# Acute Radiation Syndrome and Medical Management of Radiological Disasters



Clinical presentation of acute Radiation syndrome

Specific Learning objective:

Get familiarised with the disastrous health effects of high dose of uncontrolled Radiation exposure

- Get sensitised about Acute Radiation Syndrome.
- Introduce the students to clinical diagnosis of Acute Radiation Syndrome
- Able to recognize the signs, symptoms and management of acute radiation syndrome/Radiological disaster situations

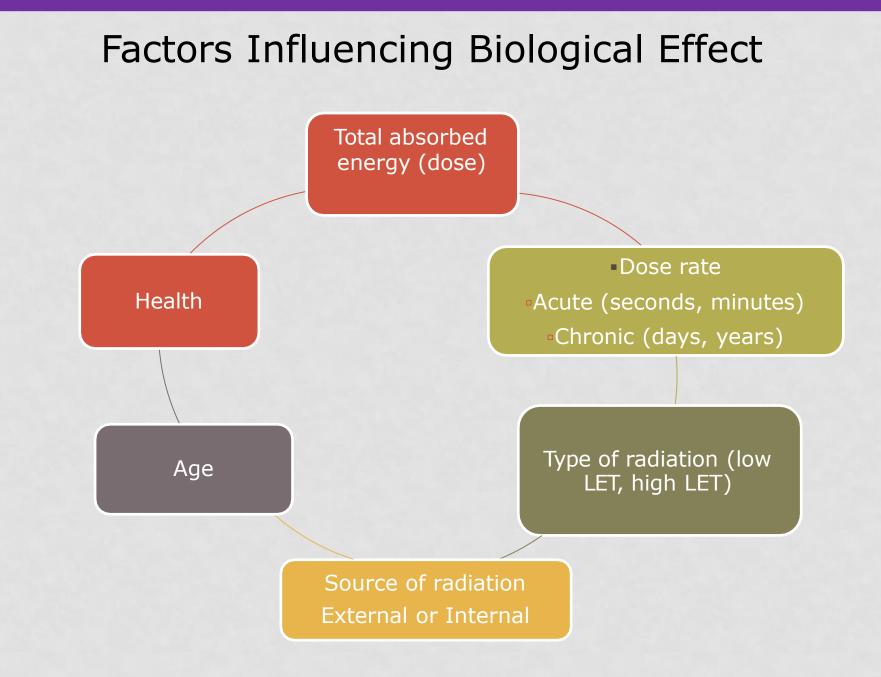
### The learners should know

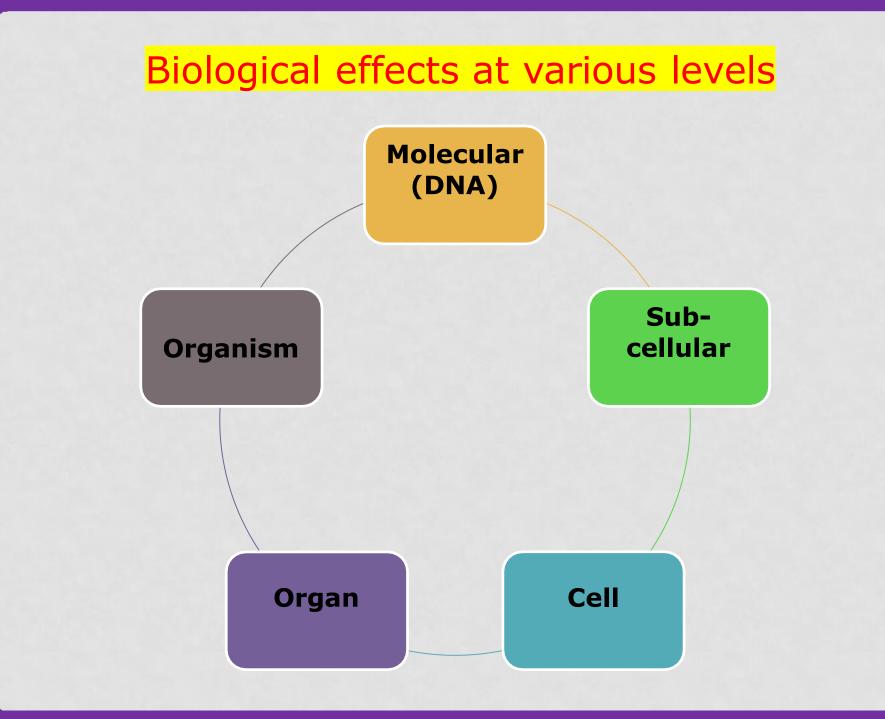
- What is Acute Radiation Syndrome (ARS)
- Disastrous Health effects of high dose of uncontrolled Radiation
- How a Radiation Disaster can be avoided by following safety norms in medical application
- Able to recognize the signs and symptoms of radiation exposure
- Aware of clinical diagnosis of ARS

### Introduction

It is not feasible to demonstrate a patient who has been exposed to uncontrolled radiation and presents with effects of Acute Radiation Syndrome

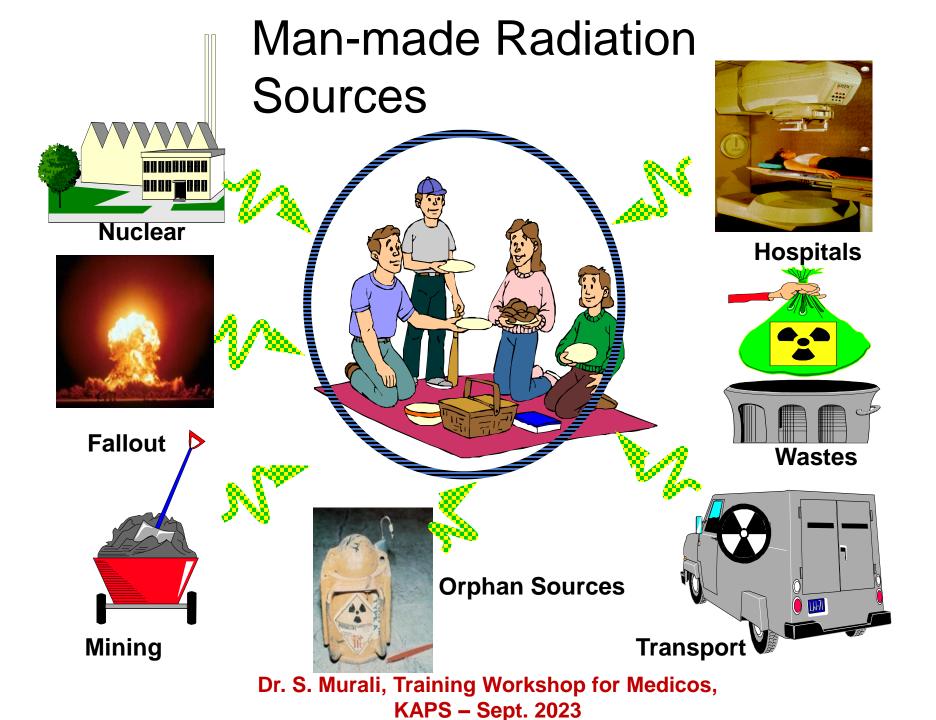
Patients undergoing therapeutic radiation for various malignancy has acute effects of radiotherapy which is manageable


