12 MO INTERVAL.
- EVIDENCE OF PROGRESSIVE DISEASE:-
 - INCREASE M PROTEIN
 - DECLINING HEMOGLOBIN
 - INCREASE CREATININE
 - LYTIC LESION
 - RECURRENT INFECTION

Management of Myeloma

- Supportive care (cont..)
 - Hypercalcemia
 - Hydration
 - Corticosteroids
 - Bisphosphonates
 - $-\uparrow$ serum creatinine
 - Hydration
 - Disease-directed therapy
 - Avoid NSAIDs

Management of Myeloma

- Supportive care (cont..)
 - Infections
 - Appropriate antimicrobials
 - Anemia
 - Red cell transfusions
 - Erythropoietin
 - DVT prophylaxis & treatment
 - Aspirin, LMWH, warfarin
 - Other co-morbid conditions
 - Heart, diabetes mellitus, etc

- ^hA prospective trial by Bruno, et al. NEJM 2007;356:1110-1120, found improved survival for patients receiving an autologous transplant followed by non-myeloablative allograft compared to patients who received tandem autologous grafts. The IFM trial (99-03) by Garban et al, Blood 2006; 107:3474, reported no overall survival or progression free survival with autologous transplant followed by mini allograft in high-risk myeloma patients. Allogeneic stem cell transplant may include nonmyeloablative (mini) following autologous stem cell transplant or fully myeloablative on a clinical trial (off-trial category 3). Current data do not support miniallografting alone.
- ¹Single autologous transplantation: Category 1 evidence supports proceeding straight after induction therapy to high dose therapy and stem cell transplant versus saving the stem cell transplant for salvage therapy. Evidence suggests equivalent overall survival although progression free survival can be prolonged by an early transplant. Fermand JP, Katsahian S, Divine M, et al. High dose therapy and autologous blood stem cell transplantation compared with conventional treatment in myeloma patients aged 55 to 65 years: Long term results of a randomized control trial from the Group Myelome-Autogreffe. J Clin Oncol 2005;23:9227-9233.
- Barlogie B, Kyle RA, Anderson KC, et al. Comparable survival of patients with multiple myeloma treated with autotransplant-supported melphalan TBI or standard VBMCP consolidation and no role of interferon maintenance; final results of US Intergroup Trial S9321. J Clin Oncol 2006;929-936.
- Renal dysfunction and advanced age are not contraindications to transplant.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

			Guidelines Index							
NCCN [*] Praction in One	ce Guidelines cology – v.2.2010	Multiple Myeloma	Discussion, References							
ADDITIONAL TREATMENT										
Post-allogeneic stem cell trans	splant:									
Progressive disease e —			Salvage therapy ^f on or off clinical trial							
Response ^e or Of stable disease th	bserve or maintenance erapy ^f	→ Progressive disease ^e →	or Donor lymphocyte infusion							
Post-autologous stem cell tran	nsplant:	Salvage therapy ^f on or off clinical trial or								
Renderery disease			Allogeneic stem cell transplant on clinical trial ^k (category 3 for conventional vs clinical trial)							
Stable disease ^e → Ot or Se or Ma	bserve econd tandem transplan aintenance therapy ^f	t — → Progressive disease ^e →	Salvage therapy ^f on or off clinical trial or Allogeneic stem cell transplant on clinical trial ^k or Additional autologous stem cell transplant on clinical trial (category 2B)							
 <u>See Response Criteria of Multiple Myeloma (MYEL-C)</u>. ^f<u>See Myeloma Therapy (MYEL-D)</u>. ^kAllogeneic stem cell transplant may include non myeloablative (mini) following autologous stem cell transplant or fully myeloablative on a clinical trial (off-trial category 3). Current data do not support miniallografting alone. 										
Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.										
Version 2:2010, 07/01/09 © 2009 National Comprehensive Cancer Network, Inc. All rights reserved. These guidelines and this illustration may not be reproduced in any form without the express written permission of NCCN.										

Guidelines Index Practice Guidelines Multiple Myeloma TOC NCCN Multiple Myeloma in Oncology - v.2.2010 Discussion, References ADDITIONAL TREATMENT Salvage therapy^f on or off clinical trial or Autologous stem Transplant Progressive Allogeneic stem cell transplant on clinical trial^k cell transplant Post-induction therapy: candidateⁱ disease or (category 1) Additional autologous stem cell transplant on clinical trial (category 2B) Relapse disease^e or progressive disease Non-transplant Palliative care Salvage therapy^f on or off clinical trialcandidate See NCCN Palliative Care Guidelines) Autologous stem cell transplant on or off clinical trial or Active (symptomatic) Salvage therapy f on or off clinical trial mveloma: Progressive disease^e or

See Response Criteria for Multiple Myeloma (MYEL-C).

