Artificial Intelligence in Radiation Oncology - the dawn of a new era

Dr Indranil Mallick Tata Medical Center, Kolkata

Treatment decision

Segmentation

Planning

Plan evaluation

Treatment delivery

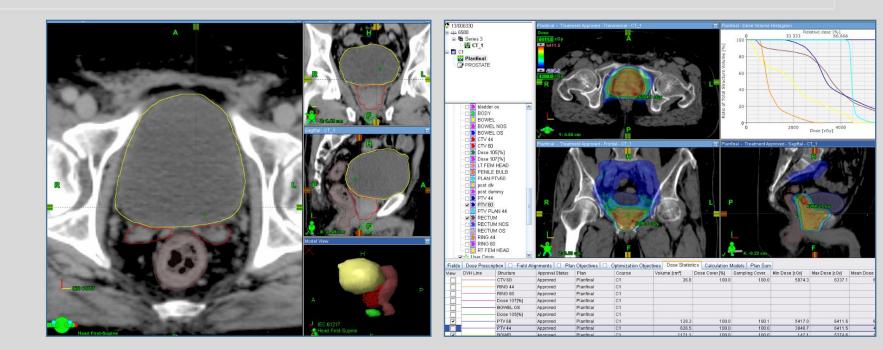
Response evaluation

Six steps in radiation oncology

The human process

Prostate Cancer

- Gleason Score
- Extracapsular extension **present**
- Seminal Vesicle involvement **present**
- Nodal involvement absent
- Distant metastases **absent**



Segment structures and edges

Evaluate plan based on rules

Long term ADT and RT

Each step involves complex decisions and calculations based on multiple inputs: data and images

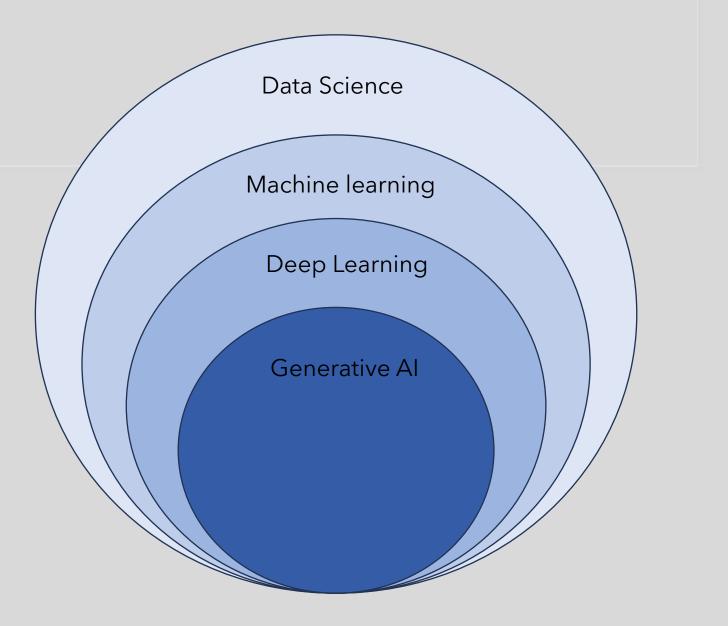
Problems in the process

- Manual and repetitive tasks e.g. segmentation, planning steps, follow up visits
- **Generalized decision-making** e.g. doses, constraints
- Inefficiency e.g. plan evaluation
- Difficulty in prediction

What is Al?

• Al is a broad and rapidly evolving

term



Can we put in an image as a 'parameter'?

Image = Data

$512 \times 512 = 262,144$

10	25	225	213						
.23	.34	214	•	•	•	•	•	•	•
32	220	•	•	•	•	•	•	•	•
24	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	15
•	•	•	•	•	•	•	•	220	23
•	•	•	•	•	•	•	.23	.34	214
•	•	•	•	•	•	10	25	225	213

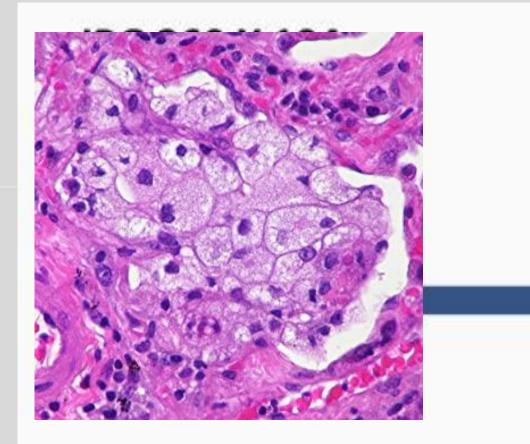


Image = data

Color images have 3 channels

8,11,0, 55,13,25,19

15,241,2,155,13,35,65

14,211,0,255,23,45,11

05,255,1,255,10,17,23

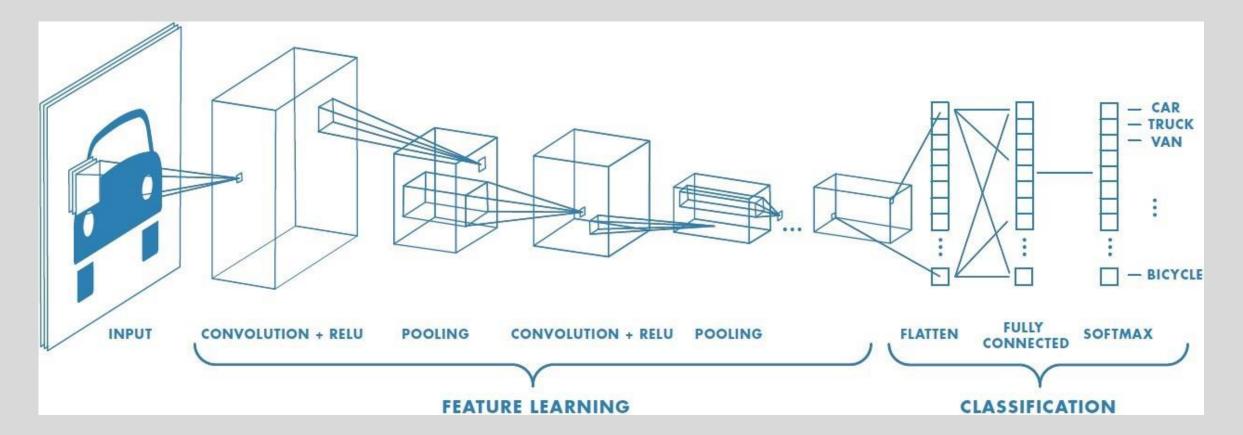
77,167,9,112,56,16,90

45,245,0,145,22,55,48

OMG! How will I deal with all these numbers?!!

