OVERVIEW OF RADIOTHERAPY IN BREAST CONSERVATION

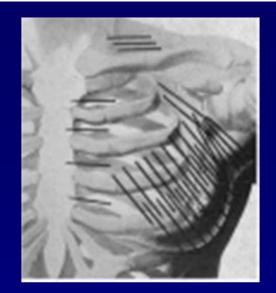
Prof G K Rath Professor and Head of Radiotherapy &

Chief, Dr. BRA IRCH,

All India Institute of Medical Sciences, New Delhi

RT in Breast Cancer

Combined Modality is the mainstay of treatment


 The adjuvant treatment after surgery should address
 -Local recurrence (RT)
 -Systemic disease (chemo, hormone)

Breast Conservation Therapy

Removal of only the tumor with a safe margin with axillary lymphadenectomy instead of mastectomy followed by radiotherapy to the breast

BCT History

THE PLACE OF RADIUM IN THE TREATMENT OF CANCER OF THE BREAST

- 325 patients with local removal of the breast tumor and radium implantation at the site of local incision as well as in the axilla.
- In 250 patients, the 5-year survival rate 71.4% for group 1 (disease confined to the breast), 29.3% for group 2 (confined to breast and axilla), 23.6% for group 3 (advanced or inoperable).
- Results comparable with radical mastectomy.

Keynes G. Ann Surg. 1937 Oct;106(4):619-30

Prospective Randomized Trials Comparing Conservative Surgery and Radiation with Mastectomy for Early-Stage Breast Cancer

	Institut Gustave-Roussy	Milan	NSABP B-06	NCI	EORTC	Danish		
No. of patients	179	701	1,219	237	874	904		
Stage	1	1	1 and 2	1 and 2	1 and 2	1, 2, 3		
Surgery	2-cm gross margin	Quadrantecto my	Lumpectomy	Gross excisio n	1-cm gross margin	Wide excisi on		
Follow-up (y)	15	20	20	18	10	6		
Overall surviva	1	1				1		
CS+RT (%)	73	42	46	59	65	79		
Mastectomy (%)	65	41	47	58	66	82		
Local recurrence								
CS+RT (%)	9	9	14	22	20	3		
Mastectomy (%)	14	2	10	6	12	4		
BCS followed by RT equivalent to mastectomy for appropriately selected patients with EBC								

Early Stage Breast Cancer

NIH Consensus Development Conference Statement (1990)

"Breast conservation treatment is an appropriate method of primary therapy for the majority of women with Stage I and II breast cancer and is preferable because it provides survival equivalent to total mastectomy and axillary dissection while preserving the breast"

"The recommended technique for breast conservation includes:

- Iocal excision of primary tumor with clear margins
- Level I-II axillary node dissection
- breast irradiation to 4,500-5,000 cGy with or without a boost"

Rationale of BCT

- Breast cancer is a systemic disease with hematogenous spread early in the disease process
- Surgery and Radiation as a combined modality
 - Surgery alone- More failure at margins
 - Radiotherapy alone- More failure at the epicenter
- Using surgery to remove grossly visible tumor with a small margin and moderate-dose radiotherapy to treat the larger volume of tissue that may harbor residual disease

Criteria for BCT

Indications

- Motivated Pts
- R T facilities
- Mammography
- Tumor < 5 cms</p>
- Node N0/N1
- Good tumor breast ratio

Contraindications: ABSOLUTE

- High probability of recurrence
 - Multicentric disease
 - Positive surgical margins
- High probability of complications from irradiation
 - CVD
 - Prior irradiation
 - Early pregnancy

Contraindications to BCT

RELATIVE:

High probability of subsequent breast cancers

Poor cosmetic results

- Unfavorable tumor-breast ratio
- Oncologically necessary removal of nipple-areola complex
- Large medial lesions
- Personal preference of the patient

