



# Oligometastasis : Radiation Oncologist's perspective

Dr Arundhati De

**Consultant Radiation Oncologist** 

Apollo Multispeciality Hospital, Kolkata





- What is Oligometastasis?
- How this state happens??
- Definitions related to Oligomets
- Rationale for RT in Oligomets
- Sites where oligomets is being treated with RT
- Is treating Oligometastasis beneficial for patients??



### SEED AND SOIL THEORY :1889 AD





STEPHEN PACIST, M.A., P.R.C.S (Pounds of the Research Defense Society).

- Stephen Paget proposed his "seed and soil" theory of cancer.
- He analyzed over 1000 autopsy records of women who had breast cancer and found that the patterns of metastasis were not random.
- Thus, he proposed that tumor cells (the seeds) have a specific affinity for specific organs (the soil), and metastasis would only result if the seed and soil were compatible.

### **SPECTRUM THEORY**

Journal of Clinical Oncology®

EDITORIAL

Oligometastases

**1995** 

Authors: <u>S Hellman</u> and <u>R R Weichselbaum</u> AUTHORS INFO & AFFILIATIONS

- Cancer spread is orderly, extending in a contiguous fashion from the primary tumor through the lymphatics to the lymph nodes and then to distant sites.
- There are tumor states intermediate between purely localized lesions and those widely metastatic., existence of a clinical significant state of oligometastases.



### **Micro-RNA THEORY**



OPEN O ACCESS Freely available online

PLos one

2011

### MicroRNA Expression Characterizes Oligometastasis(es)

Yves A. Lussier<sup>1,2,3,4</sup>\*, H. Rosie Xing<sup>1,2,5,6</sup>\*, Joseph K. Salama<sup>8</sup>\*, Nikolai N. Khodarev<sup>1,5</sup>\*, Yong Huang<sup>1,3</sup>\*,

#### Abstract

**Background:** Cancer staging and treatment presumes a division into localized or metastatic disease. We proposed an intermediate state defined by  $\leq$ 5 cumulative metastasis(es), termed oligometastases. In contrast to widespread polymetastases, oligometastatic patients may benefit from metastasis-directed local treatments. However, many patients who initially present with oligometastases progress to polymetastases. Predictors of progression could improve patient selection for metastasis-directed therapy.

*Methods:* Here, we identified patterns of microRNA expression of tumor samples from oligometastatic patients treated with high-dose radiotherapy.

**Results:** Patients who failed to develop polymetastases are characterized by unique prioritized features of a microRNA classifier that includes the microRNA-200 family. We created an oligometastatic-polymetastatic xenograft model in which the patient-derived microRNAs discriminated between the two metastatic outcomes. MicroRNA-200c enhancement in an oligometastatic cell line resulted in polymetastatic progression.

*Conclusions:* These results demonstrate a biological basis for oligometastases and a potential for using microRNA expression to identify patients most likely to remain oligometastatic after metastasis-directed treatment.





### **Oligometastatic disease versus systemic disease**

### **Oligometastatic**

Metastatic growth potential is limited, secondary to:

- environmental conditions in the primary tumor forestalling evolutionary clonal pressure,
- cancer cells that slough out of the primary tumor that do not have the properties necessary to survive the circulation and invade into target organ sites
- Cancer cells land in inhospitable target organs.

### <mark>Systemic</mark>

Widespread metastatic growth potential is unlimited, secondary to:

- due to environmental conditions in the primary tumor creating many undifferentiated, aggressive clones
- cancer cells that actively migrate out of the primary tumor that have the properties necessary to survive the circulation and invade into target organ sites
- Cancer cells land in hospitable target organs



2015



### The biology and treatment of oligometastatic cancer

47th ICR

Diane K. Reyes<sup>1</sup>, Kenneth J. Pienta<sup>1,2</sup>

- A disease state that exists in a transitional zone between localized and widespread systemic disease, termed oligometastasis.
- Change in treatment paradigm, i.e. if primary cancer site (if still present) is controlled, or resected, and metastatic sites are ablated (surgically or with radiation), a prolonged DFS, and perhaps even cure, may be achieved

| Table 5: Definitions of Of                    | Table 3: Definitions of Ofigometastasis                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Terms                                         | Definition                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Oligometastasis                               | "metastases (from tumors early in the chain of progression) limited in<br>number and location because the facility for metastatic growth has not been<br>fully developed and the site for growth is restricted"                                                                                                                                   |  |  |  |  |  |
| Oligometastatic disease                       | Solitary or few detectable metastatic lesions that are usually confined to a single organ                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Oligometastases                               | Due to limited metastatic competence and does not occur following<br>otherwise successful systemic treatment. New metastases in this situation,<br>albeit even limited, is likely to have more extensive malignant capabilities<br>that were somehow spared from eradication by therapeutic means, or from<br>the development of resistant clones |  |  |  |  |  |
| Induced oligometastases                       | Occurs when widespread micrometastatic disease is mostly eradicated by<br>systemic chemotherapy but drug resistant clones are left behind, or tumor<br>foci is located in a site not accessed by chemotherapy                                                                                                                                     |  |  |  |  |  |
| Oligorecurrence                               | Limited metastases in the presence of a controlled primary lesion                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Sync-oligometastases                          | $\leq$ 5 metastatic or recurrent lesions in the presence of active primary lesions                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Synchronous oligometastasis                   | Oligometastatic disease is detected at the time of diagnosis of the primary tumor, therefore there is an active primary tumor                                                                                                                                                                                                                     |  |  |  |  |  |
| Metachronous oligometastasis                  | Development of oligometastatic disease after treatment of the primary<br>tumor; interval for classification of metachronous versus synchronous is no<br>standardized; between Controlled primary lesion except for concomitant<br>primary and distant recurrence                                                                                  |  |  |  |  |  |
| Oligoprogression                              | Progression of a limited number of metastatic deposits, while remaining metastases are controlled with systemic therapy                                                                                                                                                                                                                           |  |  |  |  |  |
| Oligometastasis (specific to prostate cancer) | Rising PSA following primary therapy, with oligometastasis on imaging, in<br>whom local treatment (surgical metastasectomy (usually LN dissection), or<br>SBRT for bony mets or LN recurrence) is required to defer initiation of AD                                                                                                              |  |  |  |  |  |
| Oligometastasis (specific to                  | Castrate resistant prostate cancer with a rising PSA and oligometastasis on imaging, in whom local treatment (surgical metastasectomy (usually LN                                                                                                                                                                                                 |  |  |  |  |  |



Characterisation and classification of oligometastatic disease: a European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation Lancet Oncol 2020







Intermediate state between localised and systemically metastasised disease.

- Oligometastases is the state in which the patient shows distant relapse in only a limited number of regions
- Oligo-recurrence has a primary site of the cancer controlled, meaning that all gross recurrent or metastatic sites could be treated using local therapy





### Synchronous oligometastatsis :

- De-novo presentation of oligo-metastases
- ≤5 metastatic or recurrent lesions in the presence of active primary lesions
- Oligometastatic disease is detected at the time of diagnosis of the primary tumor, therefore there is an active primary tumor

### **Oligoprogressive disease :**

 Majority of metastatic disease controlled by systemic treatment, a few 'resistant' clones progress

### **Metachronous oligometastasis**

• After period initial disease-free interval, new presentation of oligo-metastases

### **Induced Oligometastasis/Oligopersistance**

 Induced oligometastasis occurs when widespread micrometastatic disease is mostly eradicated by systemic chemotherapy but drug resistant clones are left behind, or tumor foci is located in a site not accessed by chemotherapy









**Figure 1.** Schema of oligometastasis. Cases **A**, **B**, and **C** represent breast cancer with solitary pulmonary metastasis, colon cancer with liver and lung metastases, and non-small-cell lung cancer with brain and bone metastases, respectively. In oligometastatic disease, the number of metastatic lesions is limited, and both the primary and metastatic lesions should be treated with local treatment.

