

CNS Tumours

- Brain tumours are relatively rare but affects all AGES
- 482 patients/day worldwide, Leading cause of childhood cancer deaths
- 2nd leading cause of cancer death in males and 5th in females aged 20-39
- Varied clinical spectrum; no 2 tumours similar
- A lot of challenges in children and adults
- Fascination for brain for scientists, thinkers

Management

Local control and survival quality of life

Management exemplifies a multidisciplinary approach

- Neurosurgeon
- Radiation Oncologist
- Medical and Paediatric Oncologist
- Neuro radiologist
- Neuropathologist
- Neurologist
- Physio and occupational therapist
- Speech therapist
- Neuropsychologist
- Rehabilitative services

Childhood brain tumours

Second commonest cancer in children High chance of cures (>70%) Challenges in rehabilitation, social functioning and quality of life

Comparison with published Western data

* SEER Cancer Registry and CBTRUS Cancer Registry

	Median age	of presentation
	TMH data	Western data*
Medulloblastoma	10 yrs	9 yrs
Ependymoma	18.5 yrs	19 yrs
Brain stem glioma	11.5 yrs	11 yrs
Supratentorial PNET	15 yrs	9 yrs
Pineal tumour	18.5 yrs	18 yrs
Craniopharyngioma	20 yrs	28 yrs
Pilocytic Astrocytoma	16 yrs	23 yrs
Arteriovenous malformations	21 yrs	33 yrs

Jalali and Datta J NeuroOncol 2008; ;87(1):111-114

Low grade gliomas

- Wide Range of tumours (three groups)
- Pilocytic asytocytomas (children)
- DNET, PXA, SEGA, gangliogliomas (young adults)
- astrocytoma, oligodendroglioma (WHO Grade II), Mixed oligoastrocytoma (adults)

Long term survival

Benign/low-grade with indolent behaviour Surgery treatment of choice completely excised/small residual observe excellent cure rates

Optic – Hypothalamic Gliomas

Common tumours; JPA; cure more than 90%

 frequently only a biopsy
 RT (45-54Gy/30 fraction) for older children/ progressive disease results in excellent long term outcome

All efforts to contour all tumour and treat with conformal RT

Chemotherapy for Pilocytic astrocytoma

 Chemotherapy (baby brain protocol, Carboplatin + VCR) for very young children to avoid/defer RT

Packer JCO 1993;11:850-7

- Objective response rate (CR+PR): 42%
- 5Yr PFS: 34%; OS: 89%
- 5Yr RT free survival rate: 61% (French prospective study)
- RT –large residual, and/or progressive tumours

3D Conformal therapy phase II data

- 102 children (64 EP, 38 LGA)
- PTV= GTV + 1.0 cm CTV + 0.5 cms
- Localised fields with conformal RT to 54 59 Gy
- median follow up of 17 months (3 43)
- 92 patients controlled (92%)
- 6 pts with EP failed (5 local, 1 disseminated)
- 4 pts with LGA failed (3 within CTV)
- Encouraging prelim results with narrow margins

Merchant IJROBP 2002;52:325-32

JCO 2009

cology 74 (2005) 37–44 www.elsevier.com/locate/radonline	apy employing conservative margins low-grade brain tumours	. ^a , Rajiv Sarin ^a , Dayananda S. Sharma ^b ata Memorial Hospital, Parel, Mumbai, India Memorial Hospital, Parel, Mumbai, India	Particular
ELSEVIER Radiotherapy and On	High precision conformal radiothers in childhood benign and	Rakesh Jalali ^{a,*} , Ashwini Budrukkar ^{aDepartment of Radiation Oncology, 113 T} ^{bDepartment of Medical Physics, Tata 1}	

High-grade hemispheric gliomas

- Relatively rare
- Somewhat better outcome than adults but long-term cure still rare
- Overexp of p53 strong prognostic factor (NEJM 2002)
- Surgery, conv RT std of care as in adults
- Role of chemo not fully evolved

Paediatric glioblastomas: A histopathological and molecular genetic study

V Suri, P Das, A Jain, MC Sharma, S Borkar, A Suri, D Gupta and Chitra Sarkar Departments of Pathology and Neurosurgery, AlIIMS, New Delhi, India

- 30 patients
- p53 in 63%
- EGFR protein overexpression in 23%
- EGFR gene amplification only in 5%
- PTEN deletion in 5%
- Different than in adults

NeuroOncology 2009; 11 (3): 274-80

Craniopharyngiomas

- Common age of presentation <20 yrs</p>
- 5-15% of primary tumours in children

Two histopathological types:
1) Aadamantinomatous type
2) Papillary type - in adults
May be unpredictable in behaviour

Emotive subject

Review of 144 published data; Adamson & Yasargil 2008

Recurrence rate after only partial excision

Author	yr	n	Recurrence	FU (years)
Carbezudo	1981	14	12	5-30
Carmel	1982	14	10	6.1
Djordjevic	1879	15	8	-
Hoff	1972	18	16	10
Hoffman	1977	15	8	2-16
Lichter	1977	9	7	1-20
McMurrary	1977	9	7	1-14
Shapiro	1979	9	7	7.8
Stahnke	1984	12	6	6.9
Sweet	1976	5	4	1-21
Thomsett	1980	11	10	8.2
Total		131	93 (71%)	