#### Long term Effects of Radiation Exposure

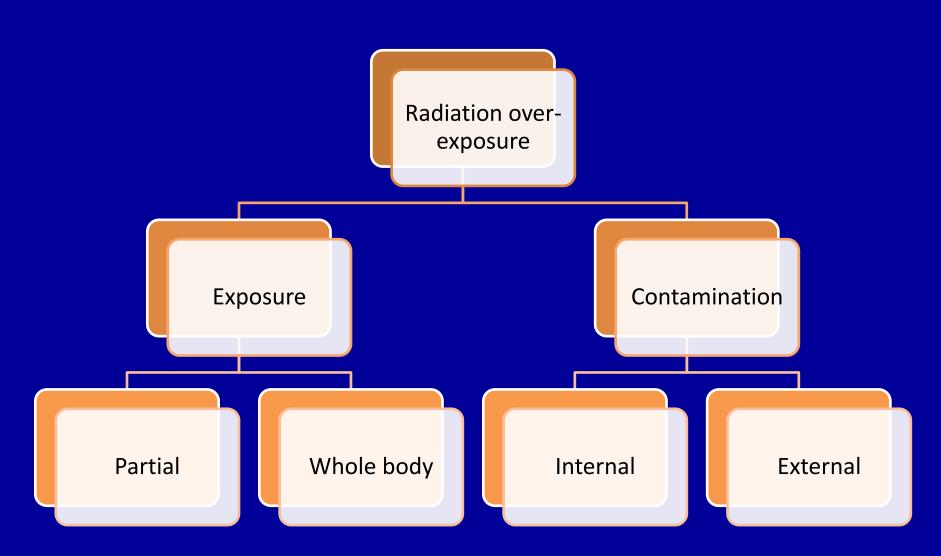

#### Information comes from:

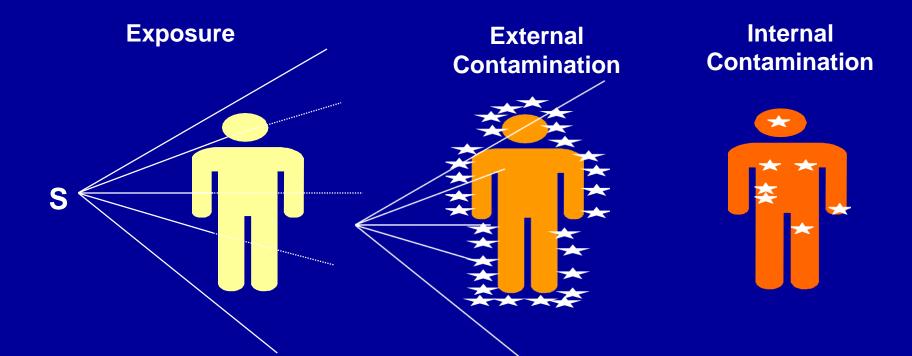
Studies of humans (epidemiology) Studies of animals and plants (experimental radiobiology) Fundamental studies of cells and their components (cellular and molecular biology)

The key to understanding the health effects of radiation


is the interaction between these sources of information.







#### Average Annual Radiation Dose: 300 mrem (3 mSv)





### **Classification of Radiation Overexposure**





Exposure to Radiation Source (External)
Contamination (External And/or Possible Internal)

#### Exposure never leads to Contamination

#### But

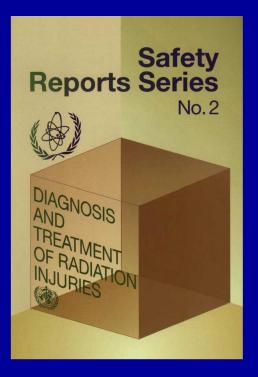
#### Contamination always leads to Exposure

#### **CRI-COMBINED RADIATION INJURY-CRI**

The above referred radiation injuries can coexist with thermal burns and traumatic injuries, complicating the management.

#### **International Nuclear Event Scale**




# **Definition of Radiation Accident**

Accident is defined as an unintentional or unexpected happening that is undesirable or unfortunate, especially one resulting in injury, damage, harm or loss

Radiation accident here can be defined as a situation which results in any unplanned radiation exposure or any unplanned release of radioactive material leading to radiation exposure to members/life stock

#### Accidental radiation exposure

### Diagnosis and Treatment of Radiation Injuries 1998 IAEA and WHO

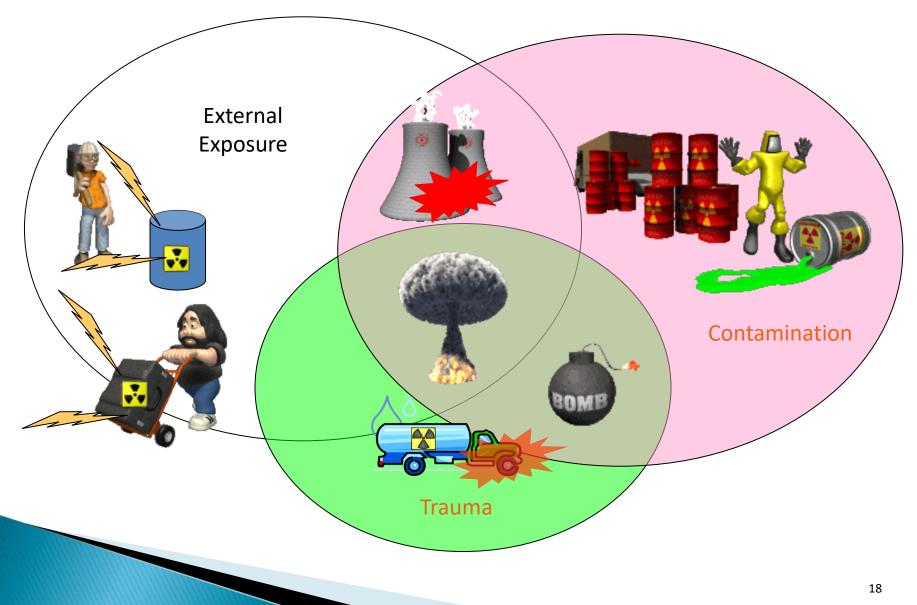


Common radiation sources, facilities and exposure mode in accidental exposure

| Group | Source and/or facility          | External<br>exposure | Contamination | Mixed |
|-------|---------------------------------|----------------------|---------------|-------|
| I     | Critical assembly               | Yes                  | Yes           | Yes   |
|       | Reactor                         | Yes                  | Yes           | Yes   |
|       | Fuel element manufacture        | Yes                  | Yes           | Yes   |
|       | Radiopharmaceutical manufacture | Yes                  | Yes           | Yes   |
|       | Fuel reprocessing plant         | Yes                  | Yes           | Yes   |
| п     | Radiation device, e.g.          |                      |               |       |
|       | Particle accelerator            | Yes                  | а             | а     |
|       | X ray generator                 | Yes                  | No            | No    |
| ш     | Sealed source (intact)          | Yes                  | No            | No    |
|       | Sealed source (leaking)         | Yes                  | Yes           | Yes   |
| IV    | Nuclear medicine laboratory     | Yes                  | Yes           | Yes   |
|       | In vitro assay laboratory       | Yes                  | Yes           | Yes   |
| v     | Source transportation           | Yes                  | Yes           | Yes   |
| VI    | Radioactive wastes              | Yes                  | Yes           | Yes   |

## **Nuclear Accidents**

The term nuclear accident (emergency) applies to


- Reactor accident
- Accident at Fuel Fabrication / Enrichment facility
- Accident at reprocessing plants
- Accidents at other large nuclear facilities, sites
- Accident involving the detonation with partial nuclear yield of a nuclear weapon

It is one that involves the nuclear weapons / nuclear fuel cycle and has potential for criticality.

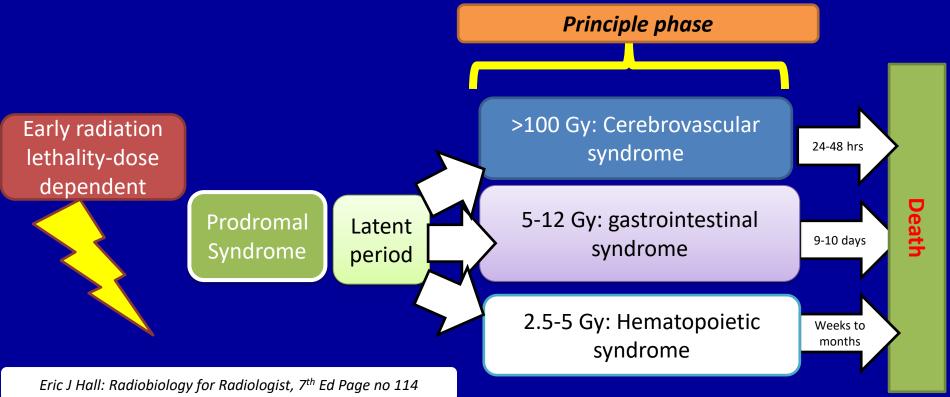
# **Severe Accidents So Far**

| S. No    | Nuclear Accidents                            | Year         | INES<br>Level |
|----------|----------------------------------------------|--------------|---------------|
| 1.*      | FRP Waste Tank Explosion, Kyshtym, USSR<br>* | 1957         | 6             |
| 2.       | Reactor Wigner release Windscale, UK         | 1957         | 5             |
| 3.       | Three Mile Island, USA                       | 1979         | 5             |
| 4.       | NPP, Chernobyl, USSR *                       | 1986         | 7             |
| 5.       | FRP Tank Explosion, Seversk, Russia          | 1993         | 4             |
| 6.       | Criticality in FFP, Tokaimura, Japan         | 1999         | 4             |
| 7.<br>8. | NPPs, Fukushima, Japan *<br>Goiania, Brazil  | 2011<br>1987 | 7<br>4        |