#### Cancers 2019, 11, 133; doi:10.3390/cancers11020133





Oligemets with favourable prognosis:

Editorial

#### **Oligometastases/Oligo-Recurrence of Lung Cancer**

Yuzuru Niibe,<sup>1</sup> Joe Y. Chang,<sup>2</sup> Hiroshi Onishi,<sup>3</sup> Joseph Salama,<sup>4</sup>

| TABLE 1: Niibe-Onishi-Chang classification.                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                                                                                    |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Favorable                                                                                                                                     | Intermediate                                                                                                                                                                                                     |                                                                                                                                                                       | Unfavorable                                                                                                                        |  |  |
|                                                                                                                                               | Relatively favorable                                                                                                                                                                                             | rable Relatively unfavorable                                                                                                                                          |                                                                                                                                    |  |  |
| <i>Oligorecurrence</i><br>Site no. 1-2<br>NSCLC (brain and adrenal gland)<br>Colon and rectum cancer (lung and<br>liver)<br>Renal cell cancer | oligo-recurrence<br>site no. 1-2<br>breast cancer (bone, lung, and liver)<br>SCLC (brain)<br>site no. 3–5<br>NSCLC (brain and adrenal gland)<br>colon and rectum cancer (lung and<br>liver)<br>renal cell cancer | <i>oligo-recurrence</i><br>site no. 3–5<br>breast cancer (bone, lung, and<br>liver)<br>SCLC (brain)                                                                   | <i>Oligometastases</i> and<br><i>oligo-recurrence</i><br>pancreatic cancer (any site)<br>melanoma (any site)<br>sarcoma (any site) |  |  |
|                                                                                                                                               | <i>sync-oligometastases</i><br>site no. 1-2<br>NSCLC (brain and adrenal gland)<br>colon and rectum cancer (lung and<br>liver)<br>renal cell cancer                                                               | sync-oligometastases<br>site no. 3–5<br>NSCLC (brain and adrenal<br>gland)<br>colon and rectum cancer (lung<br>and liver)<br>breast cancer (bone, lung, and<br>liver) | polymetastases                                                                                                                     |  |  |





| PRIMARY    | METASTATIC SITE |
|------------|-----------------|
| LUNG-NSCLC | ADRENAL, BRAIN  |
| LUNG-SCLC  | BRAIN           |
| PROSTATE   | BONE            |
| COLORECTAL | LIVER           |
| CERVIX     | BONE            |

### **FAVORABLE PRIMARY**

- Hormone Receptor Positive Breast Ca
- ALK/EGFR/ ROS Positive Lung Ca
- Prostate Ca
- Thyroid Ca
- RCC





# Treatment options for Oligometastatic diseases

- SBRT
- RFA
- SURGERY
- BRACHYTHERAPY
- INTRA ARTERIAL EMBOLIZATION
- COMBINING WITH IMMUNOTHERAPY



#### REVIEW

Journal of Surgical Oncology 2008;98:202-206 2008

A Rationale for the Targeted Treatment of Oligometastases With Radiotherapy

DHARA M. MacDERMED, MD,<sup>1</sup> RALPH R. WEICHSELBAUM, MD,<sup>1,2,3</sup> AND JOSEPH K. SALAMA, MD<sup>1,2,3</sup>\*

- In patients with widespread metastases, a state of induced oligometastases may be generated with effective systemic therapy to eradicates the majority of metastatic deposits.
- Residual tumor foci in such patients are attributable to the presence of cells that are resistant to cytotoxic agents, hormonal deprivation and/or targeted agents.
- Oligometastatic state is a window of opportunity where focal therapy to known sites of gross disease may be beneficial.
- Patients who develop metachronous and synchronous pulmonary and hepatic metastases have shown good outcomes following resection.



- Targets tumors with minimal margins
- High ablative dose per fraction delivering 6–10 times the standard daily amount of radiotherapy (5–22 Gy) in each dose
- Significantly shortens course of RT from 7 weeks of daily treatments to 3–10 treatments over 1–3 weeks,
- No delay in Systemic therapy
- Better technology
- Good number of studies





- SBRT refers to an emerging radiotherapy procedure that is highly effective in controlling early stage primary and oligometastatic cancers at locations throughout the abdominopelvic and thoracic cavities, and at spinal and paraspinal sites.
- The major feature that separates SBRT from conventional radiation treatment is the delivery of large doses in a few fractions, which results in a high biological effective dose BED







# Radiobiology of SBRT

**Repair** 

LONGER TIME RADIATION EXPOSURE HINDERS THE REPAIR MECHANISM

#### **Repopulation**

SHORTER DURATION TREATMENT RULES OUT REPOPULATION

Vascular Damage/

Reoxygenation Massive vascular destruction no/minimal perfusion

Re-distribution No cells exist to migrate from one phase to other



### **Abscopal Effect**

Two mechanistic explanations have been proposed to account for the abscopal effect: the induction of cytokines, eliciting augmented tumor surveillance, tumor growth inhibition and tumoricidal effects and/or the activation of the immune system.

Evidence in experimental models suggests that the abscopal effect is tumor specific and is in part immune mediated and that T cells are required to mediate distant tumor inhibition induced by radiation

SBRT INDUCES IMMUNOGENIC REACTION THAT IS NOT SEEN IN CONVENTIONAL FRACTIONATION.



VERY HIGH DOSE CAUSES MASSIVE DAMAGE OF CANCER CELLS THAT LEADS TO MASSIVE RELEASE OF ANTIGENS BY CANCER CELLS.

RELEASED MASSIVE ANTIGENS LEADS TO 'T' CELL SENSITIZATION EFFECTOR T CELLS KILL TUMOR CELLS AFTER RECOGNITION.

INCREASE IN T-CELL PRIMING IN DRAINING LYMPH NODES LEADING TO ERADICATION OF THE PRIMARY & METASTATIC TUMORS.

WAYS TO ENHANCE IMMUNO-STIMULATORY EFFECTS OF RADIATION COMBINATION WITH IMMUNODRUGS ARE UNDER INVESTIGATION.







# Oligometastases: Patient selection for local treatment

**Patient-related factors** 

- Age
- Performance status
- Organ function
- Patient preferences

#### Tumour-related factors

- Location
- Size
- Proximity to vessels/critical organs

#### **Treatment-related factors**

- Availability of expertise
- Cost
- Waiting list





# Metastatic sites addressed with stereotactic RT



# Factors to keep in mind while treating Oligo metastatic disease:

- Treatment of both Primary and Metastatic site
- Treatment of only Metastatic site

47th ICRO, NRSMC&H Kolkata, 12th -13th April 2025

OXFORD





### Primary Sites from where Oligometastasis happens:

- Breast
- Lung
- Prostate
- Colorectal

## Sites where Oligimetastasis happens :

- Brain
- Spine
- Adrenal
- Liver





# Oligometastatic Breast cancer

- Local Therapy
- Ablative/Sx treatment of metastatic disease



**Overall Survival** 

(proportion)

100

90

80

70

60

50

40-

30 20

10.

0

population. OS, overall survival.

3

5 6 7 8

#### 2009 JOURNAL OF CLINICAL ONCOLOGY ORIGINAL REPORT Breast Cancer With Synchronous Metastases: Survival Impact of Exclusive Locoregional Radiotherapy Romuald Le Scodan, Denise Stevens, Etienne Brain, Jean Louis Floiras, Christine Cohen-Solal, 100 Median Survival, 32 months (LRT) v 21 months (no LRT) 100 Median Survival, 42 months (LRT) v 34 months (no LRT) Median Survival, 25 months (LRT) v 13 months (no LRT) 3-yr OS, 43.4% (LRT) v 26.7% (no LRT) P = .00002 90 3-yr OS, 56% (LRT) v 49.1% (no LRT) P = NS 90. 3-yr OS, 34.2% (LRT) v 17.8% (no LRT) P = .0005 **Overall Survival** 80 **Overall Survival** 80 - LRT (n = 153) (proportion) - LRT (n = 320) (proportion) 70-70. No LRT (n = 70) No LRT (n = 261) 60-60 50-50-P = .54P < .0001 40-40-30-30. 20-20-



with bone metastases alone. OS, overall survival.



ith visceral metastases. DS. overall survival.

- Locoregional treatment (LRT), mainly Locoregional Radiation (LRR), associated with ٠ improved survival in breast ca with synchronous metastases.
- Exclusive LRR represent an active alternative to surgery. ٠





Cutcc



Oligometastatic breast cancer: Are we there yet?

Maha AlSendi<sup>1</sup> | David O'Reilly<sup>1</sup> | Youssef H. Zeidan<sup>2</sup> | Catherine M. Kelly<sup>1</sup>

- Patients with de novo OMBC and (1-3) bone-only lesions consider SBRT
- Patients with de novo OMBC with visceral involvement, initial Systemic Therapy is more appropriate to assess disease biology.

Surgical resection or RFA can be considered for single lesions if the goal is to achieve local control.

 For induced OMD after ST, SBRT can be considered in patients with long disease-free interval, small (≤3 cm) and few lesions (1-3) where complete ablation is possible and toxicity is low.