See Myeloma Therapy (MYEL-D).

^kAllogeneic stem cell transplant may include nonmyeloablative (mini) following autologous stem cell transplant or fully myeloablative on a clinical trial (off-trial category 3). Current data do not support miniallografting alone.

^ISingle autologous transplantation: Category 1 evidence supports proceeding straight after induction therapy to high dose therapy and stem cell transplant versus saving the stem cell transplant for salvage therapy. Evidence suggests equivalent overall survival although progression free survival can be prolonged by an early transplant. Fermand JP, Katsahian S, Divine M, et al. High dose therapy and autologous blood stem cell transplantation compared with conventional treatment in myeloma patients aged 55 to 65 years: Long term results of a randomized control trial from the Group Myelome-Autogreffe. J Clin Oncol 2005;23:9227-9233.

Barlogie B, Kyle RA, Anderson KC, et al. Comparable survival of patients with multiple myeloma treated with autotransplant-supported melphalan - TBI or standard VBMCP consolidation and no role of interferon maintenance: final results of US Intergroup Trial S9321. J Clin On col 2006;929-936.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

Allogeneic stem cell transplant on a clinical trialk

Multiple Myeloma

MYELOMA THERAPY 1,2,3,4

- Exposure to myelotoxic agents (including alkylating agents and nitrosoureas) should be limited to avoid compromising stem-cell reserve prior to stem-cell harvest in patients who may be candidates for transplant.
- Primary induction therapy for transplant candidates:
- Bortezomib/dexamethasone (category 1)
- Bortezomib/doxorubicin/dexamethasone (category 1)
- Bortezomib/lenalidomide⁵/dexamethasone (category 2B)
- Bortezomib/thalidomide/dexamethasone (category 1)
- Dexamethasone (category 2B)
- Liposomal doxorubicin/vincristine/dexamethasone (DVD) (category 2B)
- Lenalidomide⁵/dexamethasone (category 1)
- Thalidomide/dexamethasone (category 2B)
- Primary induction therapy for non-transplant candidates:
- Dexamethasone (category 2B)
- Lenalidomide/low-dose dexamethasone (category 1)
- Liposomal doxorubicin/vincristine/dexamethasone (DVD) (category 2B)
- Melphalan/prednisone (MP)
- Melphalan/prednisone/bortezomib (MPB) (category 1)
- Melphalan/prednisone/thalidomide (MPT) (category 1)
- Thalidomide/dexamethasone (category 2B)
- Vincristine/doxorubicin/dexamethasone (VAD) (category 2B)

- Maintenance therapy:
 - Interferon (category 2B)
- Steroids (category 2B)
- Thalidomide (category 1) ± prednisone (category 2B)
- Salvage:
- Bendamustine (category 2B)
- ➤ Bortezomib⁶ (category 1)
- Bortezomib/dexamethasone
- Bortezomib/lenalidomide/dexamethasone (category 2B)
- Bortezomib/liposomal doxorubicin⁶ (category 1)
- ➤ Cyclophosphamide-VAD
- Dexamethasone
- Dexamethasone, cyclophosphamide, etoposide, and cisplatin (DCEP)
- Dexamethasone, thalidomide, cisplatin, doxorubicin, cyclophosphamide, and etoposide (DT-PACE)
- High-dose cyclophosphamide
- Lenalidomide/dexamethasone (category 1)
- Lenalidomide
- ► Repeat primary induction therapy (if relapse at > 6 mo)
- Thalidomide
- ➤ Thalidomide/dexamethasone

¹Selected, but not inclusive of all regimens.

- ²Treatments are listed alphabetically and do not imply preference.
- ³Consider herpes zoster prophylaxis for patients treated with bortezomib.

⁴Prophylactic anticoagulation recommended for patients receiving thalidomide-based therapy or lenalidomide with dexmethasone.

⁶Consider harvesting peripheral blood stem cells prior to prolonged exposure to lenalidomide.

⁶Bortezomib/liposomal doxorubicin is preferred to bortezomib single agent.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged. Return to Primary Treatment (MYEL-2)

Varsion 2:2010,07/01/09 © 2009 National Comprehensive Cancer Network, Inc. All rights reserved. These guidelines and this illustration may not be reproduced in any form without the express written parmission of NCCN.

Challenges in Management

- Currently incurable in most patients
- DESPITE HIGH RESPONSE RATE, ALL PTS EVENTUALLY RELAPSE.
- IMOROVE SURVIVAL WITH SCT TRIAL WITH HIGH DOSE THERAPY
- Chemotherapy response rates = 50% to 70%
 - Long-term complete responses = rare
 - Median survival with standard therapy = 3 years
- Stem cell transplant prolongs survival, but not curative
- Treatment of relapse
 - No standard therapy
 - Existing options inadequate
- New treatment options needed

06/05/2010