Issues with Surgery

- z Morbidity & Mortality:
 - Hypothalamic morbidity -as high as 50%
 - Operative mortality 2.5 to 10%
 - Late mortality 11 to 28%
- z Post-operative neuro-endocrine dysfunction 97%
- z More in *ultra* radical surgery and repeated surgeries
- z Radiotherapy as an option
- z Primarily for local control

Conservative surgery + RT

- z Recurrence rates :16 -25%
- z Favourable long-term morbidity or mortality
- Z Avoids repeat surgery (Hypothalamic injury)

Treatment Group	Recurrence Rate
Partial excision alone	60%
Partial excision + RT	10-33%

No randomized study comparing the two groups

Dose and Volumes

• Dose schedule: 50-54 Gy @ 1.8-2 Gy/fr

Targets

GTV: Both cystic & solid components of any residual/recurrent disease; Entire surgical bed, disease left at the stalk CTV = GTV + 0-5 mm margin

PTV depending of technique

- For 3D-CRT / IMRT (mask) 5 mm margin
- For SCRT 2mm margin
- Image guided / frameless 2 mm

SCRT: Heidelberg experience (n=40)

- Median dose: 52.2Gy @ 1.8Gy/#
- Median FU : 98 months
- Median PFS at 5 & 10 yrs 97% & 89%
- OS at 5 & 10 yrs : 100%
- No pts had visual deterioration after RT

SCRT provides acceptable local control & toxicity

Challenges in long-term survivors

Approx 70% of the children with any type of brain tumour are **CURED**

cognitive dysfunction	38%
motor deficit	25%
visual impairment	20%
hormonal dysfunction	20%
psychological-emotional problems	14%

second malignancies cereberovascular events

Modern RT to minimise toxicity

Conformal RT
SRS SRT/SCRT
IMRS/IMRT
Cyberknife
Tomotherapy
Proton beam

No IQ decline with conformal RT even in patients less than 3 years of age

Merchant JCO 2004;22:3156-62

Stereotactic Conformal Radiotherapy (SCRT)

Tight conformation

High Quality Assurance

Precise treatment delivery

Dose distribution

Plenty of planning/dosimetric studies

Perks, Jalali et al IJROBP 1999

Efficacy of High-precision techniques SRT

'Must have appropriate endpoints'

Most of the toxicity data (esp cognitive) is for whole brain RT in medulloblastoma, acute leukaemias, brain metastasis where high precision RT rarely used
Partial brain RT – little data, mostly retrospective and

cross sectional

• Most data for SRT etc is dosimetric or phase II with little mention about late morbidity

- Need for prospective longitudinal CLINICAL data
- Ideally, randomised to generate level 1 evidence

Detailed evaluations

Neuro-cognitive Assessment

Neuropsychological function

Physical activity functions

Quality of life

Overall Survival, PFS & DFS

Neurological, endocrine, radiological and opthalomological assessments

Children (5-16 years):

Verbal Quotient: General comprehension Arithmetic Simulation Vocabulary Digital span

Performance Quotient: Picture completion Picture arrangement Block design Object assembly Coding Maze

Full Scale IQ

Blind:

Vithoba Paknikar IQ tests for the blind

Adults (17-25 years):

Performance Quotient: Picture completion Picture arrangement Block design Object assembly Coding Maze

Global IQ

Memory Quotient: Personal/Current Information Orientation Mental Control Visual reproduction Associate learning

Neurocognition

- Pathophysiology very complex
- Mesial temporal lobes, uncus, hippocampus etc
- RT induced vascular changes

Significantly poor IQ even before starting RT

Common myth, power of prospective evaluations 60.4% patients had values below normal

	Full Scale IQ	No of Patients (%)
Defective	<69	9 (17%)
Borderline	70-79	10 (19%)
Dull Normal	80-89	13 (23.5%)
Average	90-109	18 (34%)
Bright Normal	110-119	3 (5.7%)
Superior	120-129	0 (0%)
Very Superior	>130	0 (0%)

Jalali Int J Radiat Oncol Biol Phys 2006;66:S14-19

Comparison with non CNS tumours

Mean score

Jalali, et al NeuroOncology 2007

Jalali SNO 2007

Clinical proof of efficacy of modern RT No drop in Intelligence quotient (IQ)

		IQ patterns after SCRT					
	Baseline	6 mo	2 yr	3 yr	4 yr	5 yr	
Verbal/ Memory IQ	83	88	80	86	84	84	
Performance IQ	84	89	88	94	103	110	
Global/Full- scale IQ	80	<mark>84</mark>	<mark>82</mark>	88	<mark>89</mark>	<mark>95</mark>	