### Treatment Strategies for Oligometastatic Breast Cancer

Breast Cancer (WJ Gradishar, Section Editor) | Published: 23 August 2021

Volume 22, article number 94, (2021) Cite this article

Currently, selection criteria to consider for ablative therapy include

- 1. longer disease-free interval from diagnosis to metastasis (>2 years),
- 2. fewer metastases,
- 3. fewer involved organs.







| TABLE 2         List of Prospective trials evaluating the role of SBRT in OMBC |                                                                                         |                                                                                                                                                 |                                                                                  |                       |  |  |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------|--|--|
| Reference                                                                      | Setting                                                                                 | Intervention                                                                                                                                    | Radiotherapy dose/volumes                                                        | Primary endpoints     |  |  |
| CLEAR, Jeong J,<br>NCT03750396                                                 | Oligometastatic breast<br>cancer recurrence<br>(>12 months). All sites<br>of metastases | Oligometastatic breast Surgery or radiotherapy<br>cancer recurrence or radiofrequency on<br>(>12 months). All sites metastasis<br>of metastases |                                                                                  | PFS                   |  |  |
| NRG Oncology,<br>NCT02364557                                                   | Limited MBC                                                                             | SBRT ± surgery                                                                                                                                  | Radiosurgery in 1, 3 or 5<br>fractions (according to<br>discretion of physician) | PFS, OS               |  |  |
| STEREO-SEIN,<br>NCT02089100                                                    | De novo oligometastatic<br>breast cancer,<br>excluding triple<br>negative subtype       | SBRT                                                                                                                                            | SBRT with radical intent to all sites of metastases                              | PFS                   |  |  |
| MSKCC,<br>NCT03808337                                                          | Metastatic NSCLC or<br>TNBC                                                             | SBRT concurrently to<br>systemic therapy                                                                                                        | SBRT with a minimum BED<br>of 48 Gy to all sites                                 | PFS                   |  |  |
| NCI, NCT00182793                                                               | Stage IIIb-IV BC                                                                        | RT on primary site or site<br>of metastasis<br>(oligometastatic), high<br>dose chemotherapy<br>autologous stem cells<br>transplant              | Tomotherapy on site of<br>disease with standard<br>fractionation                 | 5-year RFS, 5-year OS |  |  |
| CIMER, NCT042204                                                               | 76 Oligometastatic, luminal<br>BC                                                       | SBRT (Immune-SBRT<br>every 48 hours)                                                                                                            | SBRT every 48 hours to all<br>sites of metastases, 50 Gy<br>in five fractions    | ORR, PFS, OS          |  |  |
| MSKCC,<br>NCT03808662                                                          | Oligoprogressive NSCLC<br>or TNBC                                                       | SBRT                                                                                                                                            | SBRT 9-10 Gy × 3 or 10 Gy<br>× 5 fractions given every<br>other day to all sites | PFS                   |  |  |



#### **REVIEW ARTICLE**

Oligometastasis in breast cancer—current status and treatment options from a radiation oncology perspective

Marc D. Piroth¹@ • David Krug² • Petra Feyer³ • René Baumann⁴ • Stephanie Combs⁵ • Marciana-Nona Duma6 •



| Table 2 Randomized controlled trials of local treatment in patients with oligometastatic breast cancer |                          |                                                                    |                                            |                                             |                                                         |                                                                                          |
|--------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------|
| _                                                                                                      | OLIGOMA<br>(NCT04495309) | NRG-BR002<br>(NCT02364557)                                         | STEREO-SEIN<br>(NCT02089100)               | OMIT<br>(NCT04413409)                       | Chinese Academy<br>of Sciences<br>(NCT04646564)         | LARA NCT04698252                                                                         |
| Sample size                                                                                            | 564 patients             | 402 patients (phase II/III)                                        | 280 patients                               | 172 patients                                | 170 patients                                            | 74 patients                                                                              |
| Waximum num-<br>ber of metastatic<br>lesions                                                           | 5                        | 4                                                                  | 5 (≤ 10 cm/≤ 50 mi)                        | 3 (only lung or liver<br>metastases, <5 cm) | 5 (≤5cm)                                                | 4 (bone/lung/liver), ipsilateral cervi-<br>cal or contralateral axillary metas-<br>tases |
| Setting                                                                                                | Any treat-<br>ment line  | First-line setting, maximum<br>of 1 year after diagnosis of<br>MBC | First-line metastatic setting, HR positive | First-line setting                          | Metachronous recur-<br>rence >3 months after<br>surgery | Stable disease after 6 months of sys-<br>temic therapy; HR positive, HER2<br>negative    |
| Type of local ther-<br>apy                                                                             | Radiotherapy             | Radiotherapy, surgery                                              | Radiotherapy                               | Surgery                                     | Radiotherapy                                            | Radiotherapy, surgery, radiofrequency ablation                                           |
| Primary endpoint                                                                                       | PFS+QoL                  | PFS/OS                                                             | PFS                                        | OS                                          | PFS                                                     | PFS                                                                                      |

#### Predictors for a good prognosis after SBRT

- favorable biological subtype (hormone receptor positive, HER2 negative),
- solitary metastasis,
- bone-only metastasis,
- long metastasis-free interval.





# Oligometastatic Ca Lung



Gwendolyn H.M.J. Griffioen<sup>a,\*</sup>, Daniel Toguri<sup>b</sup>, Max Dahele<sup>a</sup>, Andrew Warner<sup>b</sup>,



Apollo MULTISPECIALITY HOSPITALS

- Radical treatment of selected NSCLC patients with 1–3 synchronous metastases can result in favorable 2-year survivals.
- Favorable outcomes associated with : small radiotherapy treatment volumes or resected disease had the best OS



An Individual Patient Data Meta-Analysis of Outcomes and Prognostic Factors after Treatment of Oligometastatic Non-Small Cell Lung Cancer

Allison B. Ashworth , Suresh Senan , David A. Palma , Marc Riquet , Yong Chan





Lung Cancer

-



Factors predictive of OS :

synchronous versus metachronous metastases (P < .001), N-stage (P = .002), and adenocarcinoma histology (P = .036)

In RPA, 3 risk groups identified:

- low-risk, metachronous metastases (5-year OS, 47.8%);
- intermediate risk, synchronous metastases and N0 disease (5-year OS, 36.2%)
- high risk, synchronous metastases and N1/N2 disease (5-year OS, 13.8%).



Lung Cancer Volume 112, October 2017, Pages 134-139



Outcome of radical local treatment of nonsmall cell lung cancer patients with synchronous oligometastases

Marariet Kwint <sup>a</sup> Tris Walroven <sup>a</sup> Siaak Burgers <sup>b</sup> Koen Hartemink <sup>c</sup> Houke Klomp <sup>c</sup>



- median follow-up 35 months.
- Median PFS 14 months , median OS 32 months
- 1- and 2-year OS rates 85% and 58% and the 1- and 2-year PFS rates 55% and 27%, respectively.
- Radical local treatment of a selected group of NSCLC patients with good performance status presenting with synchronous oligometastatic disease resulted in favorable long-term PFS and OS

### <mark>2017</mark>



2022



International Journal of Radiation Oncology\*Biology\*Physics Volume 112, Issue 2, 1 February 2022, Pages 361-375

#### **Clinical Investigation**

American Radium Society Appropriate Use Criteria for Radiation Therapy in Oligometastatic or Oligoprogressive Non-Small Cell Lung Cancer

Arya Amini MD \* 😤 🖾 , Vivek Verma MD †, Charles B. Simone II MD ‡ 1, Indrin J. Chetty PhD 🛙

# Consolidative RT is appropriate for patients with oligometastatic disease:

- (3 or fewer sites, after first-line systemic therapy)
- not progressed after 2 to 3 months, or 2 to 3 cycles of chemotherapy,
- all sites are amenable to radiation.





# Summary of studies of radiation therapy

| Trial (yr and<br>design)      | Patients<br>(Mets per<br>patient) | RT<br>technique                                             | Definitive thoracic<br>therapy / Systemic<br>therapy                     | Median<br>progression<br>free survival<br>(months)                   | Overall survival (OS)                                                | Toxicity                                                                 |
|-------------------------------|-----------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|
| Gomez et al<br>(2016) P       | 49 (≤3)                           | Various                                                     | Yes /All received<br>induction chemo                                     | 11.9 (LCT) vs 3.9<br>(no LCT)                                        | Median OS not reached                                                | 20vs 8.3% G3                                                             |
| lyengar et al.<br>(2014) P    | 24 (≤6)                           | SBRT                                                        | NA / All progressed<br>through 1st line chemo,<br>all received erlotinib | 14.7                                                                 | Median 20.4 months                                                   | 2 G3 RT-related toxicities                                               |
| Griffioen et al.<br>(2013) R  | 61 (≤3)                           | Various                                                     | Yes / 84% chemo                                                          | 6.6                                                                  | 2 years 38%                                                          | 6.6% G3                                                                  |
| Cheruvu et al.<br>(2011) R    | 96 (≤8)                           | SBRT                                                        | NA /70% chemo                                                            | NA                                                                   | 2 years 25%<br>(oligorecurrence) vs 43%<br>(de novo oligometastases) | NA                                                                       |
| Hasselle et al.<br>(2012) R   | 25 (≤5)                           | SRS/ SBRT                                                   | NA / 76% prior to SBRT                                                   | 7.6                                                                  | 1 year 81.1%                                                         | 8% G3                                                                    |
| SABR COMET<br>trial: (2020) P | 99 (≤5)                           | Standard-of-<br>care:(arm<br>1),SOC plus<br>SABR (arm<br>2) |                                                                          | 5-year PFS rate<br>was not reached<br>in arm 1 and<br>17.3% in arm 2 | 5-year OS :17.7% -arm 1<br>versus 42.3% - arm 2                      | no Gr 2-5<br>adverse events,<br>no differences in<br>QOL between<br>arms |