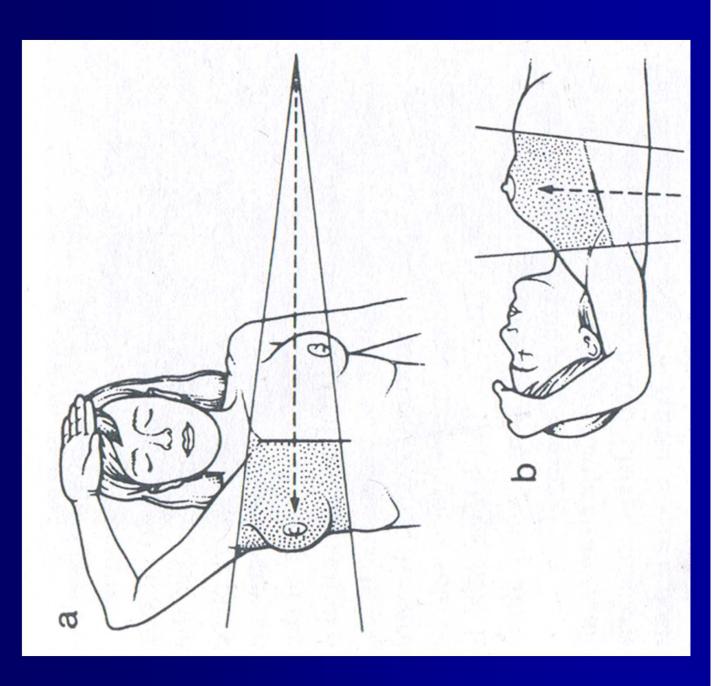
BCT: Technical aspects

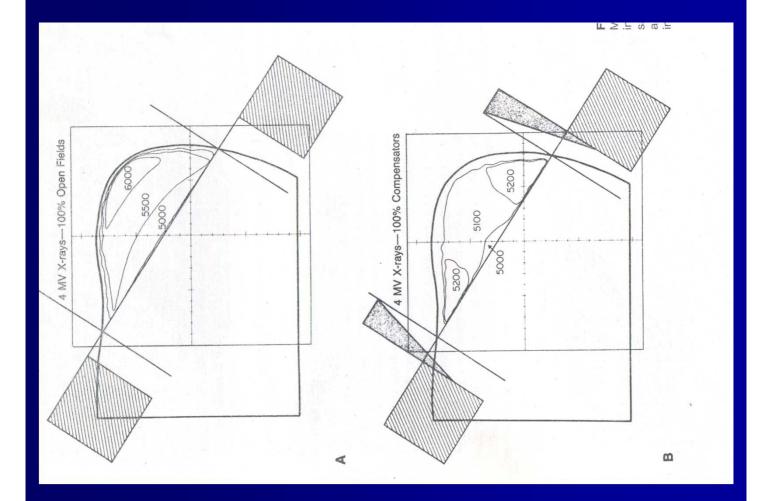
- Pre-op evaluation of tumor by Radiation Oncologist
- Minimum margin 1 cm all around
- Separate incisions preferred for primary and axilla
- Pectoralis minor may be divided or preserved
- Surgical clips are left if brachytherapy not planned

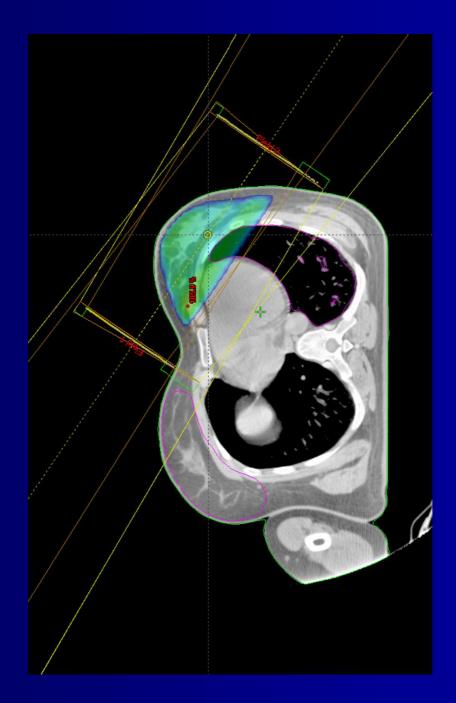
Standard approach in BCT

- BCS
 - WLE + ALND
- Whole breast RT
 - 45-50 Gy/25#/5 weeks
 - Tangential fields medial and lateral (Co-60 or 6 MV photons)
 - Newer techniques- IMRT, proton beam etc
- Regional RT- only when indicated by post-op HPR
- Boost to tumor bed
 - 10-16 Gy
 - Photon/ Electron/ Brachytherapy