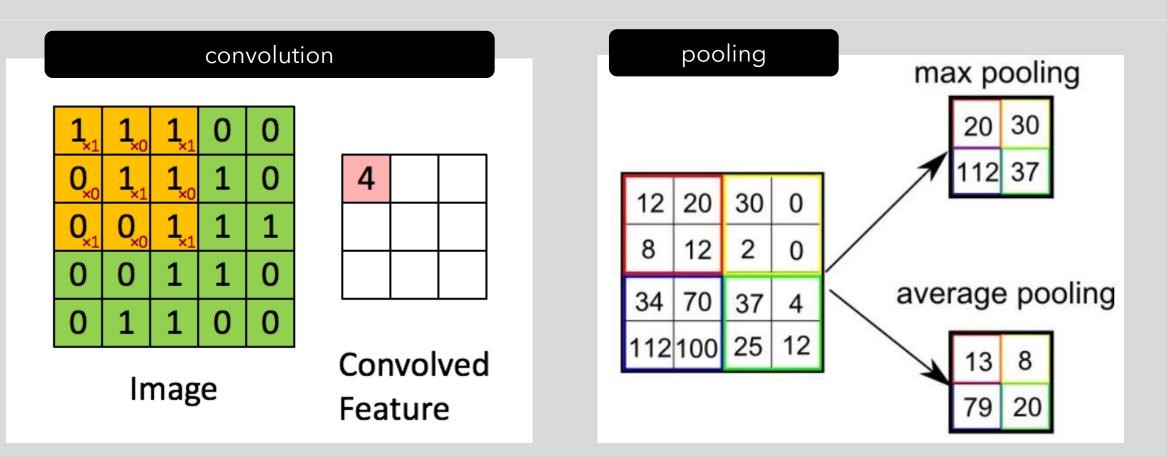
Deep Learning

The Convolutional Neural Network (CNN)



<u>https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53</u>

Convolution and pooling



<u>https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53</u>

CNN architectures for image segmentation

 The U-Net and its variations are the most common architecture used in the image segmentation domain

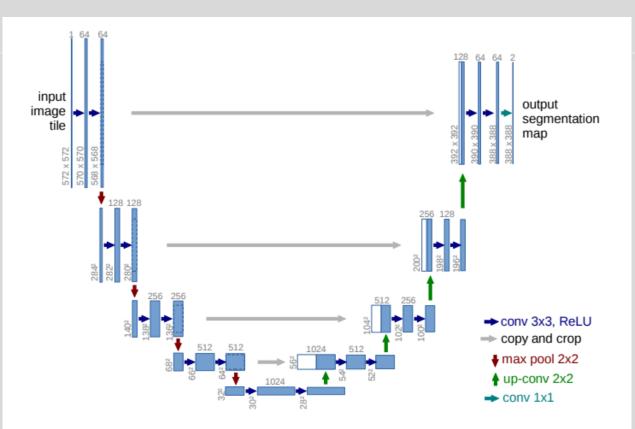
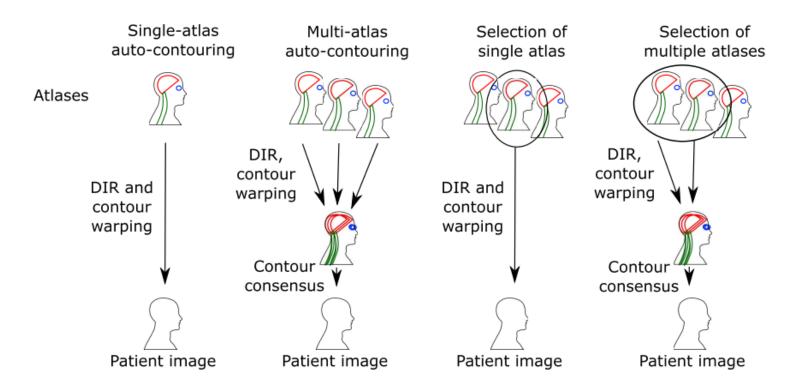


Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.

Machine learning and Al applications

Atlas based autosegmentation

- Uses selection of a similar case (or cases) for a library of patients.
- Then uses deformable registration techniques to warp the segments to fit the contours to a new patient.

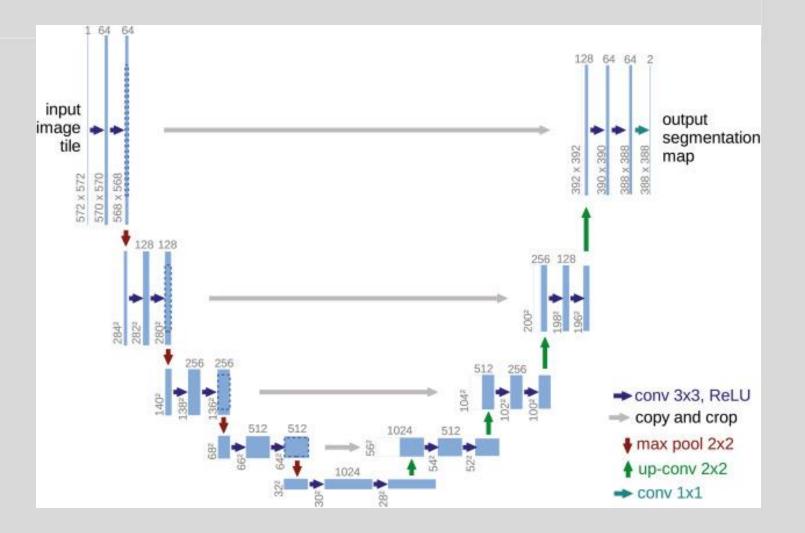


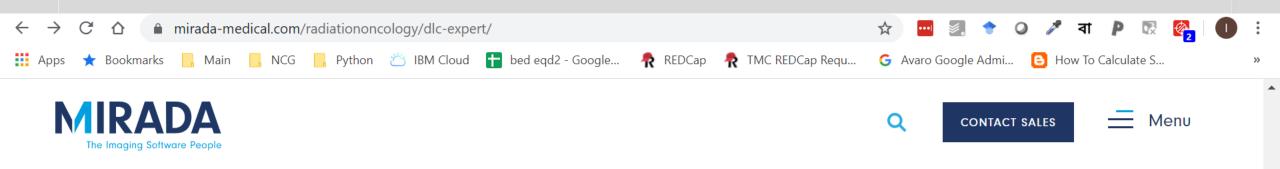
IEEE Transactions on Medical Imaging, 38(1), 99-106.