# Oligometastatic NSCLC: Ongoing trials

| Trial                                                        | Arms                                                                                                                                                          | Primary outcome                                   |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| OMEGA (Phase 3)                                              | Standard treatment plus local ablative therapy (surgery and/ or radiotherapy) or to standard treatment alone                                                  | Overall survival                                  |
| SARON (Phase 3)                                              | Efficacy and safety of SABR in addition to chemotherapy compared to standard treatment alone                                                                  | OS/PFS/QOL/Toxicity/<br>Local control             |
| HALT (Phase 3)                                               | SBRT plus TKI compared to TKI alone beyond oligo-<br>progression in patients with oncogene-driven NSCLC                                                       | PFS/OS/toxicity/pattern of<br>disease progression |
| OITROLC (Phase 3)<br>optimal timing for<br>radiation therapy | Upfront chemo plus concurrent radiotherapy to the primary and all metastatic sites versus a consolidative approach after two cycles of induction chemotherapy | Response rate / toxicity /<br>QOL                 |





# Oligometastatic Ca Prostate





frontiers in ONCOLOGY

ORIGINAL RESEARCH ARTICLE published: 22 January 2013 doi: 10.3389/fonc.2012.00215

## Stereotactic body radiation therapy in the treatment of oligometastatic prostate cancer

Kamran A. Ahmed<sup>1†</sup>, Brandon M. Barney<sup>2†</sup>, Brian J. Davis<sup>2</sup>, Sean S. Park<sup>2</sup>, Eugene D. Kwon<sup>3</sup> and Kenneth R. Olivier<sup>2</sup>\*

Purpose/objective(s): To report outcomes and toxicity for patients with oligometastatic  $(\leq$ 5 lesions) prostate cancer (PCa) treated with stereotactic body radiation therapy (SBRT). Materials/methods: Seventeen men with 21 PCa lesions were treated with SBRT between February 2009 and November 2011. All patients had a detectable prostate-specific antigen (PSA) at the time of SBRT, and 11 patients (65%) had hormone-refractory (HR) disease. Treatment sites included bone (n = 19), lymph nodes (n = 1), and liver (n = 1). For patients with bone lesions, the median dose was 20 Gy (range, 8-24 Gy) in a single fraction (range, 1-3). All but two patients received some form of anti-androgen therapy after completing SBRT. Results: Local control (LC) was 100%, and the PSA nadir was undetectable in nine patients (53%). The first post-SBRT PSA was lower than pre-treatment levels in 15 patients (88%), and continued to decline or remain undetectable in 12 patients (71%) at a median follow-up of 6 months (range, 2-24 months). Median PSA measurements before SBRT and at last follow-up were 2.1 ng/dl (range, 0.13-36.4) and 0.17 ng/dl (range, <0.1-140), respectively. Six (55%) of the 11 patients with HR PCa achieved either undetectable or declining PSA at a median follow-up of 4.8 months (range, 2.2-6.0 months). Reported toxicities included one case each of grade 2 dyspnea and back pain, there were no cases of grade  $\geq$ 3 toxicity following treatment. **Conclusion:** We report excellent LC with SBRT in oligometastatic PCa. More importantly, over half the patients achieved an undetectable PSA after SBRT. Further follow-up is necessary to assess the long-term impact of SBRT on LC, toxicity, PSA response, and clinical outcomes.

 Habl et al. BMC Cancer (2017) 17:361
 BMC Cancer

 DOI 10:1186/s12885-017-3341-2
 BMC Cancer

 RESEARCH ARTICLE
 Open Access

 Oligometastases from prostate cancer: local
 Image: Consumate Cancer

 Oligometastases from prostate cancer: local
 Image: Consumate Cancer

 treatment with stereotactic body
 2017

 Gregor Habl<sup>1,2\*</sup>, Christoph Straube<sup>1,2</sup>, Kilian Schiller<sup>1,2</sup>, Marciana Nona Duma<sup>1,2</sup>, Markus Oechsner<sup>1,2</sup>,
 2017

 Conclusion :
 •

 SBRT of bone metastases is a highly effective

- therapy with an excellent risk-benefit profile.
- **PFS limited due to high distant failure rate**,
- Biomarkers besides PSA for identifying purely oligometastasized patients
- SBRT offers high local cancer control rates in bone oligometastases of PC and can delay modification of systemic treatment.



#### SYSTEMATIC REVIEW

Stereotactic body radiotherapy (SBRT) in metachronous oligometastatic prostate cancer: a systematic review and meta-analysis on the current prospective evidence

<sup>1</sup>MICHAEL YAN, <sup>1</sup>NIKITHA MOIDEEN, <sup>2</sup>VANESSA FREITAS BRATTI and <sup>1</sup>FABIO YNOE DE MORAES

| First Author                          | Local<br>Control       | Local Ree<br>Free Surv | currence-<br>vival | Androgen<br>Deprivatio<br>Survival | on-Free                 | Biochemical<br>Recurrence-Free<br>Survival |                | Progression-Free<br>Survival |                | Treatment<br>Escalation-Free<br>Survival |                | Grade<br>≥ 3<br>Toxicity |
|---------------------------------------|------------------------|------------------------|--------------------|------------------------------------|-------------------------|--------------------------------------------|----------------|------------------------------|----------------|------------------------------------------|----------------|--------------------------|
|                                       | Overall<br>(%)         | 2 year<br>(%)          | Median<br>(mo)     | 2 year<br>(%)                      | Median<br>(mo)          | 2 year<br>(%)                              | Median<br>(mo) | 2 year<br>(%)                | Median<br>(mo) | 2 year<br>(%)                            | Median<br>(mo) | (%)                      |
| Muacevic (14)                         | 97                     | 96                     | NR                 |                                    |                         |                                            |                |                              |                |                                          |                | 0                        |
| Decaestecker<br>(13)                  | 100                    |                        |                    | 60                                 | 25                      |                                            |                | 35                           | 19             |                                          |                | 0                        |
| Kneebone (16)                         |                        |                        |                    |                                    |                         | 16                                         | 11             |                              |                |                                          |                | 0                        |
| Jereczek-Fossa<br>(15)                | 90                     | 84                     | NR                 |                                    |                         |                                            |                | 30                           | 17             |                                          |                | 0                        |
| Ost* (3)                              | 100                    |                        |                    | 44                                 | 21                      | 28                                         | 10             |                              |                |                                          |                | 0                        |
| Siva†(19)                             |                        | 93                     | NR                 | 48                                 |                         |                                            |                |                              |                |                                          |                | 3 -VCF                   |
| Gomez-<br>Iturriaga (17)              | 89                     |                        |                    |                                    |                         |                                            |                |                              |                |                                          |                | 0                        |
| Bowden†(20)                           |                        |                        |                    |                                    |                         |                                            |                |                              |                | 52                                       | 27             | 0                        |
| Pasqualetti (18)                      | 96                     |                        |                    |                                    | 29                      |                                            |                |                              |                |                                          |                | 0                        |
| Philips* (4)                          | 99                     |                        |                    |                                    |                         | 57                                         | NR             | 58                           | NR             |                                          |                | 0                        |
| Quantitative<br>Synthesis<br>(95% CI) | <b>97 (94-</b><br>100) | 88.7<br>(5.4) ‡        |                    | 52 (41-<br>62)                     | 24.7<br>(20.1-<br>29.2) | 33 (11-<br>55)                             |                | 39 (24-<br>54)               |                |                                          |                |                          |

CONCLUSION : SBRT is effective in controlling

- local disease burden in metachronous OMPC
- delaying clinical progression
- **initiation of ADT**.

Associated with minimal significant toxicities.

