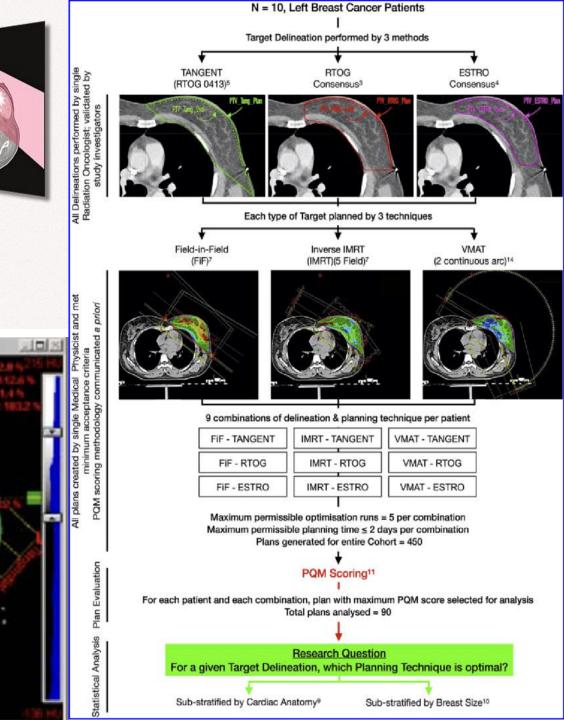

Management of Radiation Toxicities: Breast


Dr Mukti Mukherjee Consultant Radiation Oncologist Apollo Multispeciality Hospital Kolkata

Why is it so important ???

- Evolution / Revolution of
 - Diagnostic
 - Surgical intervention
 - Systemic therapy
 - Radiation: technique, dose
- Survival improved dramatically
- \Rightarrow Long-term survivors
- \Rightarrow Quality of Life issues

Radiation effects

- Skin and Breast tissue
- Ribs / Chest wall
- Lungs
- Heart
- Lymphedema
- Second Malignancy: Stochastic effects

The EYES don't see what the MIND doesn't know


Breast Cancer Related Lymphedema

Breast Cancer Related Lymphedema (BCRL):

Myriad of symptoms:

- Sensation and function of the arm, hand, breast, or trunk,
- Psychological distress pertaining to body image
- Quality of Life

Lymphedema guidelines

- National Lymphedema Network (NLN)
- International Society of Lymphology (ISL)
- American Society of Breast Surgeons (ASBrS)
- National Comprehensive Cancer Network (NCCN)

- Screening for BCRL should be integrated as standard of care from the start of treatment for breast cancer.
- Comprehensive BCRL diagnosis should incorporate
 - ✓ clinical examination
 - ✓ objective measurements
 - ✓ patient-reported symptoms

However, standardized guidelines about how to incorporate subjective assessments have yet to be established.

Screening for BCRL

- Baseline Assessment before definitive surgery or radiation
 Specifically, volume of each upper extremity should be measured at baseline and at regular intervals throughout and beyond treatment for breast cancer
- Postoperative measurements in relation to the preoperative baseline measurement

- to account for the pt's **natural asymmetry** between arms, which may be $\geq 5\%$ for 28.3% of patients or $\geq 10\%$ for 2.9% of patients

- Failure to account for baseline asymmetry has been estimated to result in **over- or underdiagnosis** of BCRL in 40–50% of patients

Defining BCRL

Absolute Volume Difference: limb volume between the arm at risk for BCRL and the contralateral limb

- Not accounting for Natural asymmetry

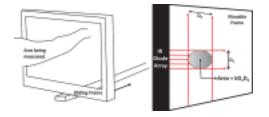
Defining BCRL by Absolute Volume Change Relative to a Baseline : absolute volume increase of

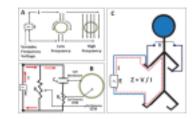
200 ml or a circumferential increase of 2 cm in the affected arm

- may be significantly altered by weight fluctuations

Defining BCRL by Relative Volume Change: preferred definition

- volume changes in the affected limb relative to preoperative baseline measurements
- accounts for general body changes such as weight fluctuation


 $RVC = ((A2 \times U1) / (U2 \times A1)) - 1$

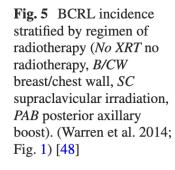

A1= volume of the affected limb at baseline A2= volume of the affected limb at given time point U1= volume of the unaffected limb at baseline U2= volume of the unaffected limb at given time point $WAC = \left(\left(A2 \times W1 \right) / \left(W2 \times A1 \right) \right) - 1$ A1=volume of the affected limb at baseline A2=volume of the affected limb at given time point W1=body weight at baseline W2=body weight at given time point

Tests to quantify:

- Water Volumetry
- Circumferential Tape Measurement
- Perometry
- Bioimpedance Spectroscopy (BIS)
- Lymphoscintigraphy