Factors affecting cosmesis after BCS


Removal of large volume of breast tissue
Removal of Nipple-areola complex
Location of tumor (Medial vs lateral)
Post radiation fibrosis


Risk Factors for Local Relapse


- Young age increase risk
- Positive margins increase risk
- Systemic therapy lowers risk
- Higher RT doses lowers risk
- Extensive intra-ductal component increase risk
- LCIS increase risk
- Lobular histology higher risk
- BRCA1-2 higher relapse
- Larger tumors higher local relapses
- Node-positive higher local relapse
- ER/PR negative- higher local relapse
- Her 2+ tumors

RT in BCT

 Volume of irradiation Whole breast ----→ boost to the tumor site Axilla and SCF if necessary
 45-50 Gy to whole breast by Ext RT
 10-16 Gy boost by electron/photon/brachy

Limitations with conventional radiotherapy

Dose inhomogenity

- Due to continuous change of contour of breast.
- 15-20 % dose inhomogenity may result in superior and inferior plane of breast.
- Medial and lateral aspect of breast may get higher dose of radiation.
- Radiation accompaniments (lung, heart) aim of newer techniques is to further minimize the accompaniments.

RATIONALE FOR NEWER TECHNIQUES

- Improving dose homogenity within the tumor
- Avoidance of radiation to normal structures
- Reduction of treatment related toxicites.
- Reduction of treatment time.
- Improvement in local control and survival.

NEWER EB-RADIOTHERAPY TECHNIQUES IN EBC

3D CRT
IMRT
CT scan based planning
Use of Tissue Compensators
Gated Radiotherapy
Partial Breast Irradiation

IMRT

- IMRT is an approach to conformal therapy that not only conforms high dose to tumor tissue but also conforms low dose to surrounding normal tissue.
- Dose intensity is varied in the tumor volume A higher dose can be delivered to tumor tissue Minimal dose is delivered to surrounding normal tissues.

Higher tumor control probability Minimal side effects of radiotherapy

GATED RADIOTHERAPY

Tumor motion taken into account while radiation treatment is being delivered.