2020



# **Oligometastatic Colorectal ca**



2018

Radiotherapy and Oncology 2018 Contents lists available at ScienceDirect Volume 167, February 2022, Pages 187-194 Critical Reviews in Oncology / Hematology Original Article An analysis of a large multi-institutional journal homepage: www.elsevier.com/locate/critrevonc database reveals important associations between treatment parameters and clinical outcomes for stereotactic body radiotherapy Ablative stereotactic radiotherapy for oligometastatic colorectal cancer: (SBRT) of oligometastatic colorectal cancer Systematic review aad Sheikh <sup>a</sup>, Hanbo Chen <sup>b</sup>, Arjun Sahgal <sup>b</sup>, Ian Poon <sup>b</sup>, Darby Erler <sup>b</sup>, Serena Bodellino <sup>5</sup> J. Kobiela<sup>a</sup>, P. Spychalski<sup>a</sup>,<sup>a</sup>, G. Marvaso<sup>b</sup>, D. Ciardo<sup>b</sup>, V. Dell'Acqua<sup>b</sup>, F. Kraja<sup>c</sup>, 1- and 5-year local recurrence rates 13.6% and 44.3, SBRT for LC (local control) in CRC liver and lung respectively. oligometastases 2-and 5-year OS rates 76.1% and 35.9%, respectively. For liver LC rates : 50% - 100% after 1 year and 32% - 91% after 2 years. A biological equivalent dose of ≥120 Gy led to an **BED range 40.5–262.5 Gy**. improvement in local recurrence. For lung LC rates : 62% - 92% after 1 one year and from Lung metastasis was associated with improved local 53% - 92% after 2 years. recurrence. **BED range 51.3–262.5 Gy.** Larger total PTV size (≥17.5 cc) associated with worse Conclusions: SBRT of oligometastatic CRC offers high LC with **OS, PFS, and Widespread progression.** low morbidity and toxicity





- Most common intracranial neoplasm.
- Most common intracranial metastatic site is brain parenchyma.
- Advances in systemic cancer management has lead to higher incidence of brain metastasis.
- Advanced imaging techniques and early suspicion has made it possible to detect oligo brain metastasis.





### **Primaries metastasizing to Brain:**

- Lung 39-56%
- Breast 13-30%
- Melanoma 6-11%
- Renal 2-6%
- Colorectal 3-4%

### **Conventional Management of Brain Metastases**

- Medical decompression -Steroids, Mannitol, Glycerol
- 1-3 lesions, resectable Surgical resection + Whole Brain Radiotherapy
- Multiple/unresectable lesions Whole Brain Radiotherapy

### **Decision of Management depends upon:**

- Performance status
- Nature of metastasis
- Primary site
- Extracranial disease status
- Expected survival



| Survival for Patients vvith Brain Metastases<br>Paul W. Sperduto, Norbert Kased, David Roberge, Zhiyuan Xu, Ryan Shanley, Xianghua Luo, Penny K. Sneed, |             |                                            |                                            |                          |      |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------|--------------------------------------------|--------------------------|------|--|--|
|                                                                                                                                                         | Aco         | curate and Facile I<br>rvival for Patients | Diagnosis-Specific T<br>With Brain Metasta | Fool to Estimate<br>ases | 1    |  |  |
|                                                                                                                                                         | Su          | mmary Report on                            | the Graded Progno                          | ostic Assessment         | : An |  |  |
|                                                                                                                                                         |             |                                            |                                            |                          |      |  |  |
| Journa                                                                                                                                                  | l of Clinic | CAL ONCOLOGY                               | ORIGINA                                    | LREPORT                  |      |  |  |

|          | KPS | Age | No. of Brain<br>Mets | Extracranial<br>Mets | Tumor<br>Subtype |
|----------|-----|-----|----------------------|----------------------|------------------|
| Lung     | Υ   | Υ   | Υ                    | Υ                    | -                |
| Breast   | Υ   | Υ   | -                    | -                    | Y                |
| Melanoma | Υ   | -   | Y                    | -                    | -                |
| RCC      | Υ   | -   | Υ                    | -                    | -                |
| GI       | Y   | -   | -                    | -                    | -                |







### **Evolving end points**

- Survival
- Brain tumour control
- Quality of life
- Cognitive function

### WBRT

#### Pros:

- Most chemotherapy drugs do not cross BBB
- Metastases to CNS can be multifocal
- Reduced steroid dependence

Cons:

- Cognitive decline
- Lack of survival benefit





# Surgery + RT vs. RT alone

| Trial          | Ν  | Endpoint            | Surgery +RT            | RT Alone              | p value        | Ref          |
|----------------|----|---------------------|------------------------|-----------------------|----------------|--------------|
| Patchell et al | 48 | OS<br>Local failure | 40weeks<br>20%         | 15weeks<br>52%        | <0.02<br><0.02 | NEJM, 1990   |
| Noordjik et al | 63 | OS<br>FIS           | 10months<br>7.5 months | 6months<br>3.5 months | 0.04<br>0.06   | IJROBP, 1994 |
| Mintz et al    | 84 | OS<br>FIS %         | 5.6%<br>32%            | 6.3months<br>32%      | NS<br>NS       | Cancer, 1996 |

For single brain metastases, 2 out of 3 trials have shown surgical resection+ RT has OS & LC advantage over RT alone.

### Surgery vs SRS

- No randomized trials
- Similar LC rates 80-90% (when either one is combined with WBRT)



Lancet Oncol 201

## Surgery + SRS vs Surgery alone

Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial

Anita Mahajan, Salmaan Ahmed, Mary Frances McAleer, Jeffrey S Weinberg, Jing Li, Paul Brown, Stephen Settle, Sujit S Prabhu, Frederick F Lang,

- 1-3 metastases;
- resection cavity =<4cm</li>
- SRS done within 30 days of resection; dose=12 -16Gy
- Median FU =11.1 months
- Median 12-month freedom from local recurrence significantly better for SRS (72%) vs observation (43%)

### SURGERY + SRS vs SURGERY + WBRT

Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, phase 3 trial Lancet Oncol 2017

Paul D Brown, Karla V Ballman, Jane H Cerhan, S Keith Anderson, Xiomara W Carrero, Anthony C Whitton, Jeffrey Greenspoon, Ian F Parney,

- One resected brain metastases
- Resection cavity <= 5cm</li>
- SRS (12-20Gy) vs. WBRT(30Gy/10#/2weeks or 37.5Gy/15#/3 weeks)
- Significantly longer cognitive –deterioration free survival with SRS (median 3.7 vs 3 months)
- Significantly poorer surgical bed control at 6 months with SRS (80.4%) vs WBRT (87.1%)
- Median OS similar :12.2 months (SRS) vs 11.6 months (WBRT)







# <u>SRS + WBRT vs WBRT</u>

Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial

- OS benefit for single unresectable brain met (no breast cancer patients analysed in this subgroup),
- LC benefit for 2-3 brain mets,
- steroid-usage lowered with SRS.
- Subset analysis shows OS benefit for single brain met, NSCLC, RPA class I, tumor < 2cm</li>
- For breast cancer patients with 1-3 brain metastases, presence of extracranial disease, TNBC & having >1 brain metastasis predicts for worse OS.

# <mark>SRS + WBRT vs SRS</mark>

Phase 3 Trials of Stereotactic Radiosurgery With or Without Whole-Brain Radiation Therapy for 1 to 4 Brain Metastases: Individual Patient Data Meta-Analysis

Arjun Sahgal, MD,\* Hidefumi Aoyama, MD, PhD,<sup>†</sup> Martin Kocher, MD,<sup>‡</sup>

- Meta-analysis of 3 randomised trials
- SRS alone 51%; SRS+WBRT 49%
- For patients <50 years age, 1-4 brain mets, SRS has OS advantage over SRS + WBRT
- Patients with single metastases had significantly better OS than with 2-4 metastases.
- Local control significantly better with WBRT in all age groups







A randomized phase III trial of stereotactic radiosurgery (SRS) versus observation for patients with asymptomatic cerebral oligo-metastases in non-small-cell lung cancer

S. H. Lim<sup>1</sup>, J. Y. Lee<sup>1</sup>, M.-Y. Lee<sup>1</sup>, H. S. Kim<sup>1</sup>, J. Lee<sup>1</sup>, J.-M. Sun<sup>1</sup>, J. S. Ahn<sup>1</sup>, S.-W. Um<sup>2</sup>, H. Kim<sup>2</sup>,

- Metastatic NSCLC;
- **1-4 asymptomatic brain metastases**
- SRS (N=49) followed by chemotherapy vs upfront chemotherapy (N=49)
- •
- No difference in OS / time to CNS progression





# Dose protocols-Brain Metastases

### S<mark>RS: (RTOG 90-05)</mark>

- <2cm 24Gy</li>
- 2.1- 3 cm 18Gy
- 3.1-4 cm 15 Gy

#### **FSRT**:

- 30Gy/5#
- 40Gy/10#

- Target=tumour+ small margin (1-2 mm)
- Unlike conventional RT, dose distribution is deliberately made inhomogeneous, by covering periphery of tumor by 50-80%, rather than 95%.
- This ensures high dose at the centre of the tumour as well as rapid fall off of dose beyond the periphery of the tumour.