### Types of Radiation Emergencies



# Challenges


Volume of body exposed Dose of exposure: Biodosimetry (often retrospective)  $\triangleright$  Severity of exposure Number of people exposed Contextual situation  $\succ$  Type of exposure

#### Acute Effects of Total Body Irradiation: Case study

- Plant for Pu recycling, 2 Pu solutions which should have been processed sequentially were processed together. They had different densities
- Avg total dose was 39-49Gy delivered to the upper half of the body
- 40yr old patient, standing on stepladder, got exposed and he fell
- Within 30 sec he had ataxia and disorientation; admitted to hospital 25min after exposure, semi-conscious and disoriented
- Restless body movements, skin was purplish, conjunctivae were reddened, 10min after admission, had episode of watery diarrhea; blood pressure was 80/40, pulse of 160 per min., lymphocytes disappeared within 6h
- 30h after accident had restlessness and abdominal cramps, cyanosis despite O2 administration
- Death from cardiac arrest at 35h after exposure.

## **Early Lethal Effects**

- To date world wide death due to ARS: 400
- Majority of health effects of ARS data: Radiation disasters, accidents
- Experimental: mainly animal studies



## **The Prodromal Radiation Syndrome**

| Gastrointestinal                 | Neuromascular     |  |
|----------------------------------|-------------------|--|
| Anorexia                         | Easy fatigability |  |
| Nausea                           | Apathy            |  |
| Vomiting                         | Sweating          |  |
| Diarrhoea/Immediate<br>Diarrhoea | Fever             |  |
| Intestinal cramps                | Hypotension       |  |
| Salivation                       | 50% lethal dose   |  |
| Dehydration                      | Supra lethal dose |  |
| Weight loss                      |                   |  |

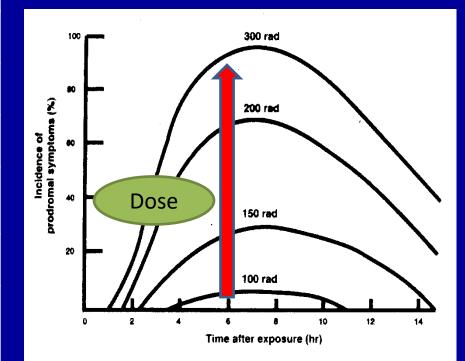



FIG. 3-1. Temporal relationships between magnitude of exposure and incidence of prodromal symptoms (after Langham et al.<sup>7</sup> and based upon whole body exposure to low-LET radiation).

Eric J Hall: Radiobiology for Radiologist, 7<sup>th</sup> Ed Page no 115

# The Prodromal Radiation Syndrome

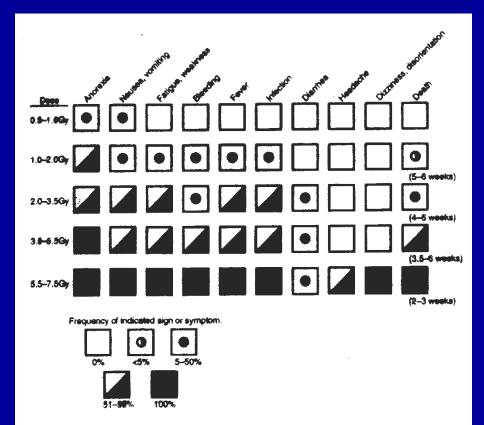
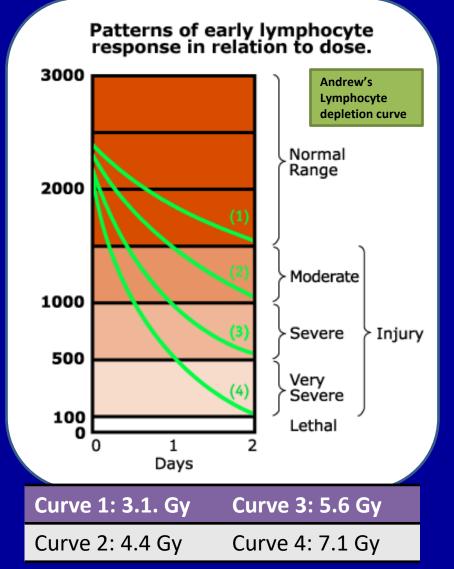
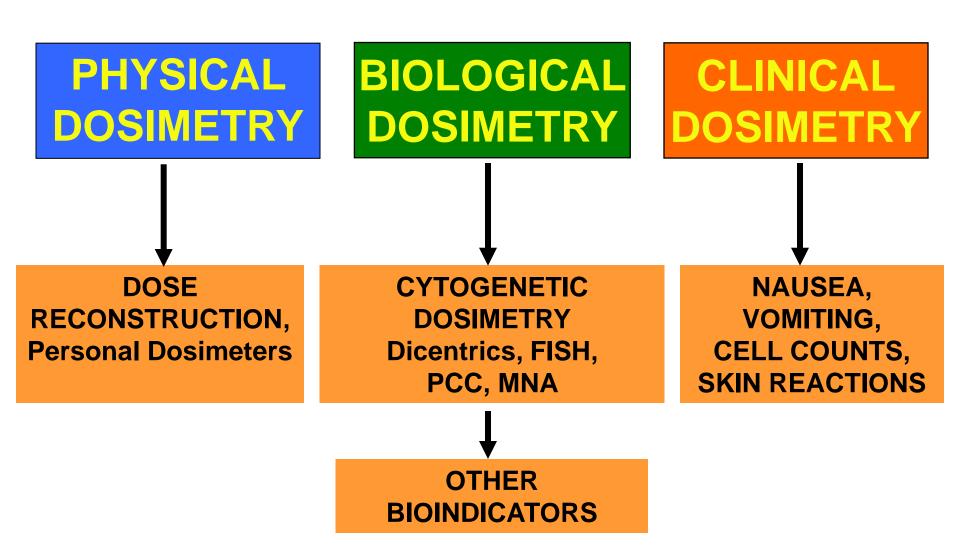
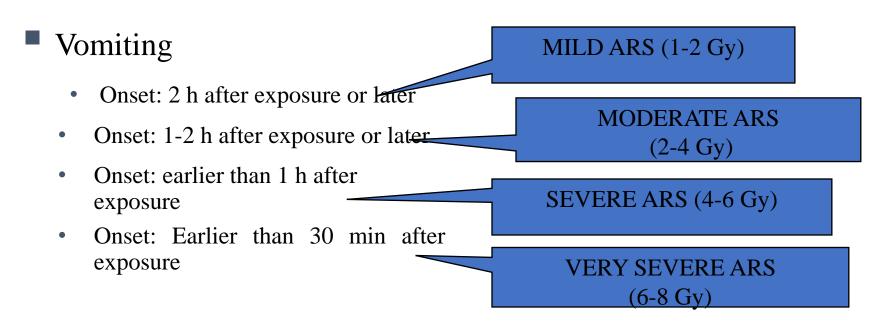





FIG. 3-7. Relationship between magnitude of exposure and proportion of individuals expected to experience indicated signs and symptoms after whole body exposure to penetrating radiation. (Reproduced from Ref. 11 with permission of authors and publisher.)