Techniques of Gating

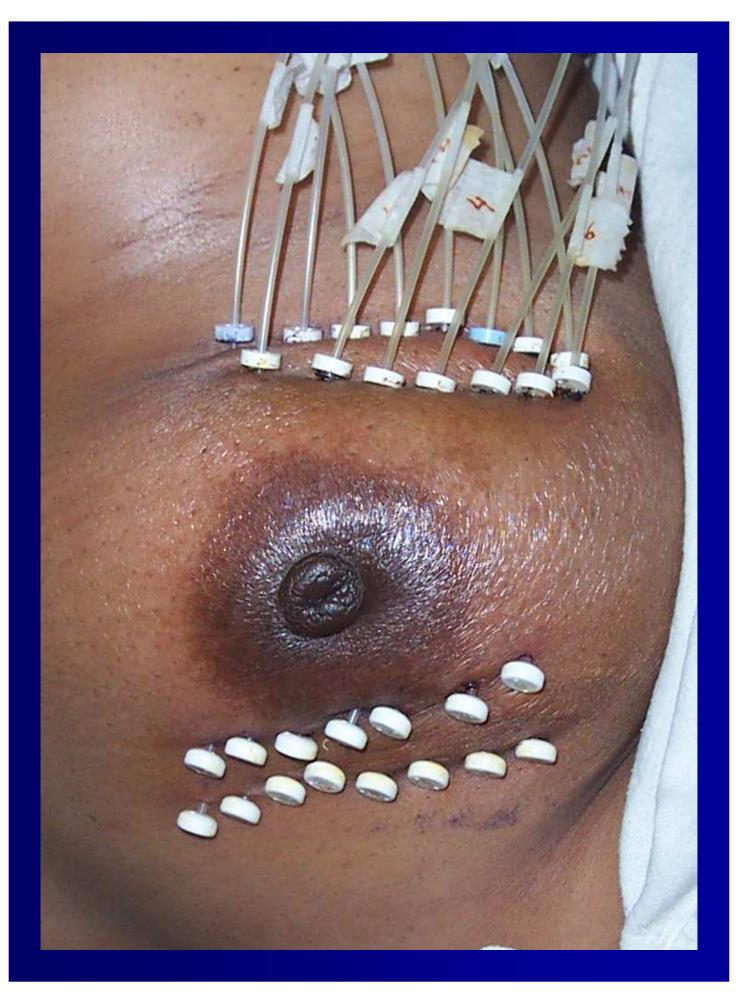
A. Breath hold technique

- Active- airway of patient is temporarily blocked by a valve
- Passive- the patient temporarily holds the breath

B. Synchronized Gating external devices are used to predict the phase of respiratory cycle while patient breathes freely

USE OF TISSUE COMPENSATORS

- Compensator- is a device which compensates for missing tissues.
- Use of tissue compensators improve dosimetry and reduce complications.
- Various types of tissue compensators are used
 - Tissue equivalent materials
 - MLC

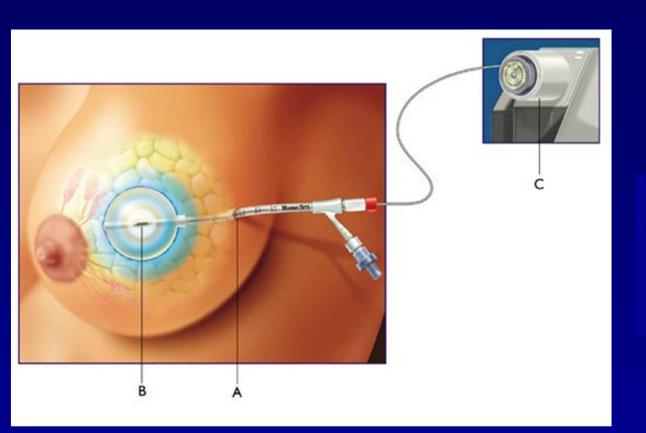

Boost in BCT

METHODS

- Electron beam
- Photon beam- 3DCRT/IMRT
- Interstitial Brachytherapy
- IORT
- Mammosite

INTERSTITIAL BRACHYTHERAPY

- Main advantage lies in ability to tightly conform dose to a specified volume.
- Used as a boost following BCT along with EBRT
- Clinical situations where brachytherapy may be more useful than EBRT include – Large breasts
 Deep seated tumors
 Extensive intra-ductal comp
 Uncertain margins.
- Shorter treatment times


INTRAOPERATIVE RADIOTHERAPY (IORT)

- IORT is a radiotherapeutic technique which delivers a single dose of radiation to tumor bed or to exposed tumor during surgery.
- It is used mainly as a boost to be followed by EBRT.
- Rationale : 85 % of relapses in BCT after RT occur in the operated area.

Techniques: IOHDR IOERT

MAMMOSITE

- Can be used for primary radiation or as a boost
- HDR with Iridium –192 source is used.
- Places the radiation source inside the lumpectomy cavity.
- Cosmetic results are good to excellent in 88% of cases.

- Dose prescribed at 1cm from applicator surface
- Treatment usually completed in 5 days
- A minimum skin to balloon surface distance of 5mm required
- The principal dose limiting factor is the dose to overlying skin

- Accompaniments :
 - Due to device placement-Mild erythema, pain, drain leakage, ecchymosis.
 - Due to radiation therapyerythema, dry desquamation
- Factors limiting use of mammosite Balloon- cavity conformance Skin – balloon cavity surface distance

Better Local Control with RT Boost

Dose fractionations used in various prospective randomized studies of boost versus no boost.