#### At presentation





# **Brain Metastases**

<mark>6 months post RT</mark>





# Summary of trials



|                                             | Outcome                                                          | Level of evidence |
|---------------------------------------------|------------------------------------------------------------------|-------------------|
| SRS+WBRT Vs WBRT alone                      | Improve survival in single<br>metastatic disease with<br>KPS>=70 | Level I           |
|                                             | Improve local control                                            | Level II          |
|                                             | Improve survival in multiple metastatic disease                  | Level III         |
| SRS Vs WBRT+SRS                             | Equivalent survival                                              | Level II          |
|                                             | improves cognitive function                                      | Level II          |
|                                             | Higher out of field metastatic potential                         | Level II          |
| Surgery+WBRT Vs SRS+/-<br>WBRT              | Equivalent survival in <3cm                                      | Level II          |
| SRS Vs WBRT                                 | Better than WBRT up to 3 mets in survival                        | Level III         |
| WBRT with hippocampal<br>sparing +memantine | Delayed cognitive decline                                        | Level II+         |





# SBRT for Oligomets to Spine







6- R pedicle

47th ICRO, NRSMC&H Kolkata, 12th -13th April 2025

KPS > 40-50



| Bilsky Grade | Details                                                                 |     |  |
|--------------|-------------------------------------------------------------------------|-----|--|
| 0            | Absence of epidural disease                                             |     |  |
| <b>1</b> a   | Impingement without deformation of thecal sac                           |     |  |
| 1b           | Impingement and deformation of the thecal sac                           |     |  |
| 1c           | Deformation of the thecal sac with abutment of the spinal con           | ď   |  |
| 2            | Epidural spinal cord compression with visible cerebrospinal fluid (CSF) |     |  |
| 3            | Epidural spinal cord compression without visible CSF                    | (a) |  |





| Table 4 Su   | mmary of contouring guidelines for GTV, CTV, and PTV in spinal stereotactic radiosurgery                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Target volum | e Guidelines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GTV          | <ul> <li>Contour gross tumor using all available imaging</li> <li>Include epidural and paraspinal components of tumor</li> </ul>                                                                                                                                                                                                                                                                                                                                                                            |
| CTV          | <ul> <li>Include abnormal marrow signal suspicious for microscopic invasion</li> <li>Include bony CTV expansion to account for subclinical spread</li> <li>Should contain GTV</li> <li>Circumferential CTVs encircling the cord should be avoided except in rare instances where the vertebral body, bilateral pedicles/lamina, and spinous process are all involved or when there is extensive metastatic disease along the circumference of the epidural space without spinal cord compression</li> </ul> |
| PTV          | <ul> <li>Uniform expansion around CTV</li> <li>CTV to PTV margin ≤3 mm</li> <li>Modified at dural margin and adjacent critical structures to allow spacing at discretion of the treating physician unless GTV compromised</li> <li>Never overlaps with cord</li> <li>Should contain entire GTV and CTV</li> </ul>                                                                                                                                                                                           |





# **Oligomets to Adrenal**



### Stereotactic body radiation therapy for adrenal metastases: a retrospective review of a noninvasive therapeutic strategy

#### Jordan Torok<sup>1</sup>, Rodney E Wegner<sup>1</sup>, Steven A Burton<sup>1</sup> & Dwight E Heron<sup>11</sup>

"Department of Rodiation Oncology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA

'Author for correspondence: Tel.:+1 412.623.6723 = Fax: +1 412.647.1161 = herond2@upmc.edu

| Table 1.          | Patient          | and disea | se character                      | istics.                     |                                                 | M                                  | ULTISPECIALITY     |
|-------------------|------------------|-----------|-----------------------------------|-----------------------------|-------------------------------------------------|------------------------------------|--------------------|
| Patient<br>number | Lesion<br>number | Primary   | Time to<br>metastases<br>(months) | Additional sites of disease | Size of<br>adrenal<br>lesion (cm <sup>3</sup> ) | Rx dose<br>(Gy)/fraction<br>number | Prior<br>n surgery |
| 1                 | 1                | HCC       | 8                                 | None                        | 123.6                                           | 16.0/1                             | No                 |
|                   | 2                | HCC       | 8                                 |                             | 115                                             | 16.0/1                             | No                 |
| 2                 | 1*               | HCC       | 22                                | None                        | 85.9                                            | 0.1/1                              | Yes                |
| 3                 | 1                | NSCLC     | 4                                 | Brain                       | 46.8                                            | 15.0/1                             | No                 |
| 4                 | 1'               | NSCLC     | 28                                | Brain, lung                 | 5                                               | 22.0/1                             | Yes                |
| 5                 | 1*               | NSCLC     | 12                                | None                        | 15.9                                            | 18.0/1                             | Yes                |
| 6                 | 11               | NSCLC     | 0                                 | Brain                       | 6.4                                             | 36.0/3                             | No                 |
|                   | 2**              | NSCLC     | 0                                 | -                           | 68.8                                            | 24.0/3                             | No                 |
| 7                 | 1*               | SCLC      | 0                                 | Brain                       | 63.8                                            | 27.0/3                             | No                 |

#### **Executive summary**

Pathology proved metastatic lesions.

\*Patient received previous external beam radiotherapy to a dose of 40 Gy, 16 months prior to SBRT. HCC: Hepatocellular carcinoma; NSCLC: Non-small-cell lung cancer; SBRT: Stereotactic body radiation therapy;

HCC: Hepatocellular carcinoma; NSCLC: Non-small-cell lung cancer; SBRT: Stereotactic body radiation therapy; SCLC: Small-cell lung cancer.

#### **Adrenal metastases**

- = Detection is on the rise with advanced imaging techniques in routine follow-up of primary malignancies.
- The majority of metastases are adenocarcinomas, with the lung as the most common primary site.
- Adrenal metastases often occur in the setting of widespread metastatic disease, but up to 25% represent the only site of metastasis.

#### Local therapy

- Both open and laparoscopic adrenalectomy, in the setting of solitary adrenal gland metastases, can result in long-term disease-free survival.
- = Radiofrequency ablation is an additional treatment option shown to induce local control, but long-term studies are lacking.

#### Stereotactic body radiation therapy for the treatment of adrenal metastases

- Stereotactic body radiation therapy can be safely delivered in single fraction (16 Gy) or hypofractionated treatment regimens (27 Gy over three fractions).
- A radiographic response was observed in nearly half of the treated lesions, although the majority of lesions eventually failed locally within 1 year.
- Median overall survival from stereotactic body radiation therapy was 8 months



König et al. Radiation Oncology (2020) 15:30 https://doi.org/10.1186/s13014-020-1480-0

### Radiation Oncology



Contents lists available at ScienceDirect

Clinical and Translational Radiation Oncology

journal homepage: www.sciencedirect.com/journal/clinical-and-translational-radiation-oncology

#### RESEARCH



**Open Access** 

Stereotactic body radiotherapy (SBRT) for adrenal metastases of oligometastatic or oligoprogressive tumor patients

Laila König<sup>1,2,3</sup><sup>\*</sup><sup>(a)</sup>, Matthias F. Häfner<sup>1,2,3</sup>, Sonja Katayama<sup>1,2,3</sup>, Stefan A. Koerber<sup>1,2,3</sup>, Eric Tonndorf-Martini<sup>1,2,3,4</sup>,

| 5                                            | Total number of patients (9 |
|----------------------------------------------|-----------------------------|
| Yes                                          | 9 (32.1%)                   |
| Chemotherapy                                 | 6 (66.7%)                   |
| Targeted therapy                             | 2 (22.2%)                   |
| Immunotherapy                                | 1 (11.196)                  |
|                                              | Mean                        |
| Total dose (Gy)                              | 47.3                        |
| Fractions (n)                                | 9                           |
| Single dose (Gy)                             | 5.6                         |
| BED <sub>10</sub> (Gy)                       | 73.5                        |
| Prescribed isodose line (%)                  | 89                          |
| Median GTV volume (range) in cm <sup>3</sup> | 27                          |
| Median PTV volume (range) in cm <sup>3</sup> | 111                         |