	Lymphedema	stages	
stage O	stage 1	stage 2	stage 3
	1410		

Staging	Method	Staging Features	Characteristics
International Society of Lymphology (ISL)	Physical findings	 0: latent/sub-clinical I: spontaneously reversible II: spontaneously irreversible III: lymphostatic elephantiasis 	Widely accepted
Campisi	Physical findings	 I: initial/irregular edema, II: persistent LE III: persistent LE with lymphangitis IV: fibrolymphedema V: elephantiasis 	• Rely primarily on physical findings
Arm Dermal Backflow	ICG lymphography	 0: No dermal backflow 1: Splash pattern around the axilla 2: Stardust limited between olecranon and axilla lymphangitis 3: Stardust distal to olecranon 4: Stardust involving the hand 5: Diffuse and stardust pattern involving the entire limb 	 Safe Information regarding the lymphatic flow for LVA planning
MD Anderson	ICG lymphography	 0: No dermal backflow 1: Many patent lymphatics and minimal dermal backflow 2: Moderate number of patent lymphatics and segmental dermal backflow 3: Few patent lymphatics with extensive dermal backflow 4: Dermal backflow involving the hand 5: ICG does not move proximally to injection site 	 Safe Information regarding the lymphatic flow for LVA planning
Cheng's Lymphedema grading	Circumferential difference and lym- phoscintography	 0: 0-9% 1: 10-19% 2: 20-29% 3: 30-39% 4: >40% 	Objective method
aiwan Lymphoscintigraphy Staging	• Lymphoscintography	 L-0: Normal Lymphatic Drainage P-1, P-2, P-3: Partial Obstruction T-4. T-5. T-6: Total Obstruction 	Validated, Reliable


Risk Factors for BCRL

Treatment related

- Axillary L.N dissection
- Regional L.N Irradiation
- Lack of breast reconstruction
- Chemotherapy (?) fluid retention

Non Treatment related

- High BMI
- Subclinical edema (post Sx)
- Local infection

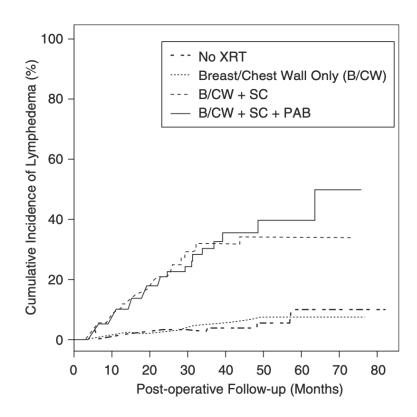
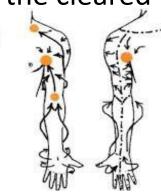


Fig. 6 Hazard rates for development of lymphedema following surgery with or without radiation (ALND axillary lymph node dissection, SLNB sentinel lymph node biopsy, RLNR regional lymph node radiation). (McDuff et al. 2018 (in press); Fig. 2) [75]

	Study	Two-year cumulative incidence of BCRL	Five-year cumulative incidence of BCRL
	Warren et al. 2014 ^a [48]		
	No XRT	3.0%	
	Breast/CW	3.1%	
	Breast/CW with RLNR	21.9%	
	ALND	24.3%	
	No ALND	7.3%	
NAA 20 trial: DIND is ata	Breast/CW with RLNR + PAB	21.2%	
MA-20 trial: RLNR in pts	Chandra et al. 2015 ^a [76]		
<u>Either L.N +ve or L.N –ve with Gr III, ER/PR Neg, LVSI +</u>	SC radiation only		
 decreasing local failure rates 	With PAB	20.98%	
 increasing disease-free survival (DFS) 	Without PAB	22.27%	
 Increasing distant metastasis-free survival (DMFS) 	<1/3 of SC lateral border radiated	19.50%	
	1/3–2/3 of SC lateral border radiated	18.48%	
 significant increase in lymphedema rates 	>2/3 of SC lateral border radiated	23.60%	
	Gross et al. 2018 ^b [77]		
FORTE ANAAROS (After Menning of the Aville)	Upper portion of the level I/II axilla	2.0%	7.7%
EORTC AMAROS (After Mapping of the Axilla:	Majority of level I to III axilla	26.9%	37.1%
Radiotherapy Or Surgery):	Entirety of anterior/posterior axilla	28.6%	36.7%
 5-year cumulative incidence of clinically reported 	McDuff et al. 2018 ^a [75]		
BCRL => RLNR (11%) vs 23% (ALND)	ALND	10.00	21.00
• 5-year cumulative incidence of BCRL, defined by an	Subsequent RLNR	19.0%	31.2%
	No RLNR SLNB	12.7%	24.6%
arm circumference increase of at least 10% in the		4.3%	12.20%
lower arm, the upper arm, or both	Subsequent RLNR No RLNR	3.7%	12.2% 8.3%
=> RLNR (5%) vs ALND (13%)			
	^a BCRL defined as an RVC or WAC of 109	• -	

^bBCRL defined as an increase in arm circumference of at least 2.5 cm relative to a baseline obtained after surgery but before radiation therapy or an increase in arm circumference of at least 2 cm at 2 or more consecutive visits

Treatment for Lymphedema

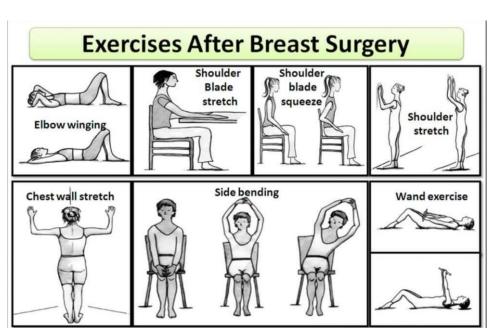

Complete Decongestive Therapy (CDT)

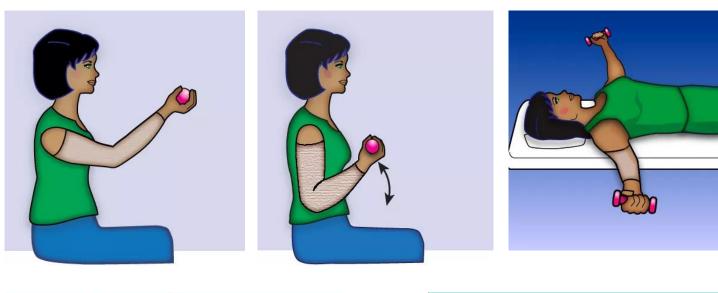
• **Reduction phase:** individualized reductive CDT in the clinic, which entails frequent appointments and typically lasts several weeks.