Trial	Number of patients	EBRT (dose/fraction)	Boost (dose/fraction)	LR (%)	Median Follow-up (year)
Bartelink et al. 11	2657	-50Gy/25 fr	-	10.2	10
	2661	50 Gy/25 fr	16 Gy/8 fr	6.2	
Romestaing et al. 24	503	47-50 Gy/20 fr	-10 Gy/4 fr	4.5	3.3
	521	50 Gy/20 fr		3.6	
Teissier et al. 25	327	48-50 Gy/25 fr	-	6.8	6.1
	337	50 Gy/25 fr	10 Gy/5 fr	4.3	
Polgar et al. 26, 27	103	49-50 Gy/25 fr	-	15.5	5.3
	104	50 Gy/25 fr	12-16Gy/3-8 fr	6.7	
Graham et al. 28*	674	50 Gy/25 fr	-	NR	NR
	674	45 Gy/25 fr	-	NR	
Nagykalnai et al. 29	55	50 Gy/25 fr	-	10.7	3.8
	56	50 Gy/25 fr	10 Gy HDR/20 Gy LDR	5.4	

Acta Oncologica 2007; 46:879 - 892

Delineation of Tumor Bed for Boost

Clinical-

history and patients' recollection of tumor position, clinical photographs, tattoos, surgical scar

- Mammography
- Surgical clips
- Ultrasonography
- Computerized tomography (CT) scan
- Magnetic resonance imaging (MRI)
- Peroperative placement of catheters

Selected Randomized Trials of Breast-conserving Surgery with or without Radiation

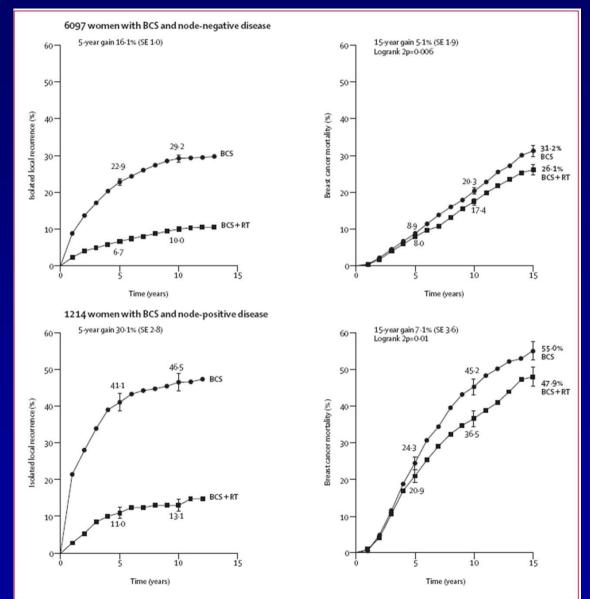
					LR	
C4 J	TN	No. of	Follow-	With DT (0/)	Without	<u>p</u> Volue
Study	T , N	Patients	Up (yrs)	RT(%)	RT (%)	Value
Fisher et al.	<4 cm node positive/negative	930	10	12.4	40.9	<.001
Liljegren et al.	<2 cm node negative	381	10	8.5	24.0	.0001
Veronesi et al.	<2.5 cm	579	10	5.8	23.5	<.001
Clark et al.	<2 cm node negative	837	3	5.5	25.7	<.001
Fisher et al.	<2 cm node negative	1,009	8	2.8	16.5	<.001
Winzer et al.	<2 cm node negative	347	5.9	3.2	27.8	<.001

Meta-analysis of local control EBCTCG

Isolated local recurrence (events/woman-years)

isolated local reconcile (, ,	Events/wo	man-years	BCS+R	T events	
Year started and study name	RT sites	Allocated BCS+RT	Allocated BCS	Logrank 0-E	Variance of O-E	Ratio of annual event rates BCS + RT : BCS
(a) Radiotherapy only to conse	rved breast: 14% no	de positive				
1976 NSABP B-06	BM.	125/6862	285/4991	-93-3	848	
1981 Uppsala-Örebro	BM	10/1636	43/1511	-17.7	12.7	
1982 St George's London	BM.	12/1202	31/1047	-11.5	9.6	I
1984 Ontario COG	BM + S	53/3543	155/2754	-58.2	48.2	- i -
1987 INT Milan 3	BM + S*	19/2478	60/2005	-25.1	18.2	
1989 NSABP B-21	BM + S*	6/1810	40/1729	-17.3	11.2	
1991 Swedish BCCG	BW	33/3718	92/3429	-30.8	30.5	- <u>+</u>
(a) Subtotal		258/ 21249	706/ 17466	-254-0	215-3	© 31 (SE 0-04), 2p<0-00001
5-year risk		7.2%	25.6%			
(b) Radiotherapy to conserved	breast and other site	es: 24% node	positive			
1982 St George's London	BW +AF*	14/620	30/380	-10.9	9.7	
1985 Scottish	BW +S+(AF)+IMC	16/2598	83/2260	-33-0	22.5	
1985 West Midlands, UK	BW +S+AF+IMC	42/2398	104/1929	-36.8	34-2	_ _
1986 CRC, UK	Various	33/1604	77/1454	-24.3	25.7	
(b) Subtotal		105/ 7220	294/ 6023	-105-0	92-1	0-32 (SE 0-06), 2p<0-00001
5-year risk		7.7%	26.7%			
Total (a+b)		363/ 28469	1000/ 23489	- 359-0	307-4	• 0.31 (SE 0.03), 2p<0.00001
5-year risk		7.3%	25.9%			
Heterogeneity between 1	L strata: χ ² ₁₀ =7·8; p=0	-6			۲ ۵	0.5 1.0 1.5 2.0
						BCS+RT better BCS+RT worse