#### SBRT for adrenal metastases resulted in promising local control with only mild toxicity

Outcomes and toxicities in oligometastatic patients treated with stereotactic body radiotherapy for adrenal gland metastases: A multi-institutional retrospective study

| ber <sup>1,23</sup> , Eric ' | Tonndorf-Martini <sup>1,2,3,4</sup> , A | . Baydoun <sup>#</sup> , H. Chen <sup>b</sup> , I. Poon <sup>b</sup> , S. Badellino <sup>®</sup> | Number                                                | 47                      |
|------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------|
|                              |                                         |                                                                                                  | Primary Site (nb (%))                                 |                         |
|                              | Total number of patients (%)            |                                                                                                  | Colorectal                                            | 3 (6.4)                 |
| 6                            | 9 (32,1%)                               |                                                                                                  | Hepatocellular                                        | 1 (2.1)                 |
|                              | 6 (66 704)                              |                                                                                                  | Kidney     Malanoma                                   | 4 (8.5)                 |
|                              | 0 (00.7%)                               |                                                                                                  | Melanome     NSCLC                                    | 30 (63.8)               |
|                              | 2 (22.2%)                               |                                                                                                  |                                                       | 1 (2 1)                 |
|                              | 1 (11.196)                              |                                                                                                  | Sarcoma                                               | 2(43)                   |
|                              | Mean                                    |                                                                                                  | SCLC                                                  | 4 (8.5)                 |
| 4                            | 473                                     |                                                                                                  | • Stomach                                             | 1 (2.1)                 |
|                              | */.5                                    |                                                                                                  | Histology (nb (%))                                    | 100 C 100 C 100 C 100 C |
|                              | 9                                       |                                                                                                  | Adenocarcinoma                                        | 26 (55.3)               |
|                              | 5.6                                     |                                                                                                  |                                                       | 4 (8.5)                 |
|                              | 73.5                                    | Dose (Gv) / Number of fracti                                                                     | ions (nh of lesions(%))                               | 4 (8.5)                 |
|                              | 80                                      | Dose (dy) / Number of fract                                                                      |                                                       | 6 (12.8)                |
|                              | 09                                      | • 24-28/3-5                                                                                      | 3 (5.3)                                               | 7 (14.9)                |
|                              | 27                                      | 30-35/3-5                                                                                        | 27 (47.4) ent (nb (%))                                |                         |
|                              | 111                                     | • 40-45/4-5                                                                                      | 10 (17.5)                                             | 26 (55.3)               |
|                              |                                         |                                                                                                  | 0 (15.9)                                              | 14 (29.8)               |
|                              | •                                       | • 50/5                                                                                           | 9 (15.8)                                              | 0 (0)                   |
| promi                        | sing                                    | • 50/10                                                                                          | 8 (14.0)                                              | 2 (4.2)                 |
|                              |                                         |                                                                                                  | Metastasis Timing                                     |                         |
|                              |                                         |                                                                                                  | <ul> <li>Synchronous</li> </ul>                       | 21 (44.7)               |
|                              |                                         |                                                                                                  | <ul> <li>Early metachronous (6–24 months)</li> </ul>  | 5 (10.6)                |
|                              |                                         |                                                                                                  | <ul> <li>Late metachronous (&gt;24 months)</li> </ul> | 21 (44.7)               |
|                              |                                         |                                                                                                  | Guckenberger et al. Classification                    |                         |
|                              |                                         |                                                                                                  | <ul> <li>Synchronous Oligometastatic</li> </ul>       | 21 (44.7)               |
|                              |                                         |                                                                                                  | Metachronous                                          | 16 (34.0)               |
|                              |                                         |                                                                                                  | Oligorecurrence                                       | 0 (17 0)                |
| 4741.14                      |                                         |                                                                                                  | Metachronous oligoprogression                         | 8 (17.0)                |
| 4/th 10                      | LKU, NKSIVIC&H KOlka                    | ata, 12th -13th April 2025                                                                       | <ul> <li>Repeat Oligorecurrence</li> </ul>            | 2 (4.3)                 |







# Oligometastasis to Liver



Adduation Oncology (2018) 13:26 https://doi.org/10.1186/s13014-018-0969-2 RESEARCH Open Access

Stereotactic Body Radiotherapy (SBRT) for liver metastasis – clinical outcomes from the international multi-institutional RSSearch® Patient Registry

- Median tumor volume 40 cm3
- median SBRT dose 45 Gy (12–60 Gy) delivered in a median of 3 fractions [1–5].
- Median OS greater for patients with CRC (27 mo), breast (21 mo) and gynecological (25 mo) metastases compared to lung (10 mo), other gastro-intestinal (GI) (18 mo) and pancreatic (6 mo) primaries (p < 0.0001).</li>
- Smaller tumor volumes (< 40 cm3) correlated with improved OS (25 months vs 15 months p = 0.0014).
- BED10 ≥ 100 Gy was also associated with improved OS (27 months vs 15 months p < 0.0001).</li>
- No difference in LC based on histology of primary tumor



# Table 2 – Dose prescription for SBRT in 3 fractions recommended according to lesion size.

| Lesion size | Prescription dose |
|-------------|-------------------|
| ≤3 cm       | 48-60 Gy          |
| >36 cm      | 60–75 Gy          |

| Table 3 – Recommended OARs dose constraints for SBRT of liver metastasis in 3 fractions.                             |                                            |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|
| OAR                                                                                                                  | Dose-volume limits                         |  |  |  |
| Healthy liver (total liver volume minus cumulative GTV)                                                              | >700 cm³ at <15 Gyª                        |  |  |  |
| Stomach, duodenum, small intestine                                                                                   | D 3 cm <sup>3</sup> at <21 Gy <sup>b</sup> |  |  |  |
| Both kidneys                                                                                                         | V 15 Gy at <35%                            |  |  |  |
| Spinal cord                                                                                                          | D 1 cm <sup>3</sup> at <18 Gy              |  |  |  |
| Heart                                                                                                                | D1cm3 at <30 Gy                            |  |  |  |
| Rib                                                                                                                  | D 30 cm <sup>3</sup> at <30 Gy             |  |  |  |
| <ul> <li>Volume of healthy liver &gt;1000 cm<sup>3</sup>.</li> <li><sup>b</sup> Distance by GTV &gt;8 mm.</li> </ul> | 155                                        |  |  |  |





# Why discussion about Oligometstatic disease is necessary??

- Improved imaging (PET-CT)
- Increased availability of locoregional treatments (radiofrequency, stereotactic radiotherapy, vertebroplasty, minimally invasive surgery)
- Availability of more efficacious systemic treatments (targeted therapies for oncogene addicted NSCLC, immunotherapy)
- Multidisciplinary approach



#### Primary endpoint:

 Overall Survival Defined as time from randomization to death from any cause

#### Secondary endpoints

- Progression-free survival Defined as time from randomization to disease progression at any site or death Time to development of new metastatic lesions
- Quality of life : Assessed with the Functional Assessment of Cancer Therapy
- Toxicity: Assessed by the National Cancer Institute Common Toxicity Criteria (NCI-CTC) version 4 for each organ treated (e.g. liver, lung, bone)

| Г | Table 1 Allowable doses and fractionations* |                   |                     |                       |  |  |  |  |
|---|---------------------------------------------|-------------------|---------------------|-----------------------|--|--|--|--|
|   | Number of<br>Fractions                      | Preferred<br>Dose | Acceptable<br>Doses | Major Deviation       |  |  |  |  |
|   | 1                                           | 20 Gy             | 16–24 Gy            | < 16 Gy or > 24<br>Gy |  |  |  |  |
|   | 3                                           | 30 Gy             | 24–33 Gy            | < 24 Gy or > 33<br>Gy |  |  |  |  |
|   | 5                                           | 35 Gy             | 25–40 Gy            | < 25 Gy or > 40<br>Gy |  |  |  |  |

\*Note that centres should use doses that standard at their institutions based on the specific clinical situation, within these guidelines. For example, if the standard dose for a 2.5 cm brain metastasis is 24 Gy in 3 fractions, which is an 'acceptable dose', that should be used instead of the 'preferred dose'



### **Stereotactic Ablative Radiotherapy for the Comprehensive Treatment of Oligometastatic Cancers: Long-Term Results of the SABR-COMET Phase II Randomized Trial**

David A. Palma, MD, PhD<sup>1</sup>; Robert Olson, MD, MSc<sup>2</sup>; Stephen Harrow, MBChB, PhD<sup>3</sup>; Stewart Gaede, PhD<sup>1</sup>

|                                | Arm, No. (%)        |                  |                                 | Arm, No. (%         |       |
|--------------------------------|---------------------|------------------|---------------------------------|---------------------|-------|
| Characteristic                 | Control<br>(n = 33) | SABR<br>(n = 66) | Characteristic                  | Control<br>(n = 33) | (п    |
| Median age, years (IQR)        | 69 (64-75)          | 67 (59-74)       | No. of metastases               |                     |       |
| Sex                            |                     |                  | 1                               | 12 (36)             | 30 (4 |
| Male                           | 19 (58)             | 40 (61)          | 2                               | 13 (40)             | 19 (2 |
| Female                         | 14 (42)             | 26 (39)          | 3                               | 6 (18)              | 12 (  |
| Site of original primary tumor |                     |                  | 4                               | 2 (6)               | 2 (   |
| Breast                         | 5 (15)              | 13 (20)          | 5                               | 0 (0)               | 3 (   |
| Colorectal                     | 9 (27)              | 9 (14)           | Location of metastases (n = 191 |                     |       |
| Lung                           | 6 (18)              | 12 (18)          | lesions)                        |                     |       |
| Prostate                       | 2 (6)               | 14 (21)          | Adrenal                         | 2 (3)               | 7 (   |
| Othor                          | 11 (22)             | 19 (27)          | Bone                            | 20 (31)             | 45 (3 |
| Uner                           | 11 (55)             | 10 (27)          | Liver                           | 3 (5)               | 16 (  |



|                                             | Ann, no. (76)       |                  |  |
|---------------------------------------------|---------------------|------------------|--|
| Characteristic                              | Control<br>(n = 33) | SABR<br>(n = 66) |  |
| No. of metastases                           |                     |                  |  |
| 1                                           | 12 (36)             | 30 (46)          |  |
| 2                                           | 13 (40)             | 19 (29)          |  |
| 3                                           | 6 (18)              | 12 (18)          |  |
| 4                                           | 2 (6)               | 2 (3)            |  |
| 5                                           | 0 (0)               | 3 (5)            |  |
| Location of metastases (n = 191<br>lesions) |                     |                  |  |
| Adrenal                                     | 2 (3)               | 7 (6)            |  |
| Bone                                        | 20 (31)             | 45 (35)          |  |
| Liver                                       | 3 (5)               | 16 (13)          |  |
| Lung                                        | 34 (53)             | 55 (43)          |  |
| Other <sup>a</sup>                          | 5 (8)               | 4 (3)            |  |