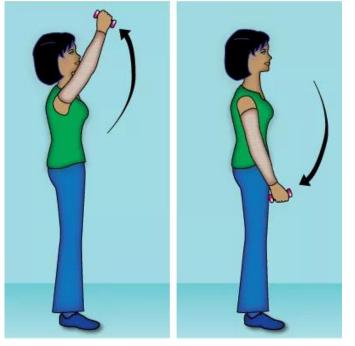
When limb volume stabilizes, the patient will enter the second phase

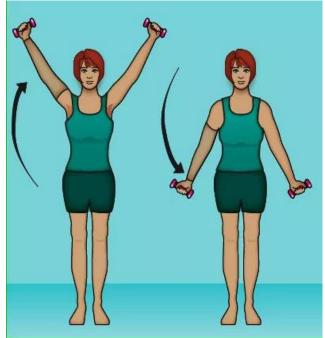
- Maintenance: focused on educating the patient about routine maintenance strategies,
 - Self Mannual Lymph Drainage (MLD)
 - Use of compression garments
 - Exercise
 - Skin care

- Treatment begins proximal, to "clear" proximal lymphotomes before moving to affected lymphotomes
- Massage is directed towards the cleared lymphotome
- Pressure is very light
- Strokes are rhythmic


- Low stretch bandages
 - Provides low stretch when no contraction
 - Higher compression when muscles contract
- Prevent re-fill of lymphatics
- Work with muscle pumping
- Worn 23 hrs/ day (off only for bathing)
- Should re-wrap daily to prevent loosening
- Should have more compression (more layers) distally


Exercise


• For both as CDT and long-term management of lymphedema.


American College of Sports Medicine guideline

- 6–8 resistance exercises for the upper and lower extremities
- 75 min of vigorous aerobic activity per week or
- 150 min of moderate aerobic activity per week

Intermittent Pneumatic Compression (IPC) devices

- Efficacy is not consistent in the literature.
- Research to elucidate the effects of IPC in patients with BCRL so that clinicians may better understand which patients will benefit most from IPC.

Surgical Intervention

- As second-line T/t
- As preventative step

when performed <u>at the time of breast cancer surgery</u> for patients with high risk for developing BCRL.

Types:

- Ablative procedures / Debulking procedures
 - surgical removal of edematous or fibrotic tissue in pts with substantial volume of solid, nonpitting edema
- **Reroute lymphatic flow in the axilla** for patients with pitting edema that is not yet fibrotic
 - lymphatic- venous anastomosis (LVA).
 - vascularized lymph node transfer (VLNT)

Precautionary Guidelines

- Good skin care practices: Essential
- Use of a compression garment on the at-risk arm during air travel,
- Avoidance of venipuncture arm at risk for BCRL
- Avoid using of blood pressure cuffs on the arm at risk for BCRL

Based on limited, low-level evidence

Breast Cancer Related Cardiotoxicity

Cardiac Toxicity: Breast Cancer

Meta-analysis:

- 4.3% increase in non-breast cancer-related death in pts, rcvd RT.
- Majority of non-breast cancer deaths were recorded as vascular deaths.

Questions:

- What is the mechanism of radiation-induced heart disease?
- What dose of radiation to what part of the heart actually causes toxicity?
- Are there doses that are safe for the heart?
- What is the most meaningful parameter to guide treatment planning?

Important findings

- Mean heart dose (MHD)
- Dose to the left anterior descending coronary artery (LAD)

Analysis revealed: cumulative relative risk of major coronary events increased linearly with the MHD

- 7.4% per Gy beginning within the first few years after RT and continuing thereafter.
- increase in the rate of coronary events was highest in the first 9 years after RT (relative risk increasing approxi- mately 16% per Gy MHD).
- There was no identifiable threshold dose below which there was no association with cardiac events.

CTCAE v5	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5
Pericarditis	Asymptomatic, ECG or physical findings (e.g., rub) consistent with pericarditis	Symptomatic pericarditis (e.g., chest pain)	Pericarditis with physiologic consequences (e.g., pericardial constriction)	Life-threatening consequences; urgentintervention indicated	Death
Valve disease	Asymptomatic valvular thickening with or without mild valvular regurgitation or stenosis by imaging	Asymptomatic; moderate regurgitation or stenosis by imaging	Symptomatic; severe regurgitation or stenosis by imaging; symptoms controlled with medical intervention	Life-threatening consequences; urgent intervention indicated (e.g., valve replacement, valvuloplasty)	Death
Restrictive cardiomyopathy	Imaging findings only	Symptomatic without signs of heart failure	Symptomatic heart failure or other cardiac symptoms, responsive to intervention; new onset of symptoms	Refractory heart failure or other poorly controlled cardiac symptoms	Death

Table 4.4 Toxicity grading for radiation induced cardiovascular disease (RICVD)