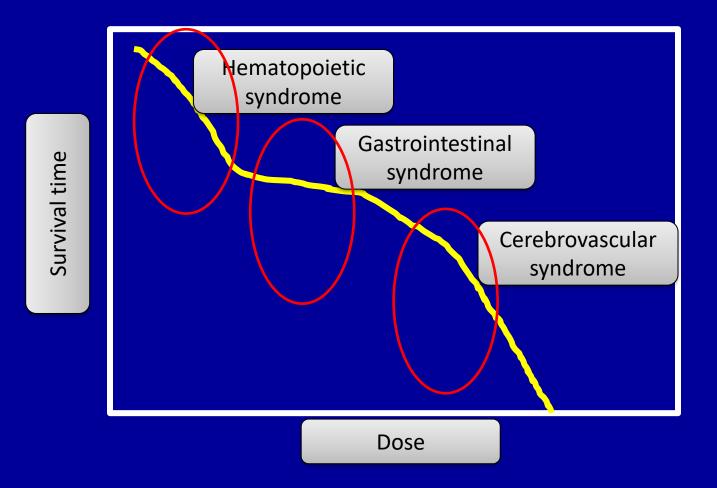

Eric J Hall: Radiobiology for Radiologist, 7<sup>th</sup> Ed Page no 115 https://www.remm.nlm.gov/andrewslymphocytes.htm





### Clinical dosimetry

#### presentation




| Triage                  |                |
|-------------------------|----------------|
| Vomiting in of incident | Estimated dose |
| Less than 10 minutes    | > 8 Gy         |
| 10 - 30 minutes         | 6 - 8 Gy       |
| Less than 1 hour        | 4 - 6 Gy       |
| 1 - 2 hours             | 2 - 4 Gy       |
| After 2 hours           | < 2 Gy         |

### Radiation effects on the Skin

| Skin Sign           | Dose  | Time of appearance |  |
|---------------------|-------|--------------------|--|
| Transient Erythema  | 3 Gy  | in a few hours     |  |
| Temporary Epilation | 3 Gy  | in 2-3 weeks       |  |
| Fixed Erythema      | 6 Gy  | in 2-3 weeks       |  |
| Permanent Epilation | 6 Gy  |                    |  |
| Dry Desquamation    | 10 Gy | in 4-6 weeks       |  |
| Wet Desquamation    | 20 Gy |                    |  |
| Ulcer, Necrosis     | 30 Gy | in 6 months        |  |

## Survival without Treatment after homogeneous Total Body Irradiation

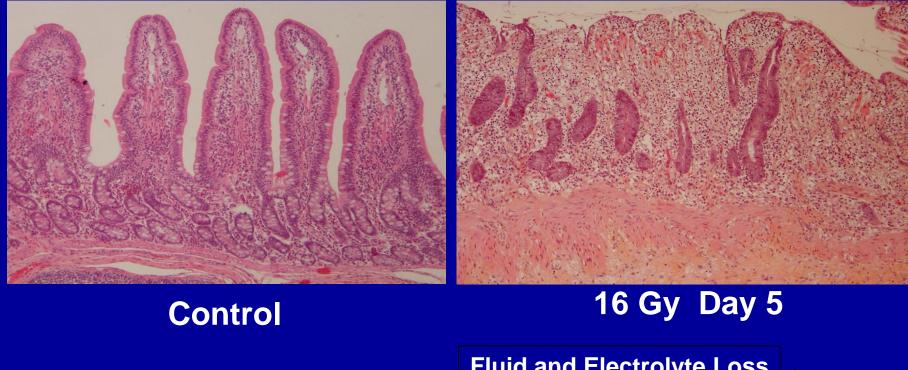


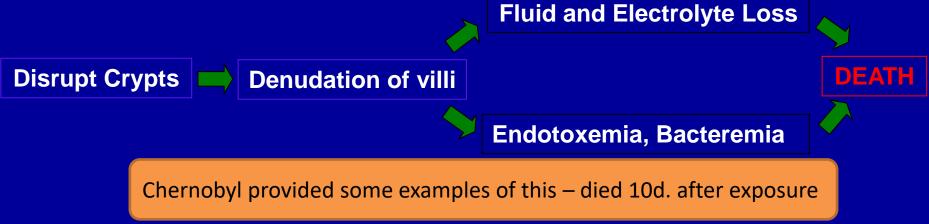
# Cerebrovascular syndrome

- Not compatible with life, often rapid death
- Neurovascular Syndrome or Acute Incapacitation Syndrome
- Pathophysiology
- Not fully understood
- Increase in the fluid content of the brain owing to leakage from small vessels

#### Manifestation

- Nausea and vomiting (with in minutes)
- Disorientation, loss of coordination, respiratory distress, convulsion, coma, death


# Criticality


- Criticality accident is an uncontrolled nuclear fission chain reaction
- Also referred to as a critical excursion, critical power excursion, or divergent chain reaction.
- Any such event involves the unintended accumulation or arrangement of a critical mass of fissile material, for example enriched uranium or plutonium
- Criticality accidents can release potentially fatal radiation doses, if they occur in an unprotected environment
- At least sixty criticality accidents have been recorded since 1945. These have caused at least twenty-one deaths: seven in the United States, ten in the Soviet Union, two in Japan, one in Argentina, and one in Yugoslavia.

# Gastrointestinal syndrome

- A total-body exposure of more than 10 Gy of γ-rays or its equivalent of neutrons
- Death some days later (usually between 3 and 10 days)
- Depopulation of the epithelial lining of the gastrointestinal tract by the radiation
- Symptoms most commonly observed very soon after exposure:
  - > all those of the hematopoietic syndrome
  - severe nausea and vomiting
  - Intractable diarrhea
- Death usually occurs within several weeks regardless of medical treatments

# The Gastro-intestinal Syndrome





# The Hematopoietic syndrome

- Signs of hematologic damage appear slowly
- **Recovery slow**
- Peak incidence 30 days after exposure-death continue up to 60 days (LD50/60)
- Prodromal syndrome followed by about 3 weeks "latent" period
- Symptom manifestation due to bone marrow suppression

## Cutaneous radiation injury

#### Depends on dose

### Can be localized or generalized

| Itching   |                     |                    |            |          |
|-----------|---------------------|--------------------|------------|----------|
| Tingling  |                     |                    |            |          |
| Epilation | Dry<br>desquamation | Moist desquamation | Ulceration | Necrosis |
| erythema  | uesquamation        |                    |            |          |
| Edema     |                     |                    |            |          |
|           |                     |                    |            |          |

**Dose of Radiation** 

### **Radiation dermatitis**

| Assessment / Observation |                                                                                               | Effects of Radiotherapy on Skin Cells |  |
|--------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------|--|
|                          | RTOG 0<br>No visible change to skin                                                           | anna na là chaideanna                 |  |
| A                        | RTOG 1<br>Faint or dull erythema. Mild<br>tightness of skin and itching<br>may occur          | Vicini                                |  |
|                          | RTOG 2<br>Bright erythema / dry<br>desquamation. Sore, itchy and<br>tight skin                | D'anni                                |  |
|                          | RTOG 2.5<br>Patchy moist desquamation<br>Yellow/pale green exudate.<br>Soreness with oedema   | Vanit                                 |  |
| A7A                      | RTOG 3<br>Confluent moist desquamation.<br>Yellow/pale green exudate.<br>Soreness with oedema |                                       |  |
|                          | RTOG 4<br>Ulceration, bleeding, necrosis<br>(rarely seen)                                     |                                       |  |

#### Management

- Skin care
- Avoidance of direct sunlight
- Keeping the area dry
- > Avoidance of friction
- Pharmacological measures

Radiation Therapy Oncology Group (RTOG) grading tool (adapted from Trueman and The Princess Royal Radiotherapy Review Team, 2011) Assessment Observation Skin reaction







#### 26 days postexposure



#### 2 years postexposure



# Clinical course of local radiation injuries

- Response of skin to ionizing radiation cutaneous radiation syndrome (CRS)
- > Types of skin responses depending on dose:
  - 1. Initial erythema
  - 2. Dry desquamation
  - 3. Erythema proper
  - 4. Moist desquamation
  - 5. Ulceration and necrosis
  - 6. Late effects: dermal atrophy, hyperpigmentation, fibrosis