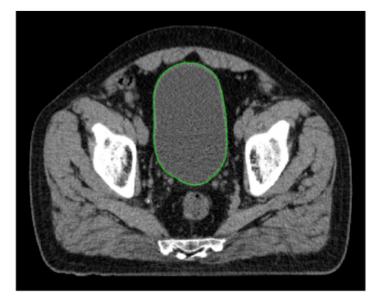
Deep learning based autosegmentation

 U-Net: A convolutional neural network that is designed for image segmentation

 Allows more accurate results with fewer training image-sets.







Zero-Click Contouring[™]

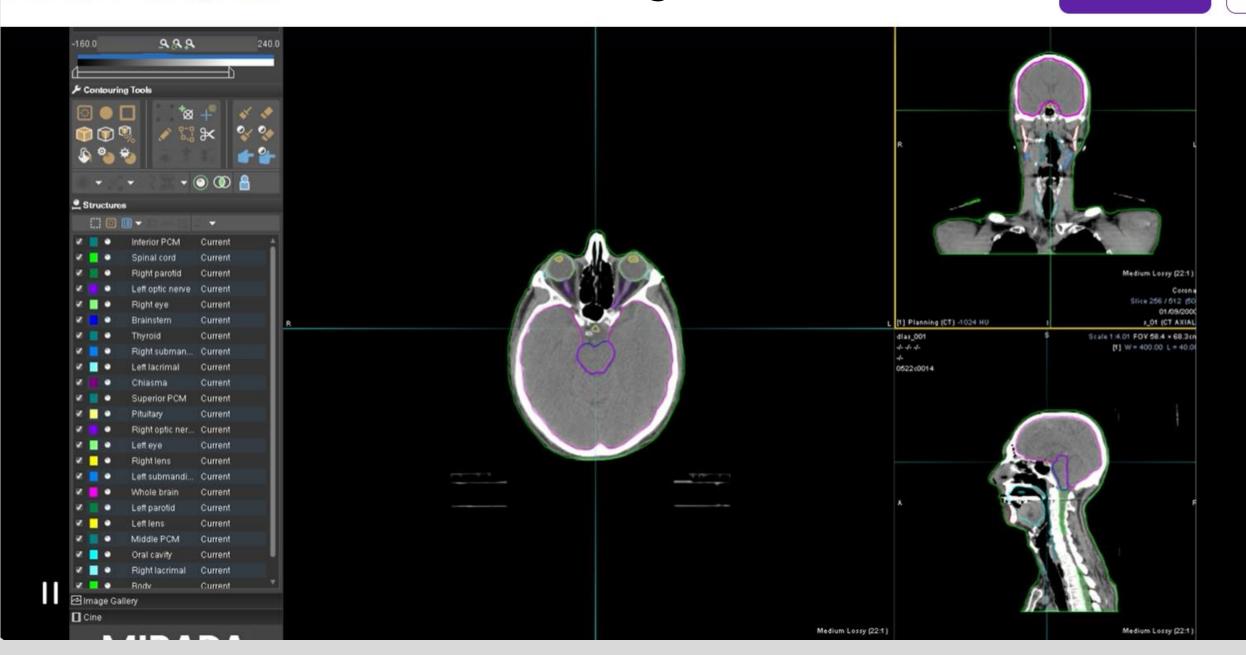
DLC*Expert* uses Mirada's unique Zero-Click Contouring platform to typically deliver contours before you arrive to your planning workstation. The workflow is based on background processing. Contours can be validated using your existing TPS or Mirada's advanced RTx software

/isualization / Auto Segmentation

GE autosegmentation

Contact us

G



RaySearch autosegmentation

Demo

- Structures generated in 1.5 minutes
- Review/corrections ~ 10-15 minutes
- Manual delineation approx. 1 hour (?)

DL based autosegmentation consistently outperforms atlas-based techniques.

	Radiotherapy and Oncology 126 (2018) 312-317	
	Contents lists available at ScienceDirect	原 Radiotherapy
	Radiotherapy and Oncology	
ELSEVIER	journal homepage: www.thegreenjournal.com	Atte
Atlas contouring in lur	g cancer	
Clinical evaluati contouring for lu	on of atlas and deep learning based automatic ing cancer	Check for updates
Tim Lustberg ^{a,*} , Joha	n van Soest ^a , Mark Gooding ^b , Devis Peressutti ^b , Paul Aljabar ^b , Judith	n van der Stoep ^a ,

Wouter van Elmpt^a, Andre Dekker^a

^a Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, The Netherlands; ^b Mirada Medical Ltd., Oxford, United Kingdom

Journal of Medical Radiation Sciences

Open Access

ORIGINAL ARTICLE

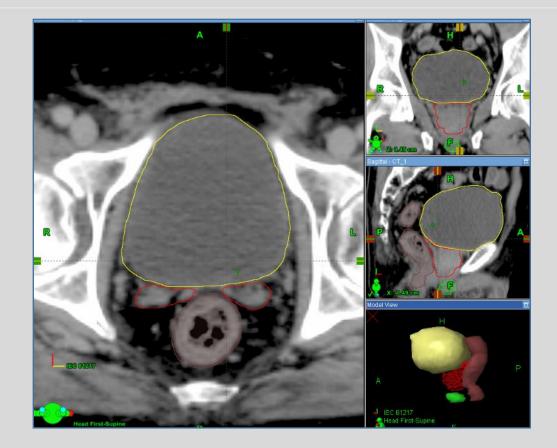
Clinical evaluation of deep learning and atlas-based autosegmentation for critical organs at risk in radiation therapy

Eddie Gibbons, BSc (RT)¹ (D), Matthew Hoffmann, BIT¹, Justin Westhuyzen, MSc, PhD², Andrew Hodgson, BSc (RT)¹, Brendan Chick, PhD¹, & Andrew Last, DPhil, FRCR¹

¹Department of Radiation Oncology, Mid North Coast Cancer Institute, Port Macquarie, New South Wales, Australia ²Department of Radiation Oncology, Mid North Coast Cancer Institute, Coffs Harbour, New South Wales, Australia