Lancet 2005;366:2087-2106,


Meta-analysis of survival EBCTCG

Breast cancer mortality (deaths/women)

		Death	s/women	BCS+R	T deaths	
Year started and study name		Allocated BCS+RT	Allocated BCS	Logrank O-E	Variance of O-E	Ratio of annual death rates BCS + RT : BCS
(a) Radiotherapy only to cons	erved breast: 14% no	de positive				
1976 NSABP B-06	BM.	267/731	305/719	-19.7	135-0	i
1981 Uppsala-Örebro	BW	37/184	34/197	2.3	16.8	
1982 St George's London	BM.	24/128	25/122	-2.5	10.9	
1984 Ontario COG	BW+S	91/416	123/421	-16.4	51.5	— — ;
1987 INT Milan 3	BW+S*	40/294	51/273	-6.2	21.3	
1989 NSABP B-21	BW +S*	8/337	8/336	0.5	3.9	
1991 Swedish BCCG	BM	32/593	41/594	-3.9	18.0	4
(a) Subtotal 15-year risk		499/ 2683 28-0%	587/ 2662 33·2%	-45-8	257.4	0-84 (SE 0-06), 2p=0-004
(b) Radiotherapy to conserve 1982 St George's London	d breast and other site BW +AF*	es: 24% node 31/80	e positive 28/70		12.2	
1982 Scottish	BW +S+(AF)+IM(78/296	-2·1 -5·0	30.2	
1985 West Midlands, UK	BW +S+AF+IMC	88/358	107/349	-11.4	45.3	
1986 CRC, UK	Various	76/259	89/261	-8.3	37.6	
(b) Subtotal	101005	254/ 990	302/ 976	-26.9	125-3	0.81 (SE 0-08), 2p=0-02
10-year risk		28.2%	35.1%			
Total (a+b)		753/ 3673	889/ 3638	-72.7	382.7	O83 (SE 0-05), 2p=0-0002
15-year risk		30.5%	35-9%			
Heterogeneity between :	11 strata: χ ² ₁₀ =3·8; p=0	96			6	0.5 1.0 1.5 2.0
						BCS+RT better BCS+RT worse

Lancet 2005;366:2087-2106,

Effect of RT after BCS on local recurrence and on breast cancer mortality—15-year probabilities. EBCTCG Meta-analysis

Lancet 2005;366:2087-2106,

AIIMS DATA

Attitudes and treatment outcome of breast conservation therapy for stage I & II breast cancer using peroperative iridium-192 implant boost to the tumour bed.

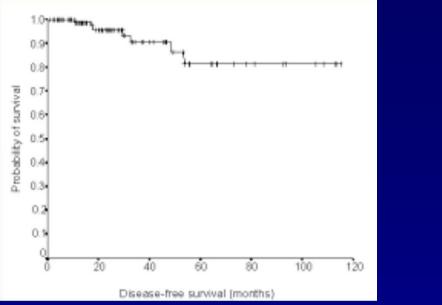
- Surgery with peroperative implantation of iridium-192 to deliver a boost.
- Whole breast irradiation was delivered 3-4 weeks after the boost.
- Cosmesis was assessed at the end of 6 months from completion of therapy.
- There were no locoregional failures at a median follow up of 42 months.
- One patient experienced a systemic relapse.
- Cosmesis was good to excellent in 80% of patients.
- Breast conservation therapy using peroperative iridium-192 implant provides excellent locoregional disease control and cosmesis.