## **Blister formation**



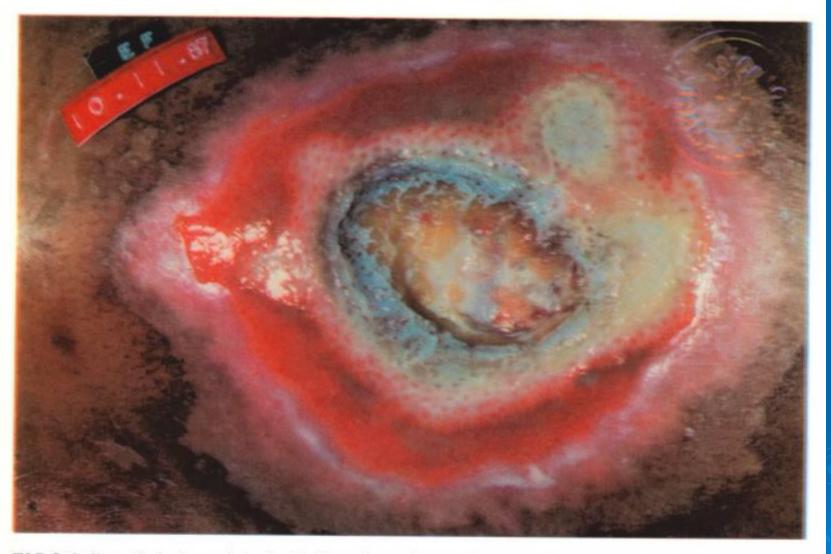
FIG. 9.2. 17 days after exposure. Large and tense blisters. Significant swelling limits fingers movement.

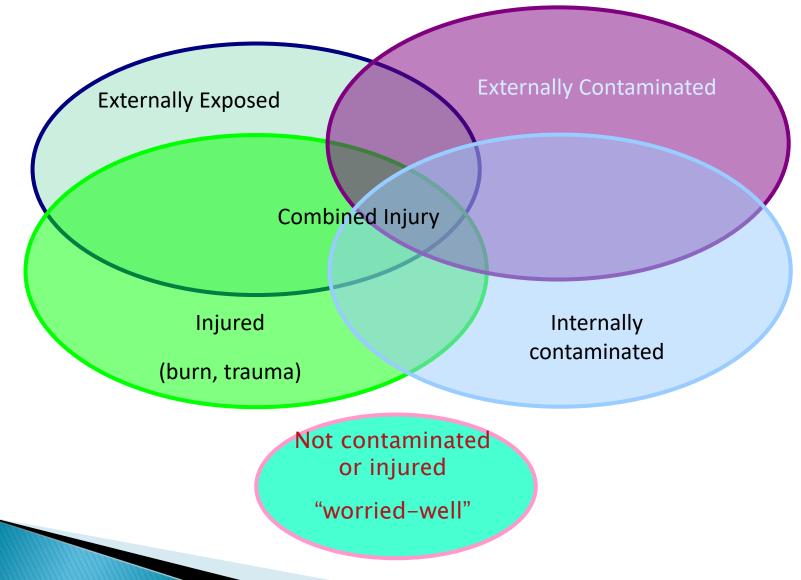
#### **Moist desquamation**



On right hand severe blisters developed after irradiation; on left hand epidermis has sloughed. Presence of hyaline fluid gives blisters translucent appearance

#### **Ulceration and necrosis**





FIG.9.4. Detailed view of the bed of an deep ulcer after partial resection. The blackening of surrounding tissue, fat necrosis and skin suffering are clear indications of poor evolution of this injury.

# Hyperpigmentation

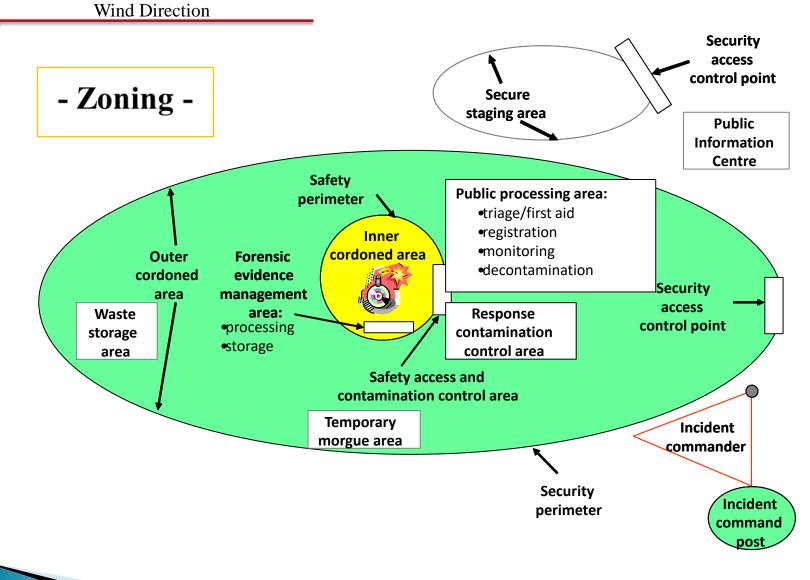
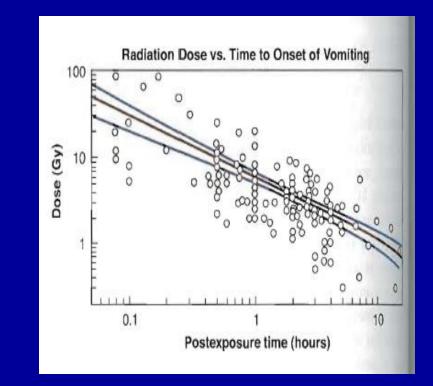



FIG. 9.8. Hyperpigmentation of skin. The nail of the forefinger is darkish and broken.