Factors

Treatment related

- Treatment / Target volume
- Technique of RT
- Systemic therapy

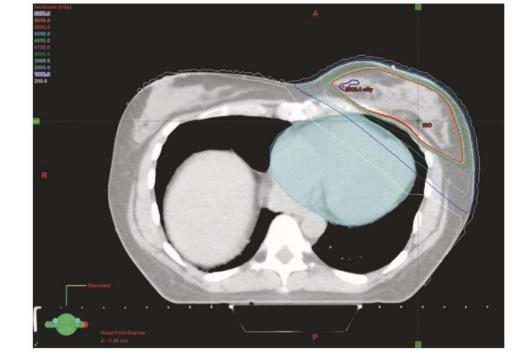
Patient related

- Anatomy
- Age
- Pre existing comorbidities

Special attention in patients with

- unfavorable cardiac anatomy,
- nodal, particularly, IMN irradiation,
- pre-existing risk factors for cardiac disease,
- older patients
- receiving cardiotoxic systemic therapy

Cardiac sparing RT


- IMRT / VMAT
- DIBH
- Prone
- Proton
- Avoid RT in Elderly / high cardiac morbidity

Radioprotectants: No drug to have been approved for use in mitigating or preventing RICVD.

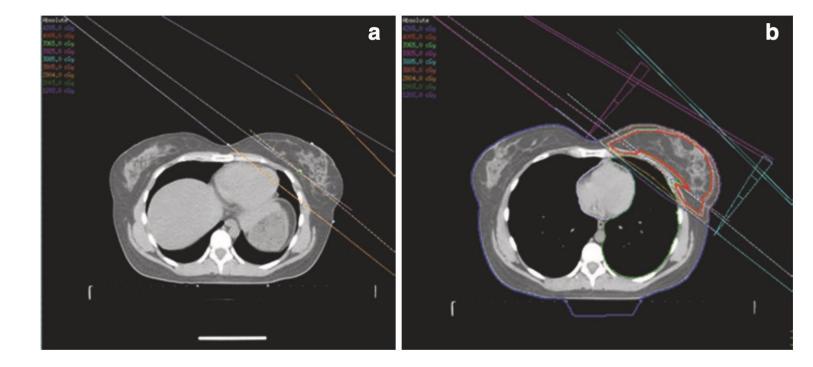
- Statins, ACE inhibitors, Amifostine, Melatonin are some of the drugs which have shown good results in animal testing.

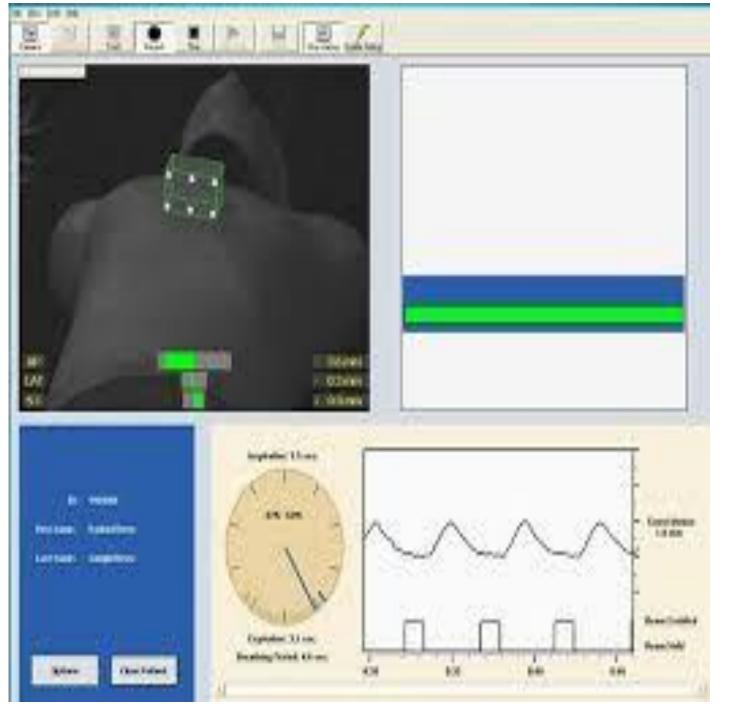
IMRT and Arc Therapy

- Conform dose to the target
- Minimizing dose to critical structures.

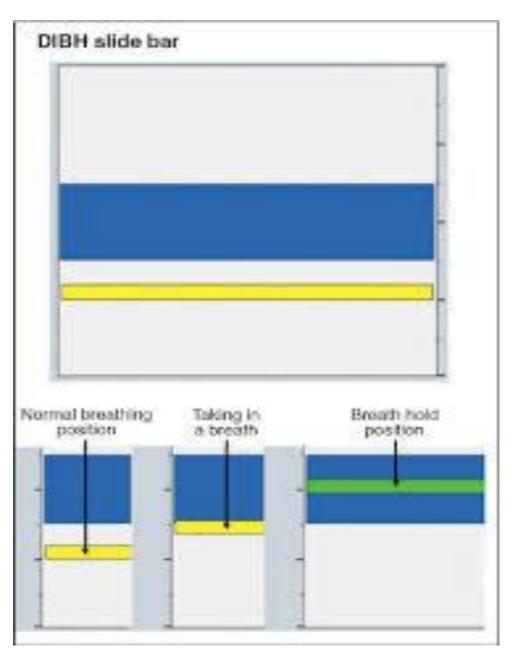
Successfully limit the high-dose regions within the heart

But at the expense of

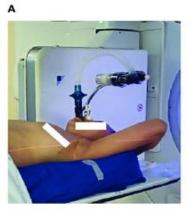

- increasing the low-dose region to the heart
- overall higher Mean Heart Dose

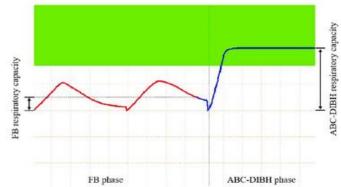

Deep Inspiration Breath Hold

Deep inspiration displaces the heart inferiorly and posteriorly
 => reducing the volume of irradiated heart