DL autosegmentation in real life

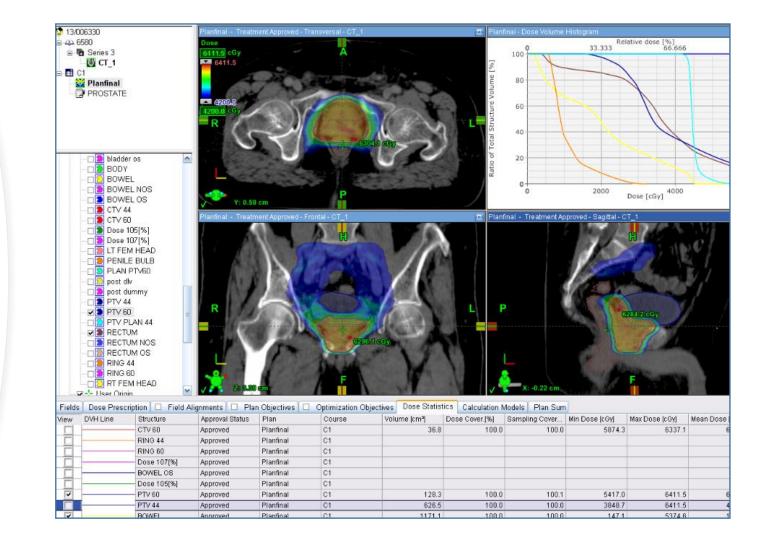
- At Tata Medical Center, our in house research feeds into clinical practice.
- DL based autosegmentation models are used daily currently in 3 anatomical sites, but eventually in most anatomical sites



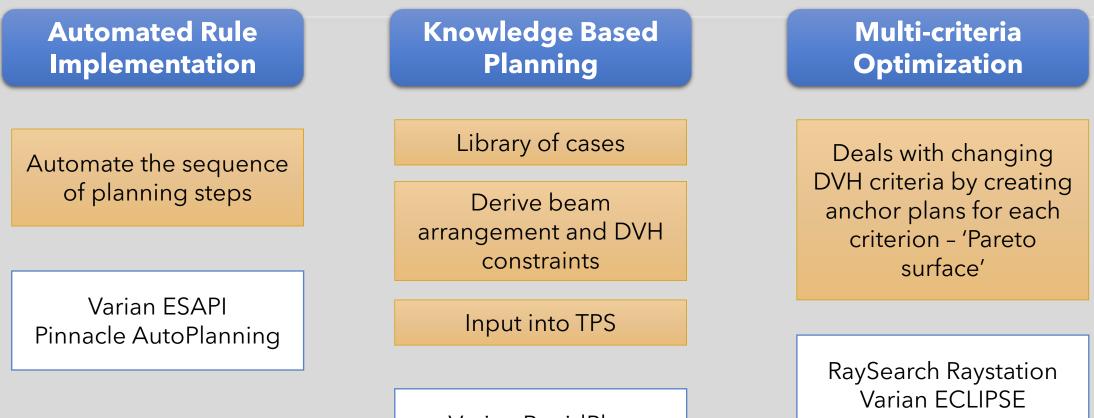
Autosegmentation progress

- Autosegmentation is now more or less a solved technical problem
- What needs to be done:
 - Validation on CT scans in our own patients
 - Cost and availability
 - Continuous improvement in accuracy
 - Accommodating changes in practice guidelines.