## **Potential Victims**

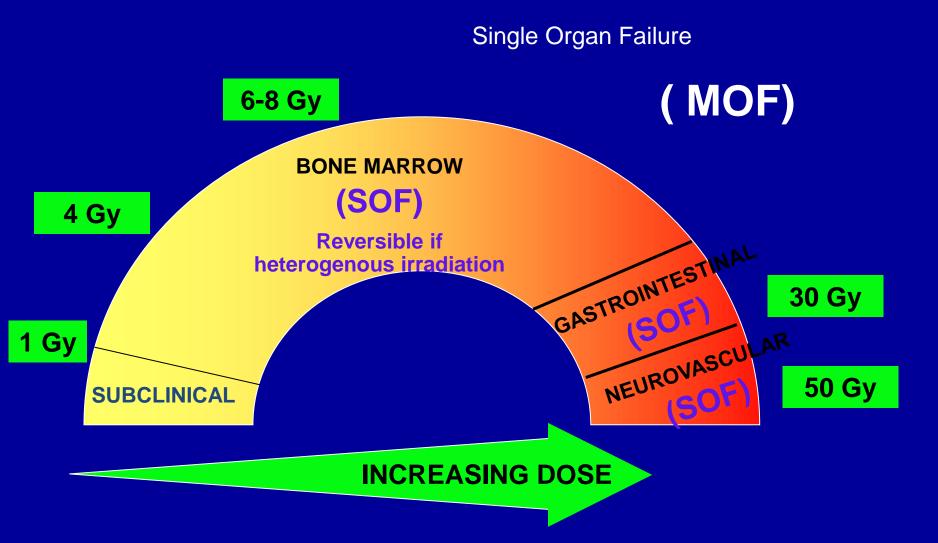


# Radiological Control on the Scene

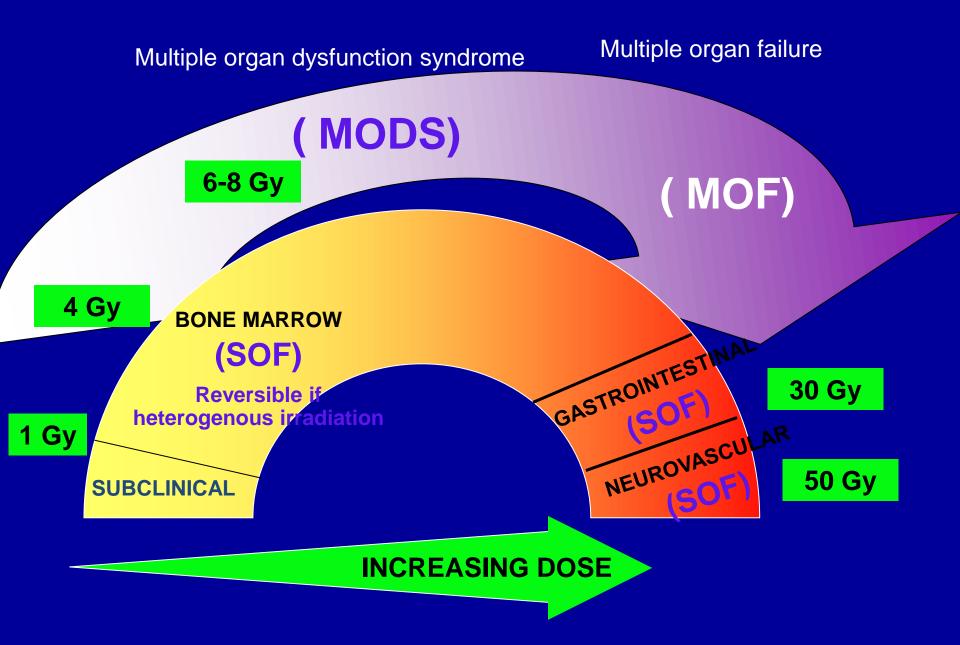



## Clinical presentation and estimation of dose

Dose can be estimated by the time of onset of vomiting.

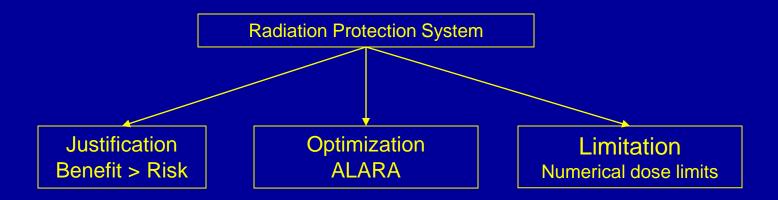

Early onset of vomiting indicates a high dose.

However, there is a large variation between individuals.




Anno GH, et al. Health Physics, 1999; 56[6]:821-838, and Goans RE.Clinical care of the radiation accident patient: patient presentation, assessment, and initial diagnosis. In: Ricks RC, Berger ME, Ohara, FM Jr, eds. *The Medical Basis for Radiation Accident Preparedness: The Clinical Care of Victim*. Boca Raton, FL: The Parthenon Publishing; 2001.)

## The Classical Paradigm of the ARS




## The New Concept of the ARS



#### **Principles of Radiation Protection**

The system of radiation protection recommended by the ICRP in Publication 60 is based on three major principles *justification*, *optimization*, and *dose limitation* 



It is important that none of the principles should be used on their own. An effective radiological protection system should use the three principles to ensure that all radiation doses are kept as low as possible

#### Chernobyl Vs Fukushima

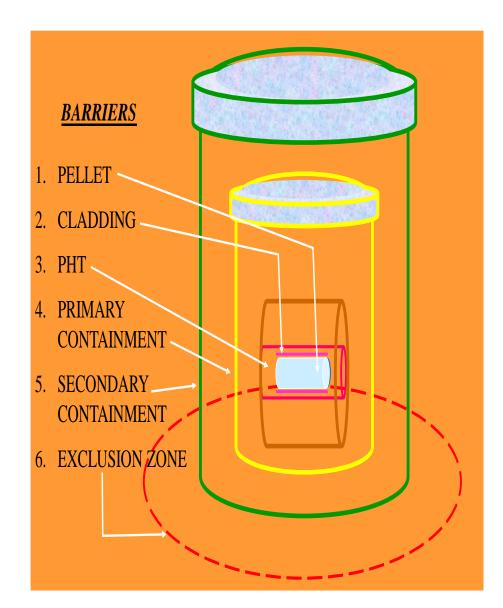
#### 26<sup>th</sup> April 1986



#### 11<sup>th</sup> March 2011



# Chernobyl and Fukushima


|                             | Chernobyl                     | <b>Fukushima</b>                     |
|-----------------------------|-------------------------------|--------------------------------------|
| Reactor                     | Operating                     | Shutdown                             |
| • Chain reaction of fission | Continuing                    | Stopped                              |
| Explosion                   | Nuclear<br>explosion          | Chemical explosion<br>of Hydrogen    |
| • Moderator                 | Graphite –<br>started burning | Ordinary water-<br>supported cooling |

#### **Chernobyl Vs Fukushima**

| Explosion destroyed live reactor                                      | Partial core meltdown mostly intact<br>containment                    |  |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| Release : 5.2 million TBq                                             | 0.6 million TBq                                                       |  |
| 50 liquidators died of exposure                                       | No radiation linked death                                             |  |
| 4000 children and adolescents :<br>thyroid cancer (2008 R: 64 deaths) | 21 over exposure cases; Max 130 mSv<br>No report of ARS               |  |
| Evacuation : 100,000 immediate and<br>Later : 350,000 (30 km rad)     | 70,000 in 12 km<br>1.3 lakh in 32 km voluntary go- out /<br>stay home |  |
| <b>Contamination Area</b><br><b>Exceeding limits : &gt; 500 km</b>    | 60 km                                                                 |  |
| No marine pollution                                                   | Significant Marine pollution                                          |  |

#### MULTIPLE BARRIERS TO PREVENT NUCLEAR EMERGENCY RESULTING IN RADIOACTIVITY RELEASE

- Encompassing all phases Siting, Design, Operation, Construction, R A Waste Management
- Robust Design Defence in Depth
- Diversity & Redundancy
- Fail Safe Systems
- Highest Quality &Safety Standards
- Regulatory Mechanism Robust



#### **Reasons for Accidents**

- Accidents rarely occur due to an isolated reason. Most of the time it is a combination of factors like equipment failure, human error, natural causes etc. culminating in an accident
- ➢No proper safety evaluation
- ➢Poor/no education and lack of training,
- >No Quality assurance programme
- ➢Not having or/and not following SOP
- >Not following Regulatory guidelines
- Management pressure (real or perceived) to continue work even when safety systems were inoperable or deficient,
- Poor maintenance programme or none at all, leading to a reduction in layers of safety, and non-investigated false alarms leading to persons ignoring warning systems.

#### History of Accidents 1944 - 2000

|                                                    | USA  | Non-USA                     |
|----------------------------------------------------|------|-----------------------------|
| Reported accidents                                 | 245  | 169                         |
| People involved                                    | 1351 | 132391*<br>Mostly Chernobyl |
| Number of persons<br>received Significant<br>doses | 792  | 2260                        |
| Fatalities                                         | 30   | 97                          |

## **Types of Accidents**

- Reactor or Criticality
  - Windscale, England (1957)
  - Three Mile Island, USA (1979)
  - Chernobyl, Ukraine (1986)
  - Tokai-Mura, Japan (1999)
- Mishandled/ Lost/ Stolen Sources
- Mis-administration of Medical Radiation

## **Fatal Criticality Accidents**

- Weapons Program
  - Los Alamos: 1945 (1), 1946 (1), 1958 (1)
- Reactors
  - Idaho Falls: 1961 (3 non-radiation)
  - Chernobyl: 1986 (28 + 3 explosion)
- Fuel Handling
  - Rhode Island: 1964 (1)
  - Tokai-Mura, Japan:1999 (2)

#### **Fatal Source Accidents**

- 1981: Oklahoma (1 fatality)
- 1984: Morocco (16.3 Ci Ir-192; 8 fatalities)
- 1987: Goiania, Brazil (1375 Ci Cs-137; 4 fatalities)
- 1993: Tallinn, Estonia (Cs-137; 1 fatality)
- 2000: Bangkok, Thailand (750 Ci Co-60; 3 fatalities)

#### **Fatal Medical Accidents**

- 1968: Wisconsin (1 fatality)
- 1975: Ohio (10 fatalities)
- 1980: Texas (7 fatalities)
- 1986: Texas (2 fatalities)
- 1990: Spain (10 fatalities)
- 1992: Indiana, PA (1 fatality)
- 1996: Costa Rica (3-7 fatalities)

## **Methods to limit exposure**

- Move population away from source
- Limit inhalation by staying inside and keeping windows and doors shut
- Stop ingestion of contaminated foodstuffs
- Block uptake of radionuclides (e.g. stable iodine prophylaxis)

# Physical half-life governs the time period of release of radiation

- Short physical half-life means that radiation is released quickly i.e. it has a high dose rate
- Long physical half life means that radiation is released over a long period of time i.e. it has a lower dose rate

# **Definition:** Triage

• 'Effective medical sorting' of 'mass casualties' and assigning to 'priority categories' for their 'subsequent management'

Assigned to one of the following priority categories,

depending on the nature and extent of their injuries/ clinical condition:

•The immediate treatment group:

high chance of survival if they are given immediate lifesaving treatment or surgery that is relatively quick and uncomplicated.