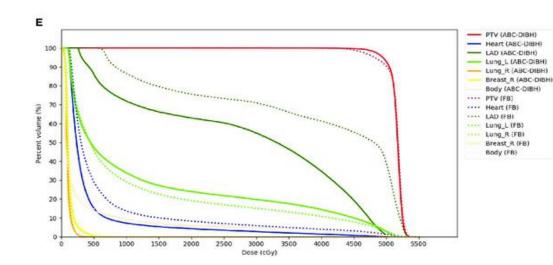

Significantly lower

- Mean heart dose,
- V20 Gy,
- V40 Gy



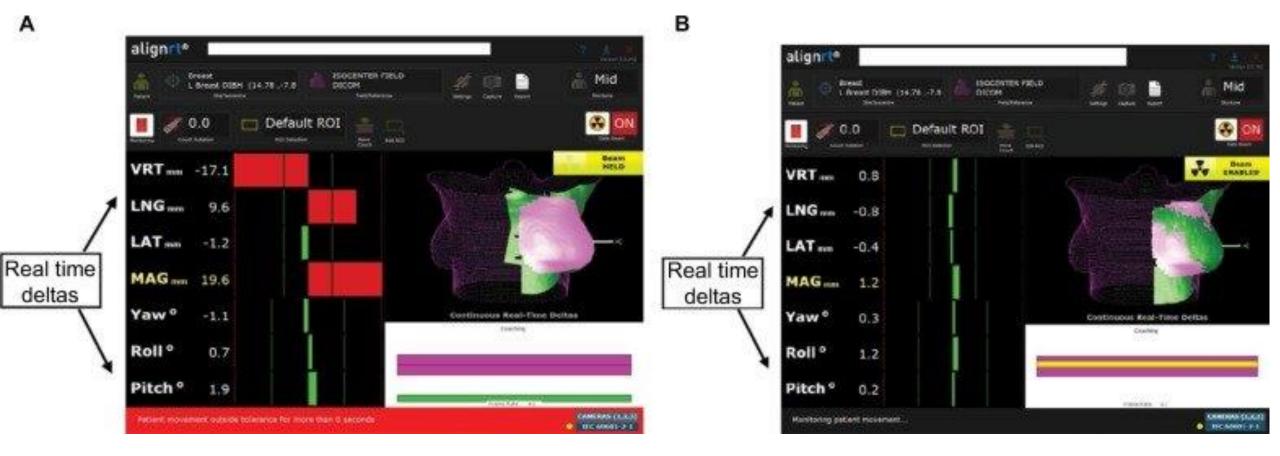

Varian RPM

Elekta ABC

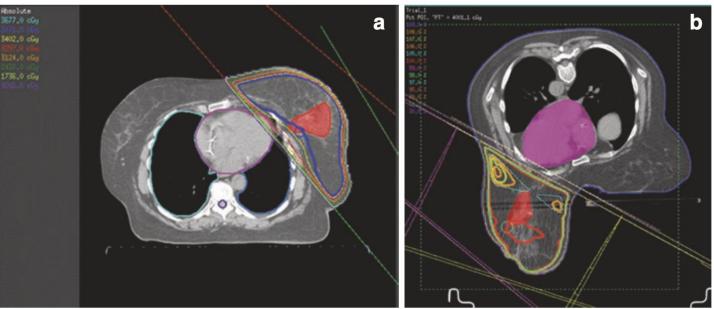


C

З

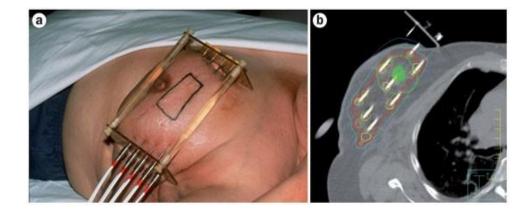


в


Align RT

Prone Positioning

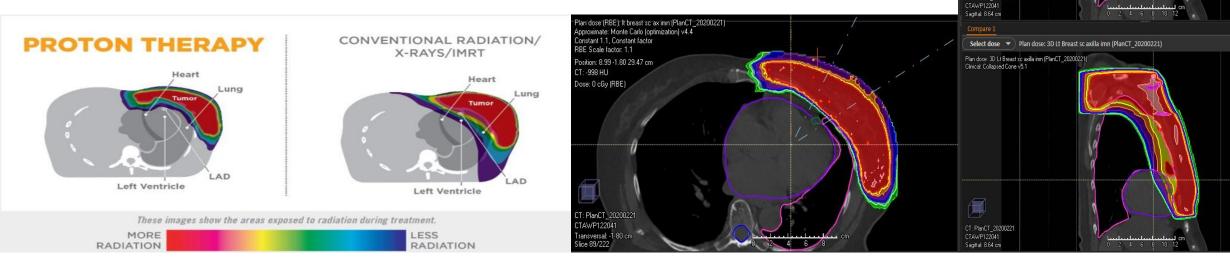
- Decrease cardiac dose from tangential breast irradiation.
- Reduce skin toxicity in women with large, pendulous breasts
- Reduce lung dose.
- Not for N+ve


Partial Breast Irradiation

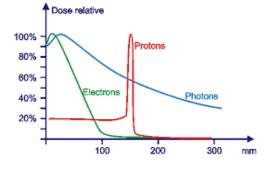
Selected patients: Suitable & Cautionary smaller treatment volumes

=> reduces the volume of irradiated heart as compared to whole breast irradiation depending upon the location of the tumor bed.