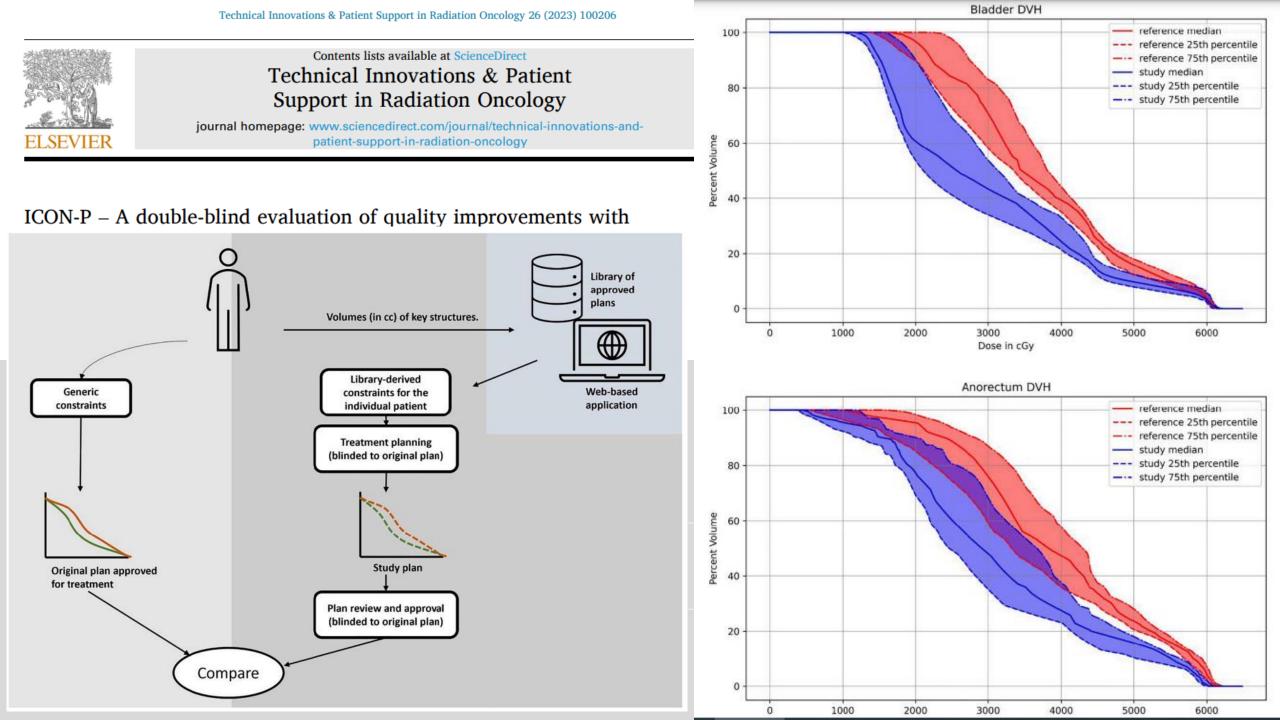
Al in treatment planning



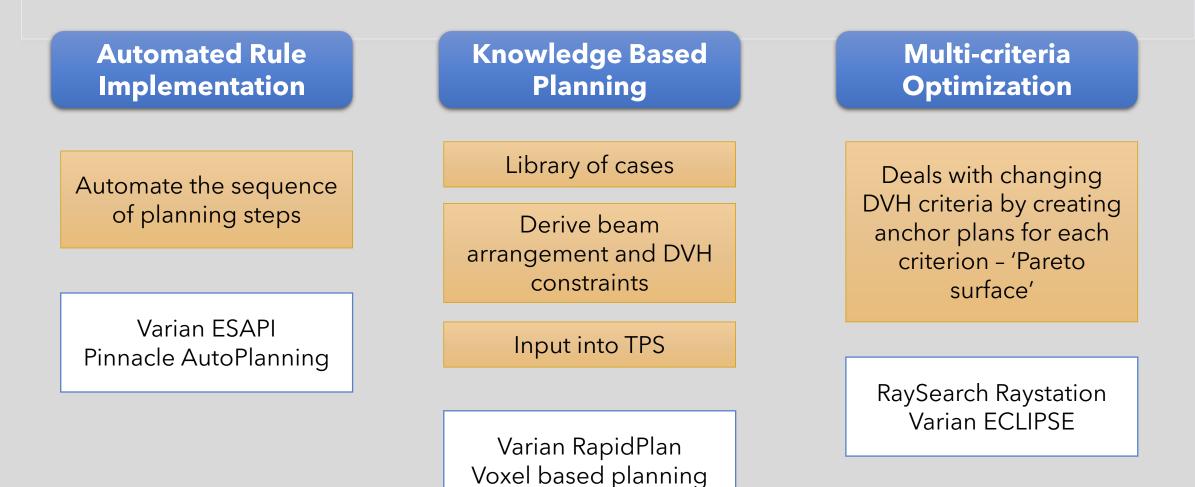
Traditional automated treatment planning



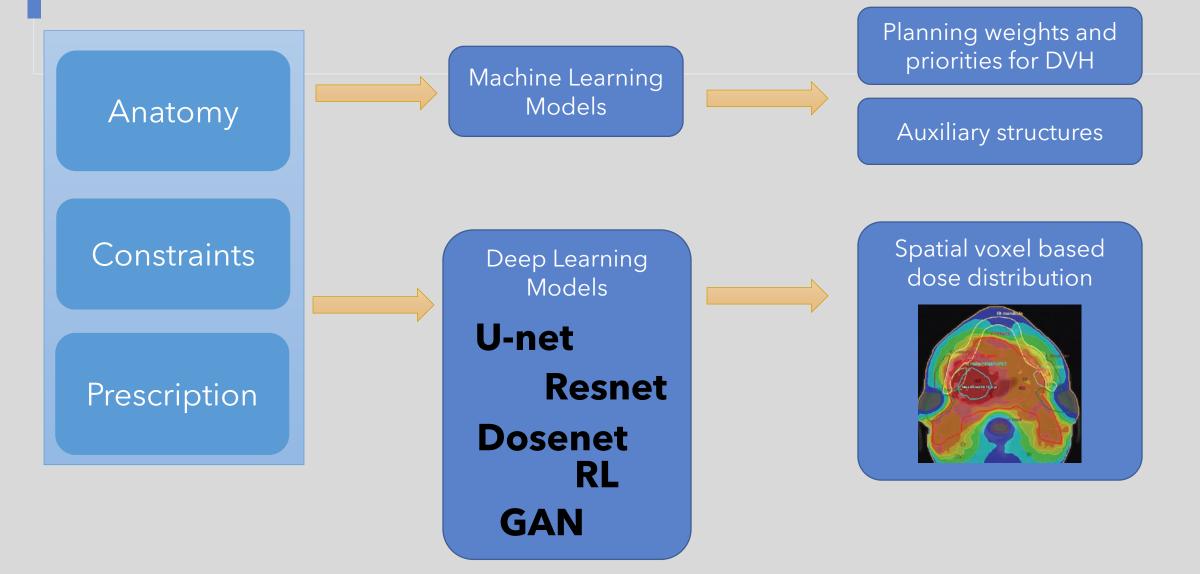
Varian RapidPlan Voxel based planning



Current automated treatment planning



Novel AI approaches



GAN in Automated Treatment Planning

Automated Treatment Planning in Radiation Therapy using Generative Adversarial Networks

Rafid Mahmood Department of Mechanical and Industrial Engineering University of Toronto, Toronto, ON, Canada

RMAHMOOD@MIE.UTORONTO.CA

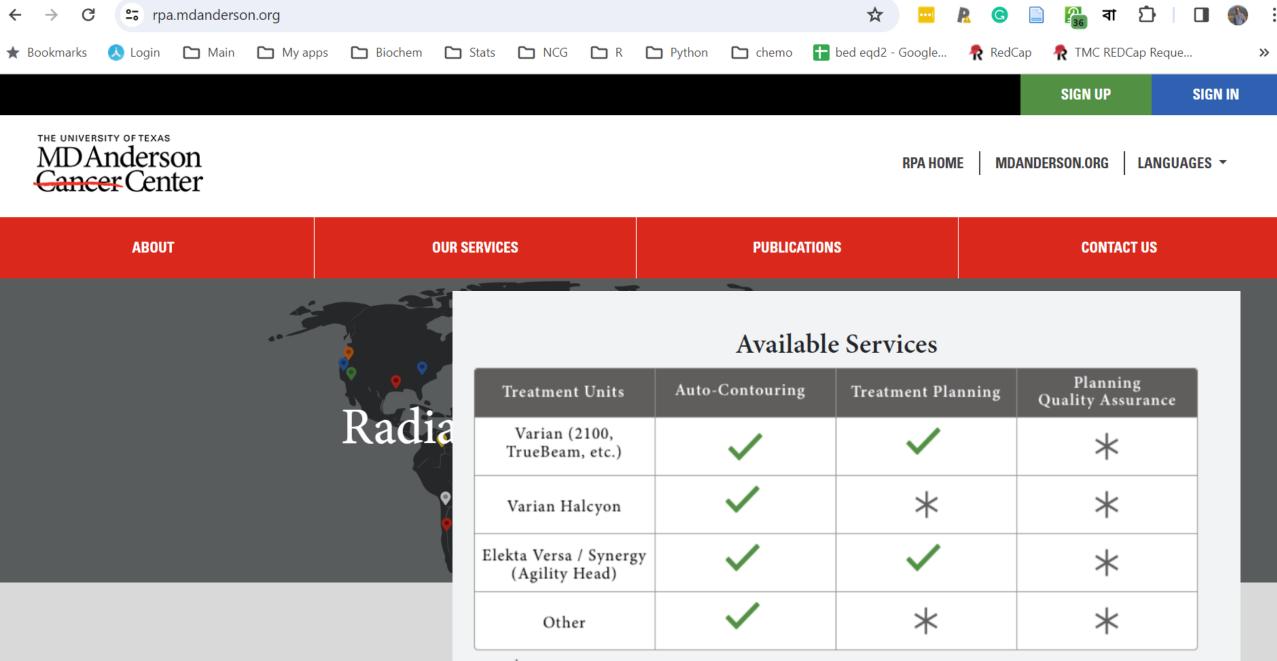
СТ		A							
Clinical		8		BQ	gPCA	RF	CNN	GAN	Clinical
GAN Prediction			OAR criteria PTV criteria All criteria	61.6% 83.5% 67.6%	65.8% 85.7% 71.2%	71.5% 68.0% 70.7%	72.5% 76.3% 73.6%	72.8% 81.3% 75.2%	72.0% 76.8% 73.3%
GAN Plan		<u> </u>	Table	2: Frequ	ency of c	clinical c	riteria sa	tisfaction	1.