• The delayed treatment group:

may need major surgery, but who can be sustained on supportive treatments until surgery is possible.

#### **Classification - Principle**

- The minimal treatment group: relatively minor injuries who can care for themselves or who can be helped by untrained personnel.
- <u>The expectant category:</u> serious or multiple injuries requiring extensive treatment, as well as patients with a poor chance of survival.
- This group should receive supportive treatments that are compatible with resources, including large doses of analgesics.

#### **Decontamination**

- Decontamination is the procedure of removal of contaminants from unwanted surfaces/ locations.
- Decontamination is an essential means of controlling transferable contamination. It is a practice under normal operations, counter measure during radiological events.
- Personnel decontamination is normally effected by using mild soap / shampoos and lukewarm water.

# **Protective Clothing**

#### An example of protective clothing



#### Ideal Requirements for (Community) Reception Centre(RC)

- Away from the ED
- Away from the disaster zone
- Easy access for emergency vehicles
- Controlled access and exit
- Space to house a large number of victims
- Protection from natural elements
- Lots of shower facilities (depending on countries)
- Working utilities (including phones)
- Easy to secure

## Suitable Off site facilities for establishing RC

- Stadium
- Gymnasium
- High school
- Fire house
- Aircraft hangar
- Camp ground
- Warehouse
- Office building
- Parking garage



## Establishment of RC

- Prior arrangements and consent for specific use, as handling of contaminated individuals
- No delay in occupying (keys in advance)
- Agreement on use of existing furnishings and areas
- Plan for control of radioactive waste
- Plan for security control

# Staffing of RC

- Triage physicians
- Triage nurses and assistants
- Health physicists or other qualified technicians
- Security staff
- Psychologists
- Social assistants
- Administrator/coordinator

# Supplies for RC

- •Protective clothing
- •Personnel monitoring devices
- •First aid kits
- •Hot and cold water
- •Shower stalls
- •Radiation survey meters
- •Batteries for meters
- •Soaps and shampoos
- •Scrub brushes
- •Scissors
- •Nail clippers
- •Sample taking supplies

- •Communication equipment
- •Pens, paper, magic markers
- •Gloves (latex-type)
- •Tapes
- •Blankets
- •Shoe covers
- •Plastic bags (many sizes)
- •Boxes for waste
- •Liquid collection containers
- •Ropes, signs, labels
- •Clothes

• Protects from inhalation route only.

• Not Useful for skin absorption.

# Airline Respirator

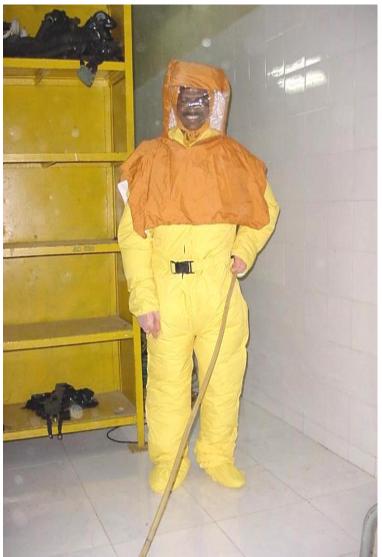


# Particulate and Iodine Filter Respirator

Protection from radioactive dust and iodine.



Important Note:


Not useful for Tritium

# VP Suit (Ventilated plastic suit)

Used when tritium DAC is >50 or time required is > 10 DAC-hr

Protects from

- 1. Inhalation route
- 2. Ingestion route
- 3. Skin absorption



## **Purpose of Decontamination**

- Removal and Reduce of radioactive material
- Reduction of External and Internal Hazards
- Radioactive Contamination cannot be destroyed (can be relocated and minimized).
- Fixing and Decay of Contamination allows reuse of space, equipment .
- Waste (solid and liquid) would be separately collected, sealed, tagged and kept for disposal.

## **Decontamination Objectives**

- Personnel involved in decontamination should be using appropriate Personal Protective equipment (PPE).
- Radioactive waste generated would be collected and disposed separately.
- Reduce the volume of low-level waste generated.
- Ensure that residual radioactivity levels are below the permissible levels to be released for unrestricted use.

## **Decontamination Principles**

The binding forces which hold the contamination to a surface may be –

- electrostatic forces
- physical forces other than electrostatic such as surface tension.
- chemical bonds
- mechanical entrapment

The cleaning process must break down these forces and disrupt the union between the contamination and the surface

## **Chemical De-contamination**

| By using     | Chemical Solvent                                                              |
|--------------|-------------------------------------------------------------------------------|
| Oxidation    | Alkaline<br>permanganate, H2O2,<br>mixture of HNO3 &<br>Sodium Persulfate etc |
| Reduction    | Organic acid and their salts, sulfamic acid etc                               |
| Complexation | EDTA, Organic acid,<br>Sodium fluoride,<br>Phosphoric acid.                   |
| Dissolution  | Mineral acid, Mixture<br>of two acid such as HF<br>and HNO3.                  |

- Surface chemical decontamination usually carried out by circulating the selected chemical reagent in the system or by immersing into a tank containing reagent.
- Mainly used for SS,CS and other metallic surface.

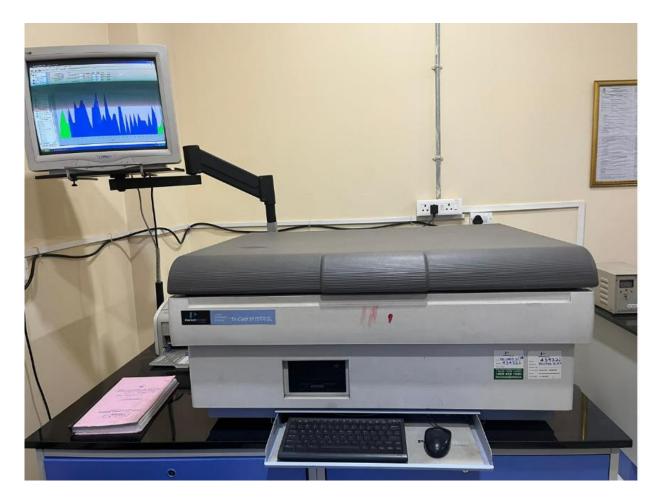
## **Electrochemical Decontamination**

- Electrochemical decontamination uses Direct current which result in anodic dissolution and removal of metal and oxide layers from the component.
- Mainly used for conducting metal surfaces such as SS, iron based alloy, copper aluminium etc.
- Highly effective and high decontamination factor.
- Effectiveness of the process may be limited by the presence of adhering materials.