Techniques:


- Interstitial brachytherapy,
- Applicator-based brachytherapy,
- 3D-CRT external beam.

Proton Beam


• Reduce cardiac dose by optimization of the Bragg peak

Radiotherapy Comparative Effectiveness (RADCOMP) study will compare

- cardiovascular morbidity and mortality,
- health-related quality of life,
- cancer control outcomes

Select dose for plan 💌 Plan dose (RBE): It breast sc ax imn (PlanCT 20200221)

Plan dose (RBE): It breast sc ax imn (PlanCT_20200; Approximate: Monte Carlo (optimization) v4.4 Constant 1.1, Constant factor RBE Scale factor: 1.1

T: PlanCT_2020022

Cardiac Dose Constraints

• V25 < 10%

Cardiac mortality at 15 years <1%

• Mean Heart Dose < 2 Gy

- 10% increase in the relative risk of major coronary events compared to mean cardiac dose of zero.
- If MHD > 2 Gy : increased risk of major coronary events > 30%

	Left (No RLNI)	Left (with RLNI)	Right	Mean Heart Dose
NSABP B 51	V20 < 5% V10 < 30%	V25 < 5% V15 < 30%	V10 < 10%	< / = 4 Gy
Alliance A011202	V25<10%		V25 < 2%	= 4 Gy</td

Cardiac Dose Constraints

• LV – V5

- optimal probability model to predict for a radiation-induced acute coronary event includes <u>LV–V5, age, and pre-existing cardiac risk factors</u>.
- Wall segments of left ventricle & Coronary artery segments

doses should be limited as much as possible without compromising target coverage.

Structure	Dose/fraction	Dose	Volume
Whole heart (Breast radiotherapy)	2 Gy	<2.5 Gy	Mean
Left ventricle (Breast radiotherapy)	2 Gy	<3 Gy V ₅ V ₂₃	Mean <17% <5%
LAD (Breast radiotherapy)	2 Gy	<10 Gy V_{30} V_{40}	Mean <2% <1%

Table 4.5 Cardiac tissue dose constraints for conventional fractionated radiotherapy

Follow-Up and Screening

Different guidelines proposed several types of screening:

- 1.Yearly physician visits and blood pressure control,
- 2. Twice a year lipid screening,
- 3.For patients with no additional risk factors: transthoracic echocardiography (TTE) 10 years after RT and repeat TTE every 5 years.
- 4.For patients with >1 additional risk factor: TTE 5 years after RT, repeat TTE every 5 years, noninvasive stress imaging every 5 years.
- 5.For patients with symptoms of chronic heart failure (CHF), angina, and new murmur: refer immediately for TTE and stress imaging.

Treatment:

- Referring the patient to a cardiologist.
- Treatments vary according to the disease type

Breast Cancer Related Pulmonary toxicity

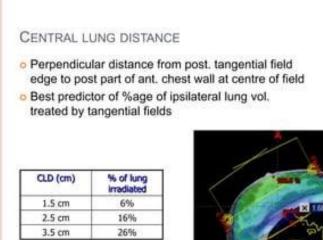
Radiation pneumonitis

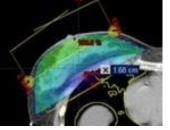
- >/= Grade 2 RP : 0-30%
- Modern era risk of <5%

Reasons:

- 2D vs. CT-based
- radiographic vs. clinically symptomatic
- breast/chest wall only vs. comprehensive regional nodes

RP: acute or subacute toxicity


1 – 6 months following RT


Symptoms:

- cough,
- dyspnea,
- low-grade fever,
- increased sputum production,
- severe cases hypoxia.

Radiation Pneumonitis: Risk factors

Central Lung Distance

- V20 < 20% or <25%
- Mean Lung Dose <15%

- Higher risk with Inclusion of nodal areas
 - SCF: strong association with RP incidence (OR = 5.07) (95% CI = 1.95-13.22).
 - IMN: OR 1.04 (95% CI, 0.43–2.54)
- No significant effect
 - concomitant use of Hormone therapy
 - prior exposure to chemotherapy

Pulmonary fibrosis

- Uncommon
- Late toxicity
- 6–24 months post-RT, with stabilization at 2 years
- overall rate of grade ≥2 pulmonary fibrosis only 3%

Risk is higher (upto 29%) in patients, receiving

- anastrozole
- taxane agent
- However, no clinically meaningful decline in QoL

Methods to reduce risk:

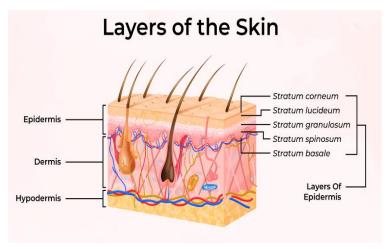
- DIBH: With maximal inspiration, the lung volume is expanded => leading to a lower percent of total lung volume within the radiation field.
- Prone: Not suitable for L.N +ve pt

Dose Constraints

No regional nodal irradiation:

Per protocol: $\leq 15\%$ of the ipsilateral lung should receive ≥ 20 gray (Gy)			
Variation acceptable: $\leq 20\%$ of the ipsilateral lung should receive ≥ 20 Gy			
Per protocol: $\leq 35\%$ of the ipsilateral lung should receive ≥ 10 Gy			
Variation acceptable: $\leq 40\%$ of the ipsilateral lung receives ≥ 10 Gy			
Per protocol: $\leq 50\%$ of the ipsilateral lung should receive ≥ 5 Gy			
Variation acceptable: $\leq 55\%$ of the ipsilateral lung receives ≥ 5 Gy			

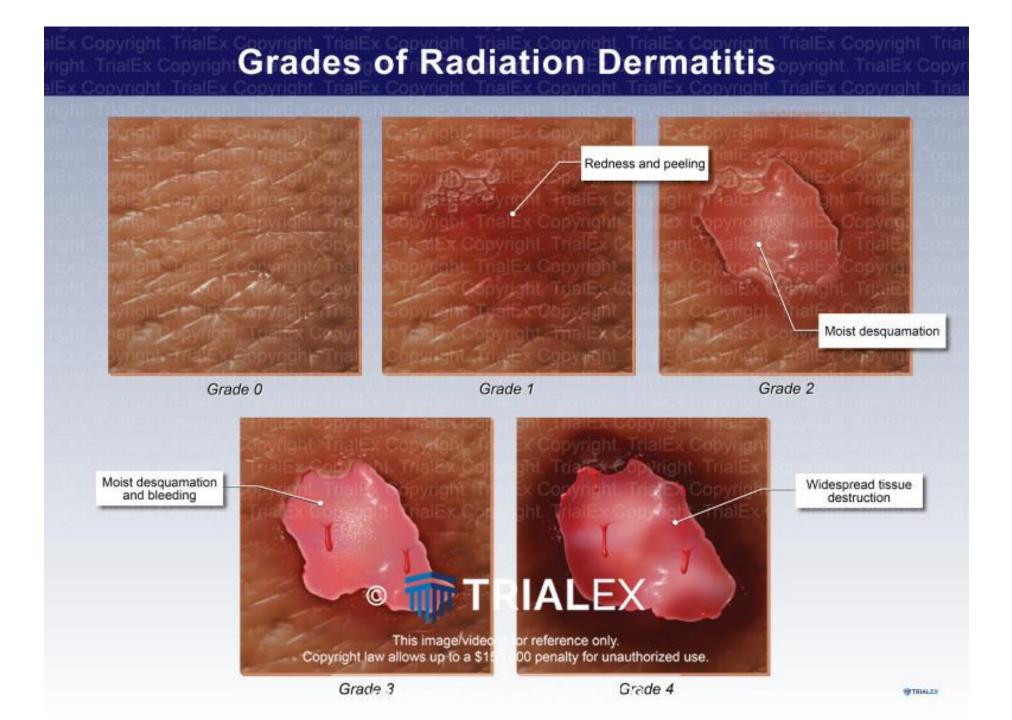
Regional nodal irradiation:


Per protocol: $\leq 30\%$ of the ipsilateral lung should receive ≥ 20 Gy
Variation acceptable: $\leq 35\%$ of the ipsilateral lung should receive ≥ 20 Gy
Per protocol: $\leq 50\%$ of the ipsilateral lung should receive ≥ 10 Gy
Variation acceptable: $\leq 60\%$ of the ipsilateral lung receives ≥ 10 Gy
Per protocol: $\leq 65\%$ of the ipsilateral lung should receive ≥ 5 Gy
Variation acceptable: $\leq 70\%$ of the ipsilateral lung receives ≥ 5 Gy

Breast Cancer Related Skin toxicity

Skin Toxicities: Breast Cancer

- The maturation process for these cells is about 2 weeks
- Complete reconstitution of the epidermis requires a period of 1–2 months


Layers	Function	Specific cells	
Stratum corneum	Barrier to extrinsic pathogen	Dead keratinocyte	
Stratum granulosum & lucidum		Keratinocytes get mature	
Stratum spinosum	Immune response	Langerhans cells -	
stratum basale	UV protective Melanin, Superficial Sensory information	highly proliferative keratinocytes , melanocytes, Merkel cells	
Dermis	Thermoregulation, lymphatic vessels, sebaceous glands, nociceptors, tactile receptors, and hair follicles.	fibroblast-dominated, blood-rich area	

Acute skin toxicity: Grading

С

	Grade 0	Grade 1	Grade 2	Grade 3	Grade 4	
Acute	None	Follicular, faint or de erythema/epilation desquamation/dec	n/dry erythema, patchy			
	B	sweating	edema	edema		
		Occur withi	tart around the 2nd to 4t in 30 days from completional peak response occurs	on of therapy.		rapy
	D	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5
		Faint erythema or dry desquamation	Moderate to brisk erythema; patchy moist desquamation, mostly confined to skin folds and creases; moderate edema	Moist desquamation in areas other than skin folds and creases; bleeding induced by minor trauma or abrasion	Skin necrosis or ulceration of full thickness dermis; spontaneous bleeding from involved site	Death

Risk factors

Treatment factor

- Radiation technique
 - IMRT vs 3DCRT vs Conventional
- Dose / Fractionation
 - Hypo# vs Conventional #
- Dosimetric parameters
 - Dose inhomogeneity (>107%, V107%)
 - Skin dose (0.07 mm from the skin surface)
- BCS vs MRM
- RLNI vs No RLNI

Patient factor

- High BMI (larger breast size, greater body mass, and higher disease stage, larger treatment field size)
- Genetic Predisposition via Altered DNA Damage Repair
- Dysfunctional Immune Response
- Smoking

Anticipatory practices

- Smoking cessation
- Physical activities that irritate the skin within the radiation field should be avoided or pursued with caution
- Use of supportive undergarments
- General hygiene practices should be explored and optimized.
- No excess toxicity with the addition of soap (non-perfume) soap
- Use of deodorant during radiotherapy is controversial

- concern that the metallic ingredients within some deodorant could lead to scatter and increased skin dose.