Deo SS, Mohanti BK, Shukla NK, Chawla S, Raina V, Julka PK, Rath GK. Australas Radiol. 2001 Feb;45(1):35-8

AIIMS DATA

THE NATIONAL MEDICAL JOURNAL OF INDIA

VOL. 18, NO. 4, 2005


Breast conservation therapy for breast cancer: Patient profile and treatment outcome at a tertiary care cancer centre

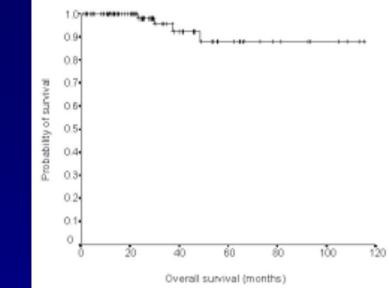

S. V. S. DEO, A. SAMAIYA, N. K. SHUKLA, B. K. MOHANTI, V. RAINA, J. PURKAYASTHA, M. BHUTANI, M. KAR, S. HAZARIKA, G. K. RATH

TABLE I. Profile of patients who had breast conservation therapy $(n=102)$		Treatment N	umber of patients	;
Characteristic	n (%)			
Age (years) <35 35–50 >50 Menopausal status Premenopausal Postmenopausal	20 (19.6) 57 (55.9) 25 (24.5) 53 (52) 49 (48)	<u>Surgery</u> Quadrantectomy Wide Excision	08 64	
Parity Nulliparous Multiparous <i>Tumour location (quadrant)</i> Upper outer Upper inner Lower outer	4 (4) 98 (96) 61 (59.8) 19 (18.6) 14 (13.7)	Re-excision of tumor b ALND <u>Radiotherapy</u>	ed 30 102	
Lower inner Central <i>pTNM stage</i> I II A II B III A III B	3 (2.9) 5 (4.9) 24 (23.5) 40 (39.2) 26 (25.4) 9 (8.8) 3 (2.9)	Whole breast Tumor bed boost Brachytherapy Electron	102 102 22 80	38
IV	0	Axilla	28	

178

Results

TABLE II. Sites of relapse	(n=7)	
----------------------------	-------	--

Site	n (%)
Local	1 (1)
Contralateral primary	2 (1.9)
Systemic	7 (6.8)
Liver	1
Brain	1
Skeletal	2
Liver and lung	1
Lung and brain	1
Skeletal and brain	1

Only 19.6 % of EBC underwent BCT 5YR Projected DFS 82% and OS- 88%

Partial Breast Irradiation

Definition

Delivery of larger doses/fraction of radiation to the lumpectomy cavity (plus 1-2 cm margin) after breast conserving surgery in patients with early stage breast cancer

PBI: Concept

Selected cases (low risk)

- Partial breast
 - Only the breast tissue adjacent to the tumor bed is irradiated
- Accelerated schedules
 - Dramatic reduction in duration of RT to 1-5 days

→ Accelerated Partial Breast Irradiation (APBI)

PBI: Scientific rationale

- 80% of breast recurrences after BCS occur at or near the tumor bed, implicating residual tumor foci from the original index tumor
- Major effect of post-lumpectomy radiotherapy: reduce risk of recurrence in tumor bed region
- Incidence of 'elsewhere' failures 3-5%
- Some 'elsewhere' failures- new primaries, unaffected by whole breast irradiation
- Whole breast radiation may not be needed in "appropriately" selected cases

Failures Outside of the Tumor Bed in Randomized Trials Comparing Lumpectomy with/without Postop RT

		Surgery alone		Surgery plus RT	
Trial	Median f/u (mo)	Ν	%	Ν	%
NSABP-B06	125	17 / 636	2.7	24/629	3.8
Milan	39	4 / 273	1.5	0/294	0
Uppsala-Orebro	64	7 / 197	3.5	-	-
Ontario	43	15 / 421	3.5	4/416	1.0

Baglan KL et al. Int J Radiat Oncol Biol Phys. 2001;50:1003-11.