BOOK A DEMO

menu \equiv

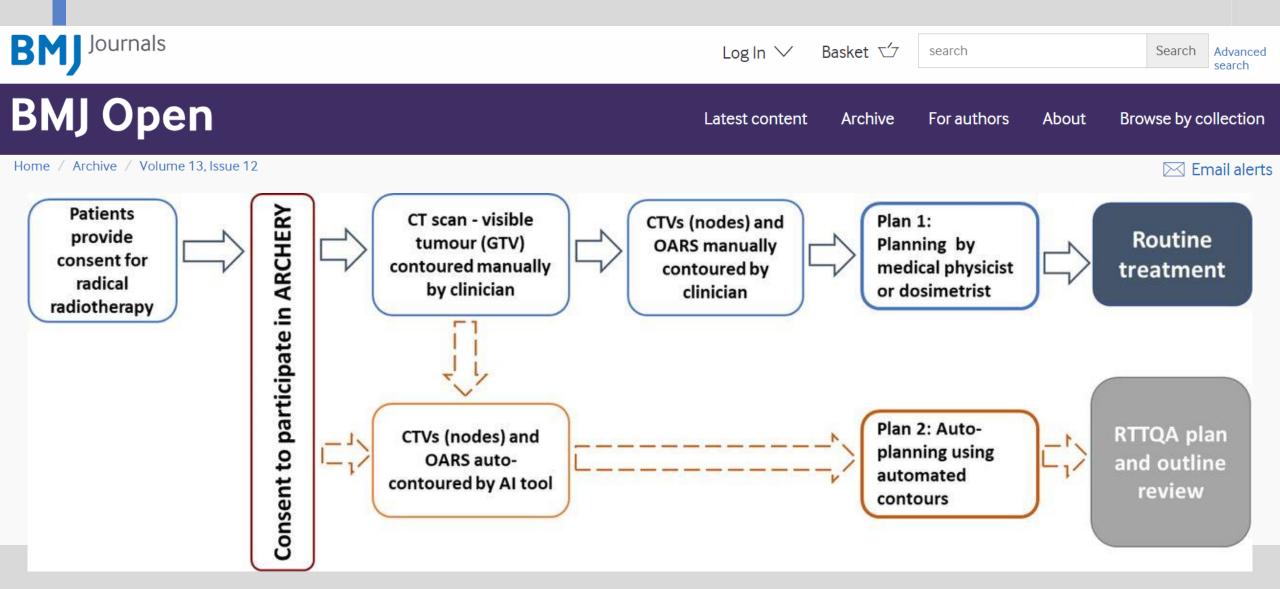
WEBINAR: Deep learning planning in RayStation

In this webinar we presented our latest release of deep learning planning models, machine learning news in RayStation 11B and how deep learning planning can be implemented at your clinic. Demonstrating how your clinic can configure and commission a released and validated model for your protocol, planning trade-offs and treatment machines.



* These services are under development. More details can be found under the 'Our Services' page

Does automation work in real life?



Al in Clinical Decision Support

Published Clinical Decision Support Systems

Cancers	Input data	No of patients	Endpoint	Author
Lung and HN Cancer	Radiomics	1,019	Prognosis	Aerts
Prostate Cancer	lmaging (mpMRl, PIRADS)	223	Active surveillance	De Corbelli
Colon	Clinical Data	5,301	Benefit of adjuvant therapy	Steele
Breast/ Liver	Clinical Data	2,458	General feasibility	Gorunescu
Brain metastases		495	Survival after SRS in lung cancer brain mets	Zindler
Skin	Photos from mobile phones	129,450	Diagnosis and classification of skin cancer	Esteva
Cervical Cancer	Cytology images	2,267	Diagnosis of cancer	Kyrgiou
Bladder	Clinical/Path	1,964	Pathological upstaging	Mitra

Clinical prediction models - TMCK

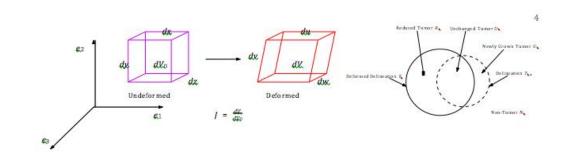
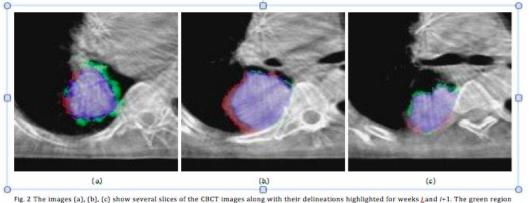


Fig. 1 (a) Jacobian computes the ratio of the deformed volume to the reference undeformed volume. (b) Growth-Decay model showing different regions of the tumor for two overlapping synthetic tumors. Solid line show source tumor delineated volume. Dotted line shows the target volume.



represents the reduced region (R), blue region represents the unchanged region (U), and red region represents the newly

Computer Methods and Programs in Biomedicine Volume 195, October 2020, 105669

Prediction of survival outcome based on clinical features and pretreatment ¹⁸ FDG-PET/CT for HNSCC patients

<u>Sayantani Ghosh</u>^a, <u>Shaurav Maulik</u>^c, <u>Sanjoy Chatterjee</u>^c, <u>Indranil Mallick</u>^c, <u>Nishant Chakravorty</u>^b, <u>Jayanta Mukherjee</u>^a <u>∧</u> ⊠