2020

| CONC  | ilision: |
|-------|----------|
| 00110 |          |

- with longer-term follow-up, SABR achieved a 22-month median OS benefit in patients with a controlled primary tumor and 1-5 oligometastases
- Even with SABR, many patients ٠ progress with new metastases, likely be cause of the presence of occult micrometastatic disease at presentation, but some can receive salvage therapy with repeat SABR.







| Study                                                                      | Primary  | Number | Protocol                                                              | Results                                           |                                                                                                                                 |
|----------------------------------------------------------------------------|----------|--------|-----------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| MDACC/<br>Colorado Trial:<br>Phase 2<br>(Gomez, Lancet Oncology<br>2016)   | NSCLC    | 49     | Local<br>consolidation Vs<br>maintenance<br>therapy or<br>observation | PFS better in<br>SABR + mChemo<br>arm. (p=0.0054) | Selection of favourable candidates <ul> <li>Tumour Biology and growth kinetics.</li> </ul>                                      |
| UT<br>Southwestern<br>Trial, Phase 2<br>(lyenger et al JAMA Oncol<br>2018) | NSCLC    | 29     | mChemo Vs<br>SABR+ mChemo                                             | PFS better in<br>SABR+ mChemo<br>(p=0.01)         | <ul> <li>Clinical scenario:</li> <li>I. Oligometastasis at presentation.</li> <li>II. Residual oligometastasis after</li> </ul> |
| STOMP Trial<br>Phase 2<br>(Ost et al J Clin Oncology<br>2018)              | Prostate | 62     | Surveillance vs<br>metastatic<br>directed therapy                     | PFS better in<br>LCT arm<br>(p=0.0054)            | systemic therapy.                                                                                                               |
| ORIOLE<br>(Radwan et al BMC<br>Cancer 2017)                                | Prostate | 54     | Observation Vs<br>SABR                                                | PFS better in<br>SABR arm<br>(p=0.03)             | curative locoregional therapy.                                                                                                  |



# **RTOG SBRT Protocol**



RADIATION THERAPY ONCOLOGY GROUP

**RTOG 0631** 

PHASE II/III STUDY OF IMAGE-GUIDED RADIOSURGERY/SBRT FOR LOCALIZED SPINE METASTASIS

Safety and Efficacy of a Five-Fraction Stereotactic Body Radiotherapy Schedule for Centrally Located Non–Small-Cell Lung Cancer: NRG Oncology/RTOG 0813 Trial



#### **HHS Public Access**

Author manuscript Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2016 November 15

Published in final edited form as:

Int J Radiat Oncol Biol Phys. 2015 November 15; 93(4): 757-764. doi:10.1016/j.ijrobp.2015.07.2260.

NRG Oncology RTOG 0915 (NCCTG N0927): A Randomized Phase II Study Comparing 2 Stereotactic Body Radiation Therapy (SBRT) Schedules for Medically Inoperable Patients with Stage I Peripheral Non-Small Cell Lung Cancer RADIATION THERAPY ONCOLOGY GROUP

**RTOG 0438** 

A PHASE I TRIAL OF HIGHLY CONFORMAL RADIATION THERAPY FOR PATIENTS WITH LIVER METASTASES

- Dose Prescription
- Target coverage
- OAR Dose constraints.



# INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY • BIOLOGY • PHYSICS Articles Publish Topics Multimedia CME About Contact

ORAL SCIENTIFIC SESSION - Volume 102, Issue 3, Supplement , S68-S69, November 01, 2018

Phase I Trial of Stereotactic Body Radiation Therapy (SBRT) to Multiple Metastatic Sites: A NRG Oncology Study SJ. Chmura<sup>1</sup> · K. Winter<sup>2</sup> · J.K. Salama<sup>3</sup> · ... · E.R. Sigurdson<sup>14</sup> · J. Moughan<sup>35</sup> · J.R. White<sup>9</sup> ... Show more <mark>2018</mark>



#### NRG-BR001 Protocol

- 3-4 mets or 2 mets within 5 cm amenable to SBRT from breast, lung, or prostate cancer
- ECOG performance 0-2
- Mets categorized into 7 anatomic locations with initial starting dose:
- 1. Bone/Osseous (BO)- 30Gy/10#
- 2. Spinal/Paraspinal (S/P)- 30Gy/10#
- 3. Peripheral Lung (PI)-45Gy/3#
- 4. Central Lung (CL)- 50Gy/5#
- 5. Abdominal/Pelvic (AP)- 45Gy/3#
- 6. Mediastinal/Cervical (MC)- 50Gy/5#
- 7. Liver (L))- 45Gy/3#

| Name/type                                        | Primary                    | Intervention                                                             | Prior treatment             | Endplint             | # of met | Status/expe Apollo<br>completion MULTISPECIALITY HOSP |
|--------------------------------------------------|----------------------------|--------------------------------------------------------------------------|-----------------------------|----------------------|----------|-------------------------------------------------------|
| STOP-NSCLC RCT II                                | NSCLC                      | 1:2 SOC vs. SBRT to all<br>oligo-progressive lesions                     | CHT ≤6 weeks<br>prior       | PFS                  | ≤5       | Recruiting/04/2020                                    |
| SABR-COMET (15)<br>RCT II                        | NSCLC                      | 1:2 SOC <i>vs.</i> SOC + SABR to all sites                               | CHT ≥4 weeks<br>prior       | os                   | ≤5       | Active, not<br>recruiting/11/2020                     |
| SARON-trial RCT III                              | NSCLC                      | Platinum-based<br>doublet CHT <i>vs.</i> SOC +<br>conventional RT + SABR | None                        | os                   | ≤3       | Recruiting/08/2022                                    |
| HALT-trial RCT II/III                            | NSCLC                      | 2:1 continued TKI + SBRT<br>vs. continued TKI only                       | ткі                         | PFS                  | ≤3       | Recruiting/03/2021                                    |
| SABR for<br>oligometastases<br>non-randomized II | Any                        | SABR to all sites for all<br>patients                                    | CHT ≥2 days<br>prior        | Tox, CoL             | ≤5       | Recruiting/10/2022                                    |
| STOMP-trial (16)<br>RCT II                       | Prostate                   | 1:1 active surveillance vs.<br>surgery/SBRT                              | Surgery/RT or<br>both       | ADT-1 ee<br>survival | ≤3       | Ongoing/05/2017                                       |
| CORE-trial<br>RCT II/III                         | NSCLC,<br>prostate, breast | 1:1 SOC vs. SOC + SBRT                                                   | CHT ≥4–6 months<br>prior    | PFS                  | ≤3       | Recruiting/10/2021                                    |
| NRG BR002-trial<br>RCT II/III                    | Breast                     | 1:1 SOC vs. SOC + SBRT<br>or surgery                                     | ≤6 months first<br>line CHT | PFS - OS             | ≤2       | Recruiting/12/2022                                    |
| SABR-SCAN-trial<br>RCT II                        | CRC                        | 1:1 immediate vs. delayed<br>SABR of pulmonary<br>metastases             | No prior RT<br>allowed      | PFS                  | ≤3       | Recruiting/06/2019                                    |

PLATION OF

#, number. NSCLC, non-small cell lung cancer; RCT, randomized controlled trial; SOC, standard of care; SBRT, stereotactic body radiation therapy; PFS, progression free survival; OS, overall survival; SABR, stereotactic ablative radiotherapy; CRC, colorectal cancer; TKI, tyrosine-kinase-inhibitor.





# **Oligometastasis : take home messages for a Rad Onc:**

- Patients with Oligo metastatic disease represents a heterogonous group.
- Effective systemic and supportive therapies has increased life expectancy of metastatic patients requiring better QoL.
- Local High Dose RT can give durable Local control in patients with
- Good PS
- Longer Disease free interval
- Smaller size mets and lesser no. of organ involvement
- Statistically significant Survival benefit with treatment of oligometastatic disease is still not proven for many subsites.
- Choice of treatment should be personalized, determined by various factors including patient preferences and clinical scenario.





# Thank You.....