PBI: Potential advantages

- Reduces overall treatment time
 - Improves acceptability of BCT
 - Reduces waiting time for radiotherapy
 - Improves access to radiotherapy treatment machines
- Smaller treatment volumes
 - Large dose per fraction may be delivered without an increase in toxicity
 - Normal structures like heart, lungs, contralateral breast may be spared
- Better cosmetic results (lower skin & breast parenchyma integral dose)
- Eliminate scheduling problems with systemic chemotherapy
- Cost savings
 - Reduces hospital visits
 - Reduces absence from work and associated income losses
- Improves quality of life

Patient selection

- Age: Postmenopausal
- T2 or less
- N0
- Low grade
- Negative surgical margins
- ER +
- Exclude
 - Young patients
 - Large tumors
 - N+
 - High grade
 - Multicentric
 - Invasive lobular histology
 - EIC
 - Positive surgical margins

Patient Selection Criteria

	ABS ¹	ASBS ²	William Beaumont Hospital ³
Age (years)	<u>></u> 45	<u>≥</u> 50	<u>></u> 45
Histology	Unifocal, IDC	IDC or DCIS	IDC
Tumor size	<u><</u> 3cm	<u><</u> 2cm	<u><</u> 2cm
Surgical margins	Negative	Negative <u>></u> 2mm	Negative
Nodal status (Axillary/ sentinel)	NO	NO	NO
Cavity to skin distance	Not stated	Not stated	>5 mm

1 Arthur D, et al. Brachytherapy. 2003 2 ASBS Consensus statement for APBI. April 30, 2003. 3 Edmundson GK, el al. Int J Radiat Oncol Biol Phys. 2002

PBI: Techniques

- Brachytherapy
 - Interstitial Brachytherapy
 - Mammosite balloon brachytherapy
- Intraoperative radiotherapy
 - Intraoperative electrons (IOERT)
 - Targeted intraoperative radiotherapy (TARGIT)
 - Brachytherapy

EBRT

- Electrons
- 3D-CRT
- IMRT
- Protons

ASBS consensus statement for APBI

- Outside of multi-institutional studies and institutional protocols, patients should be carefully selected for APBI and properly informed of the benefits and risks of this type of radiation treatment.
- The following selection criteria when considering patients for treatment with APBI:
- Age 45 years old or greater
- Invasive ductal carcinoma or ductal carcinoma in situ
- Total tumor size (invasive and DCIS) less than or equal to 3 cm in size
- Negative microscopic surgical margins of excision
- Axillary lymph nodes/sentinel lymph node negative

ASBS consensus statement for APBI contd..

- Surgeons, radiation oncologists and physicists who will be utilizing the various APBI techniques should be adequately trained to allow for optimum radiation therapy planning and treatment.
- All patients should be monitored regularly to identify adverse events as well as local recurrences.
- Continuous, long-term, outcomes-based monitoring of APBI is desirable.

Comparison of selected APBI techniques

Technique	Advantages	Disadvantages
Interstitial brachytherapy	 Oldest method, so extensive FU data available Most adaptable to oddly shaped surgical cavities New image-guided methods for catheter placement available 	 Learning curve required Relies heavily on operator experience Most invasive of the APBI techniques—often requires GA for catheter placement
3-D Conformal EBRT	 Noninvasive ↑ dose homogeneity Potential for best cosmesis 	 Newest technique, so experience relatively limited Time-consuming planning process Larger volume of breast treated
Mammosite	 Easiest for patient and oncology team Widely available 	 Requires close communication between surgeon and radiation oncologist Limited ability to adapt to less- than-ideal surgical cavity

Conclusions

- Radiotherapy is an integral part of BCT
- RT improves local control and survival

Evidence of better Local Control with RT Boost

APBI may be an alternative to whole breast radiotherapy

- Smaller treatment volume
- Shorter treatment time
- Dose intensity
- Reduced toxicity
- Increased acceptability (patient / physician)

APBI Requires:

- Optimal patient selection
- Appropriate target delineation
- Meticulous QA

THANK YOU