Show more 🗸

+ Add to Mendeley 😪 Share 🗦 Cite

https://doi.org/10.1016/j.cmpb.2020.105669 7

Get rights and content 🛪

Generative Al

Al models that create text, art, music or any other creative output

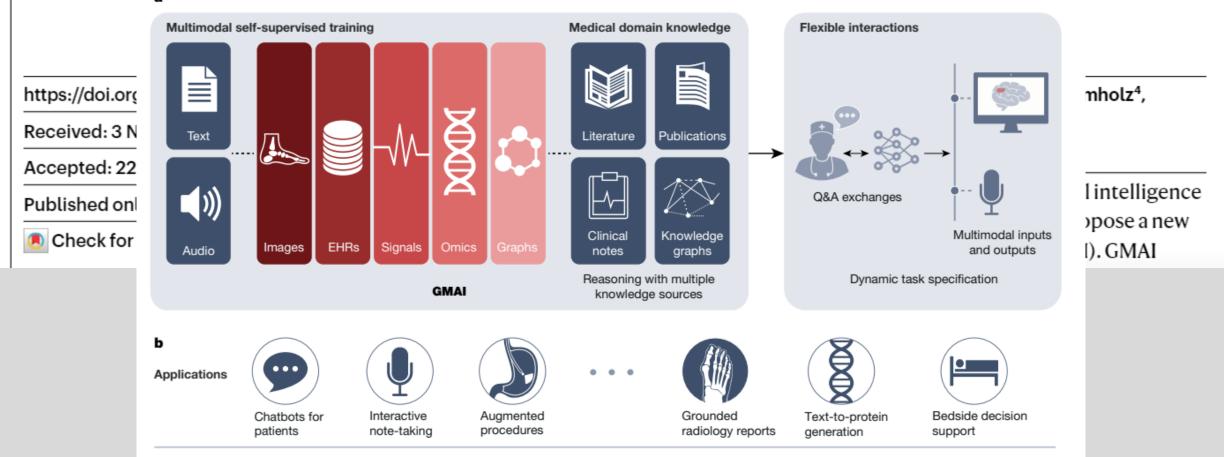
ChatGPT and many others

Logarithmic scale of development

Rapid advances into healthcare

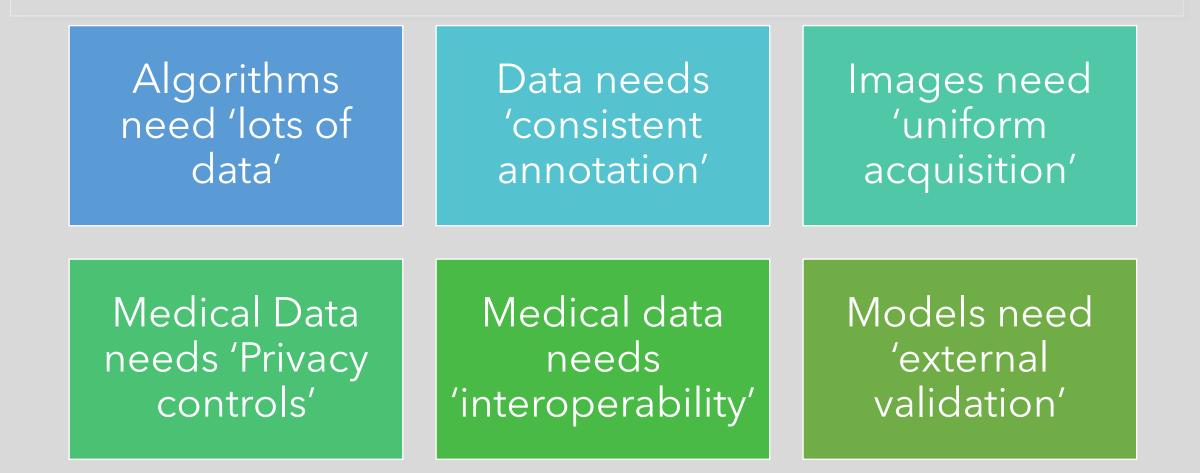
Perspective

Foundation models for generalist medical artificial intelligence

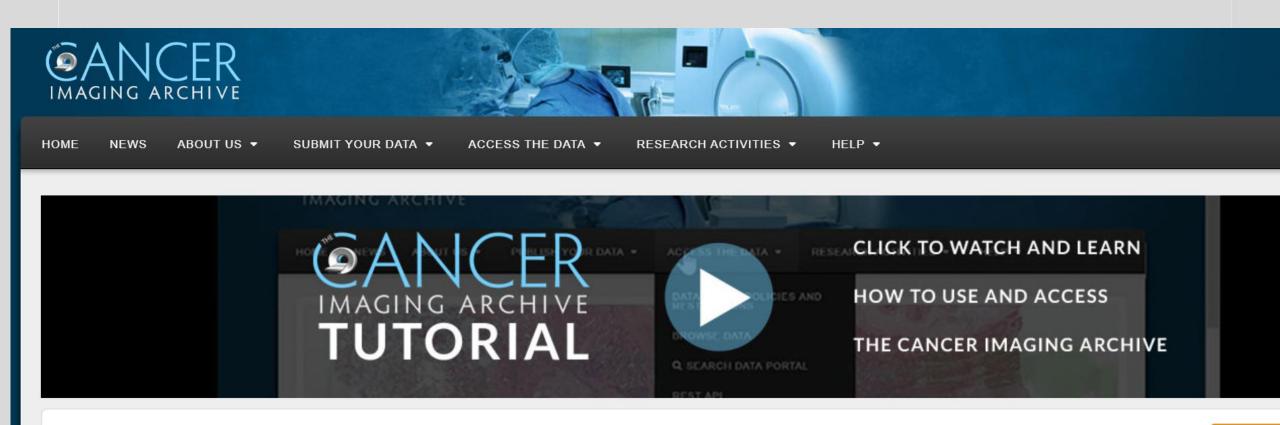


Regulations: Application approval; validation; audits; community-based challenges; analyses of biases, fairness and diversity

Many challenges in clinical applications



Need for data and image repositories



TCIA Collections

TCIA is a service which de-identifies and hosts a large archive of medical images of cancer accessible for public download. The data are organized as "collections"; typically patients' imaging related by a disease (e.g. lung cancer), image modality or type (MRI, CT, digital histopathology, etc) or research focus. DICOM is the primary file format used by TCIA for radiology imaging. Supporting data related to such as patient outcomes, treatment details, genomics and expert analyses are also provided when available.