## Internal Decontamination Decorporation

| Sr.<br>No | Radionuclide                  | Target Organ | Specific Treatment       |
|-----------|-------------------------------|--------------|--------------------------|
| 1.        | Iodine                        | Thyroid      | KI tablets               |
| 2.        | Strontium                     | Bones        | Calcium alginate         |
| 3.        | Cesium                        | Muscles      | Prussian blue capsules   |
| 4.        | Tritium                       | Whole body   | Forced fluids, diuretics |
| 5.        | Phosphorus                    | Bones        | Stable Phosphorus        |
| 6.        | Uranium                       | Kidneys      | Sodium bi carbonate      |
| 7.        | Plutonium &<br>Transplutonics | Bones, Liver | Ca-DTPA                  |
| 8.        | Rare Earths                   | Bones        | Ca- DTPA                 |

## Therapeutic management


#### TABLE XII. PRINCIPAL THERAPEUTIC MEASURES FOR ACUTE RADIATION SYNDROME ACCORDING TO DEGREE OF SEVERITY

| Whole body dose (Gy)                | 1–2                                                           | 2–4                                                                                                                                  | 4–6                                       | 6–8                                                                 | >8                          |  |
|-------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------|-----------------------------|--|
| Degree of severity of ARS           | Mild                                                          | Moderate                                                                                                                             | Severe                                    | Very severe                                                         | Lethal                      |  |
| Medical management<br>and treatment | Oupatient observation<br>for maximum<br>of one month          | Hospitalization                                                                                                                      |                                           |                                                                     |                             |  |
|                                     |                                                               | Isolation, as early as possible                                                                                                      |                                           |                                                                     |                             |  |
|                                     |                                                               | as early                                                                                                                             | r GM-CSF<br>as possible<br>he first week) | IL-3 and 0                                                          | 3M-CSF                      |  |
|                                     |                                                               | Antibiotics of broad spectrum activity (from the end of the latent period)<br>Antifungal and antiviral preparations (when necessary) |                                           |                                                                     |                             |  |
|                                     |                                                               | Blood components transfusion:<br>platelets, erythrocytes (when necessary)                                                            |                                           |                                                                     |                             |  |
|                                     | Complete parenteral nutrit<br>Metabolism correction, detoxica | -                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·     |                                                                     |                             |  |
|                                     |                                                               |                                                                                                                                      | -                                         | pheresis (second or thin<br>disseminated intravasc<br>(second week) | ,                           |  |
|                                     |                                                               |                                                                                                                                      |                                           | HLA-identical<br>allogene BMT<br>(first week)                       | Symptomatic<br>therapy only |  |

Diagnosis and Treatment of Radiation Injuries 1998 IAEA and WHO page 20

# How Internal Dose due to Tritium is Measured ?

Tritium is measure by Urine sample analysis in Liquid Scintillation Analyzer



#### Radionuclide other than Tritium

1.For other radionuclide like Cesium, Cobalt Iodine etc. is measured in Whole Body Counting.

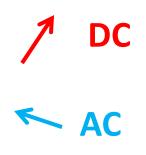


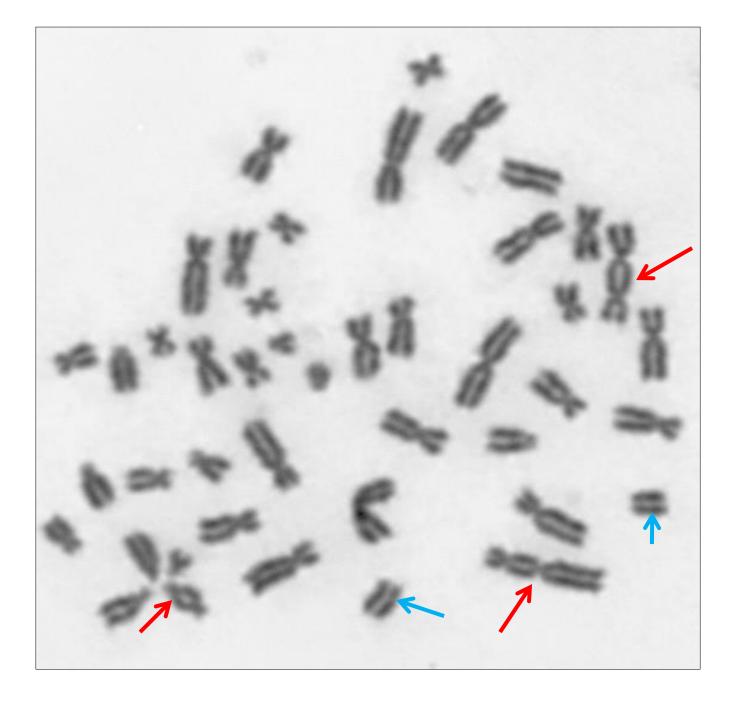
|                                                      | Peak Analysis               |                                                                                 |  |  |  |
|------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------|--|--|--|
| Nuclide Actual Librar<br>Energy Energ<br>(keV) (keV) | y Area Activity<br>y (Bq/Kg | % Uncert. MDA<br>) 2 Sigma ( Bq/Kg)                                             |  |  |  |
| Unknown 164.20<br>Unknown 256.21                     | 172.60 4.57e                | +001 360.93 4.50e+001 A<br>e+001 48.18 1.06e+001 A<br>127.74<br>59.39<br>214.71 |  |  |  |
| Nuclide Activity % Un<br>Bq/Kg 2 Sigr                | cert Alarm Limit Wa         |                                                                                 |  |  |  |
| I-131 0.00e+000 0<br>CO-60 0.00e+000 (               | .00                         | Bq/Kg<br>2.35e+000<br>1.42e+000<br>1.33e+000                                    |  |  |  |








#### **Radiation Survey – Teletector Wide range** instruments






Neutron dose equivalent rate meter with a thermalizing polyethylene sphere with a diameter of 20 cm







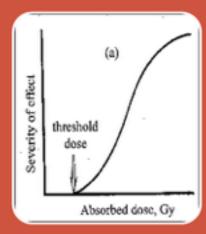
# Stochastic Health Effects

A radiationinduced health effect, occurring without a threshold level of dose:

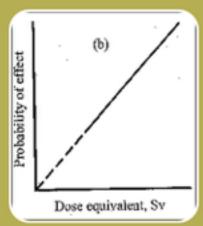
- probability is proportional to the dose
- severity is independent of the dose

Stochastic health effects:

- Radiationinduced cancers
- Hereditary effects


Latency period:

- Several years for cancer
- Hundreds of years for hereditary effects


Late appearance (years)

# Health effects of radiation

#### Types of Biologic effects



Deterministic Threshold for effect observed Below Threshold- no effect; Above Threshold, with certainty, severity increases with dose



Stochastic

No Threshold observed probability of effect related to dose, down to zero (?) dose- LNT model Types of Biologic effects

Local

## Early (deterministic only)

Late

Radiation injury of individual organs: functional and/or morphological changes within hrs-days-weeks Common

Acute radiation disease Acute radiation syndrome

## Deterministic

Radiation dermatitis; Radiation cataract; Teratogenic effects

#### Stochastic

Tumours; Leukaemia; Genetic effects

Nuclear Power Corporation of India Ltd

## Summary points

Critical factors: Dose, duration, degree of body exposed, age

- Prodromal syndrome varies with time, onset, severity, duration
- At dose close to LD50, anorexia, nausea, vomiting, easy fatigability
- Immediate diarrhoea, fever, hypotension: supra lethal dose
- Three syndromes- cerebrovascular, gastrointestinal, hematopoietic
- May be complicated by damage to skin
- Without medical attention LD50 for acute whole body exposure 3 Gy to 4 Gy
- Medical management (antibiotics, platelet infusion, bone marrow transplantation, growth factors) in hematopoietic syndrome may salvage some cases

**Acute Radiation Syndrome** is to be considered as one of the differential diagnosis if a patient presents to the clinician with a history of nausea and vomiting that cannot be explained by other causes

#### Post Graduate Certificate in Medical Management of CBRNE Disasters (PGCMDM)

Minimum Duration: 6 Months Maximum Duration: 2 Years Course Fee: Rs. 5,500 Minimum Age: No bar Maximum Age: No bar

Eligibility:



MBBS (recognised by MCI). Only Indian Citizens would be considered.

Programme overview | Courses | Related Information |

The term CBRNE stands for 'Chemical Biological, Radiological, Nuclear and Explosive'. Disasters related to such agents can occur accidently. However, when used intentionally they become agents of mass destruction.

CBRNE disasters are ill-understood, diagnosis is difficult and very little management tools exist to manage these disasters, including medical management. Medical management of CBRNE disasters require specific knowledge and skill set that is not covered in the undergraduate curriculum. India is particularly vulnerable to CBRNE attacks. Thus, society and governments need to create special provisions to deal with them.

In light of the above facts, IGNOU in collaboration with Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO) and active support from Integrated Defence Staff (IDS) have developed a 6 months PG Certificate programme in Medical Management of CBRNE disasters through open and distance learning for MBBS doctors.