Normal value: 90-109

	ARTICLE IN PRESS
	Int. J. Radiation Oncology Biol. Phys., Vol. ■, No. ■, pp. 1–6, 2 Copyright © 2009 Elsevier Printed in the USA. All rights rese 0360-3016/09/\$-see front m
ELSEVIER	doi:10.1016/j.ijrobp.2009.06.025
CLINICAL INVESTIGATIO	
FACTORS INFLUI WITH BENIGN ANI	ENCING NEUROCOGNITIVE OUTCOMES IN YOUNG PATIENTS D LOW-GRADE BRAIN TUMORS TREATED WITH STEREOTACTIC CONFORMAL RADIOTHERAPY
Rakesh Jala Savita Go I	ali, M.D.,* Indranil Mallick, M.D.,* Debnarayan Dutta, M.D.,* swami, M.Sc., [†] Tepal Gupta, M.D.,* Anusheel Munshi, M.D.,* Deepak Deshpande, Ph.D., [‡] and Rajiv Sarin, F.R.C.R.*
Departments of *Radiati	on Oncology, † Clinical Psychology, and ‡ Medical Physics, Tata Memorial Centre, Mumbai, India
<u>Purpose:</u> To present th <u>outcomes</u> in young pat	ne effect of radiotherapy doses to different volumes of normal structures on neurocognitive tients with benign and low-grade brain tumors treated prospectively with stereotactic con-

Logistic regression using age and left temporal lobe doses Prescription dose: 54 Gy/30#/6 weeks			
	Odds ratio	P-value	
Age <15 yrs	13.58	0.041	
> 80% dose (43.2 Gy) to >13% volume	7.57	0.048	
> 50% dose (27 Gy) to 24% volume	_	0.06	

Which area of the brain important? Possible ? dose constraint

Left temporal lobe

>13% volume receiving > 80% dose (43 Gy)

>24% volume receiving > 50% dose (27 Gy)

Right temporal lobe

No significant correlation between dose and drop in IQ

Normal brain

No correlation

? Hippocampus

Hypopituitarism in childhood brain tumours Pre-RT function=63

Replacement therapy at follow up

	No deficit	Additional Hormone axis deficit			
		Baseline	6 mo	2 yr	3 yr
GH Axis	24 (38%)	29 (45%)	9 (14%)	0	1 (1.5%)
Cortisol Axis	30 (47.5%)	27 (42.8%)	3 (5%)	2 (3%)	1 (1.5%)
Thyroid Axis	44 (79%)	14 (22%)	2 (3%)	2 (3%)	1 (1.5%)
Sex Hormone Axis	59 (94%)	2 (3%)	1 (1.5%)	1	0
Prolactin Axis	61 (97%)	1 (1.5%)	0	1 (1.5%)	0

At 2 and 3 years following Conformal RT, 17 – 24 % developed additional hormonal impairment

Acknowledgements

- Clinical Psychologist
- Radiation Oncology
- NeuroOncology
- Medical Physics
- Neurosurgery
- Brain Tumour FoundationTerry Fox Foundation

http://tmc.gov.in

www.braintumourindia.com

INDIA Interesting paradox

4 of world's 8 richest are Indians

THE YOR YOR YOU WANTER

have a	GI	obal Cemmo nwealt	h
1	1	Warret Buffett (US)	\$620
36	2	Carlos Slim Helu (Mexico)	\$600
6-11	3	Bill Gates (US)	\$580
	4	Lakshimi Mitta I (India)	\$450
Ani Mital	5	Mokesh Ambani (india)	\$430
and a	6	Anil Ambani (Inda)	\$420
-1	7	Ingvar Kamprad (Seeler)	\$310
21	8	K P Singh (ndia)	\$300
21	9	Oleg Deripeska (kusia)	\$280
sh Amberi	10	Karl Albrecht (Cermany)	\$27b

Some of the poorest and some of the richest live here

- Majority still cannot afford
- Rehabilitative and support poor
- Social responsibility, ethical dilemmas

If you have brain tumour or have a loved one suffering from it, you'll find a lot of information here.

Brain Tumour Foundation of India

We shall overcome

L his is the doctor's meeting place. If you're a doctor looking for information on brain tumour, please enter here.

BRAIN TUMOUR FOUNDATION

www.braintumourindia.com

he Brain Tumour Foundation of India is a non-profit organisation committed to minimise the physical, emotional and financial suffering associated with the diagnosis, treatment and rehabilitation of patients with brain and spine tumours, and their families Support Team

The BTF, we can always do with some help. If you have anything to offer these victims of brain tumour, check this link out.

Brain Tumour Foundation of India

74, Ground Floor, Main Building, Tata Memorial Hospital, Parel, Mumbai - 400 012, INDIA Tel: 91-22-2417 7153 / 2417 7159 . Fax: 022-2417 7159 / 2414 6937 Pager: dial 9602 and ask for 135135 or 122122

Email: btf@braintumourindia.com

BTF Annual Art Festivals

Oncology

(Aug and Oct Issues 2008) FRONT COVER

Care and rehabilitation

(physical, psychological, financial and social)