Q Searc

Tata Medical Center - CHAVI-RO

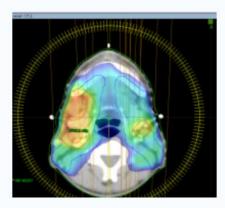
- The First Appropriately annotated image bank in India
- Pilot using primarily Radiation Oncology Images (CHAVI-RO) as the first in the world
- Set deliverables within 18 months:

Informed consent and infrastructure set up

Set up software (medical and clinically customised)

Collaborative effort- Integrate departments

Projects in CHAVI



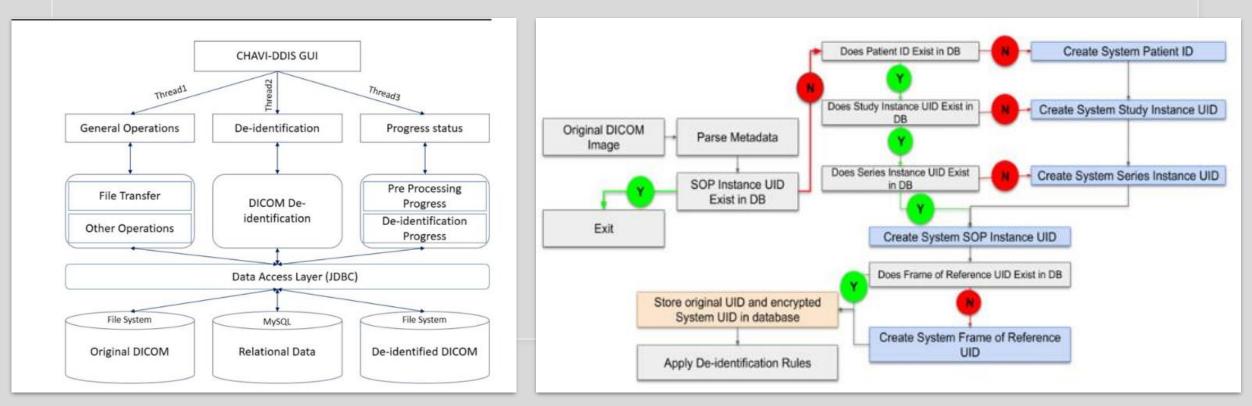
INTELHOPE

INTELHOPE is a prospective randomized trial which is investigating the impact of radiation dose escalati to the PET defined gross disease in patients with locally advanced oropharyngeal, laryngeal...

Read More >>

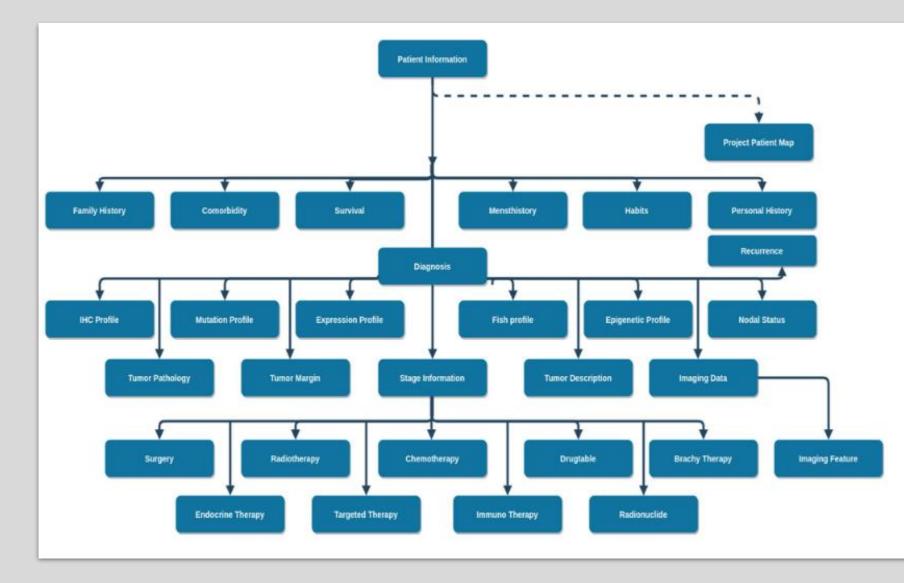
Log in **Q**

CHAVI – Image De-identification System



Kundu S, Chakraborty S, Chatterjee S, Das S, Achari RB, Mukhopadhyay J, et al. De-Identification of Radiomics Data Retaining Longitudinal Temporal Information. J Med Syst 2020;44:99. https://doi.org/10.1007/s10916-020-01563-0.

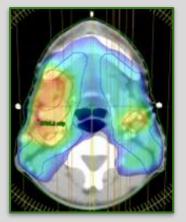
CHAVI - Relational (MySQL) Database

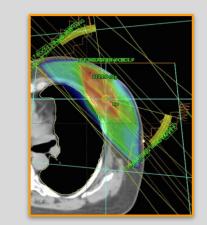


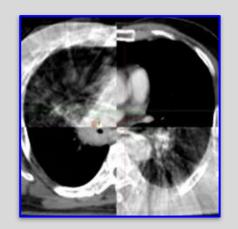
Kundu S, Chakraborty S, Mukhopadhyay J, Das S, Chatterjee S, Basu Achari R, et al. Research Goal-Driven Data Model and Harmonization for De-Identifying Patient Data in Radiomics. J Digit Imaging 2021. https://doi.org/10.1007/s10278 -021-00476-9.

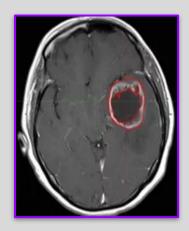
Intelhope	Hyport-adjuvant	IMPRINT	RadGlio High		
PET-Radiomics	Doseomics	Prediction	MRI-Radiomics		

Clinical, molecular, QA, treatment & outcomes banked in CHAVI



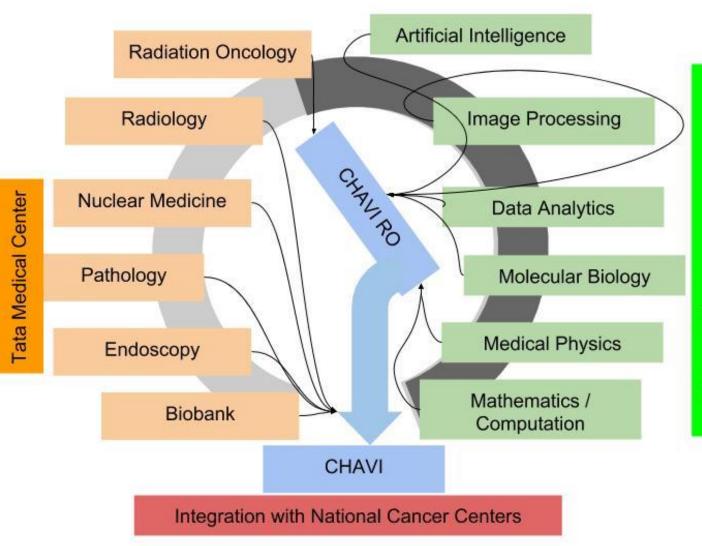






Integration is the key

• We believe that the future lies in integrating images and data from a myriad sources.



Indian Institute of Technology Kharagpur

AI will transform radiation oncology

- Approximately 70% of our work will get automated within 5-10 years
- Roles and responsibilities will change.
- Job market will change, even in India, over the next decade.
- Generative models will further impact our work in ways which we cannot fathom right now.

When the winds of change blow, some people build walls, while others build windmills.

Chinese Proverb