- Studies have failed to show a significant increase in skin reactions with use of these products.

Prophylactic approaches

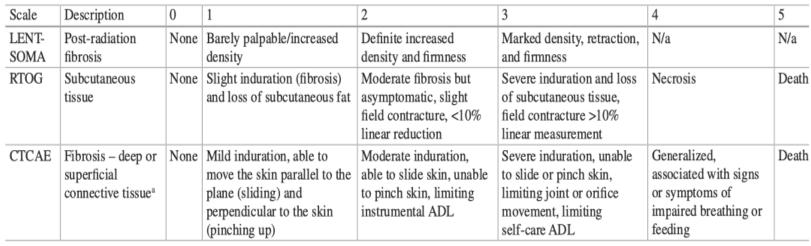
To moisturize the affected skin, reduce friction and possibly minimize local inflammation.

- Calendula cream
- Aloe vera
- Use of oil emulsions has generally been discouraged *theoretically increase the dose to the skin by creating pseudobolus.*
- **Topical steroids:** Mometasone furoate and emollient care was found to result in less acute radiation dermatitis

Non-scented and lanolin-free hydrophilic cream for potential prevention of radiation skin reactions

Treatment of Acute Skin Toxicity

- Continue to use their daily topical cream to increase skin moisture to support regeneration of the epidermis
- Cool air high flow
- Topical Dye
- Mepilex dressings
- Hydrocolloid and hydrogen dressings.
- Biological membrane dressing
- Silver ion-based creams may be applied if there is concern for infection
- SCGG recommendations: low-dose topical steroids for the management of pruritus and irritation



Late Skin Toxicity: Grading

- Radiation-Induced Fibrosis
- Atrophy
- Hyperpigmentation
- Telangiectasia
- Morphea
- Radiation Recall

Table 1 Grading scales for fibrosis

^aDeep and superficial connective tissue fibroses are measured on two separate scales, with the same grading rubric

Radiation related risk factors

- Increased radiation dose,
- Increased volume of radiated tissues,
- Presence of a radiation boost
- Technique

Patient related	Treatment related
Age	Radiotherapy
Breast size	Radiation dose
Genetics	Volume of radiated tissue
Connective tissue disorders	Use of a boost
TGF-B serum levels	Radiation technique
RILA	Surgery
	Surgical complications
	Chemotherapy
	Timing of chemotherapy

Breast hypofractionation has not been shown to increase the rate of fibrosis.

START A/B trials Whelan hypofractionation trial

Radiation induced fibrosis

- Decreased tissue compliance,
- Atrophy,
- Skin retraction,
- Toughness to palpation
- Hyperpigmentation, dryness, and telangiectasia.
- Significant induration and rigidity or retraction of the breast or chest wall.
- Skin ulceration or necrosis may occur in severe cases.
- Extreme RIF resulting in a mass mimicking breast cancer recurrence

Treatment of Late Skin Toxicities:

- Options are limited, so their efficacy
- Physical therapy: exercise protocols
 - to maintain recovery,
 - movement of the impaired shoulder
 - massage therapy Deep friction massage may also be helpful

Medical management

- Pentoxyphylline
- Vit E
- Oral and topical steroids may be considered
- psoralen UVA (PUVA) therapy
- Ultrasound phonophoresis combined with hyaluronidase
- Hyperbaric Oxygen
- *Surgical interventions*: For extreme case

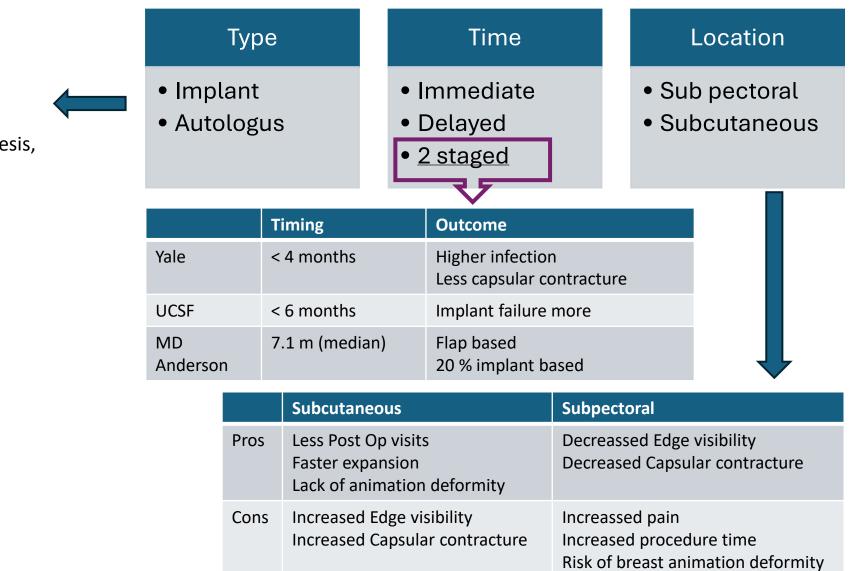
Morphea:

- Topical calcipotriol vitamin D3 analog,
- UVA1 irradiation

Telangiectasia:

• pulse dye laser.

PMRT in Breast Reconstruction: Toxicities

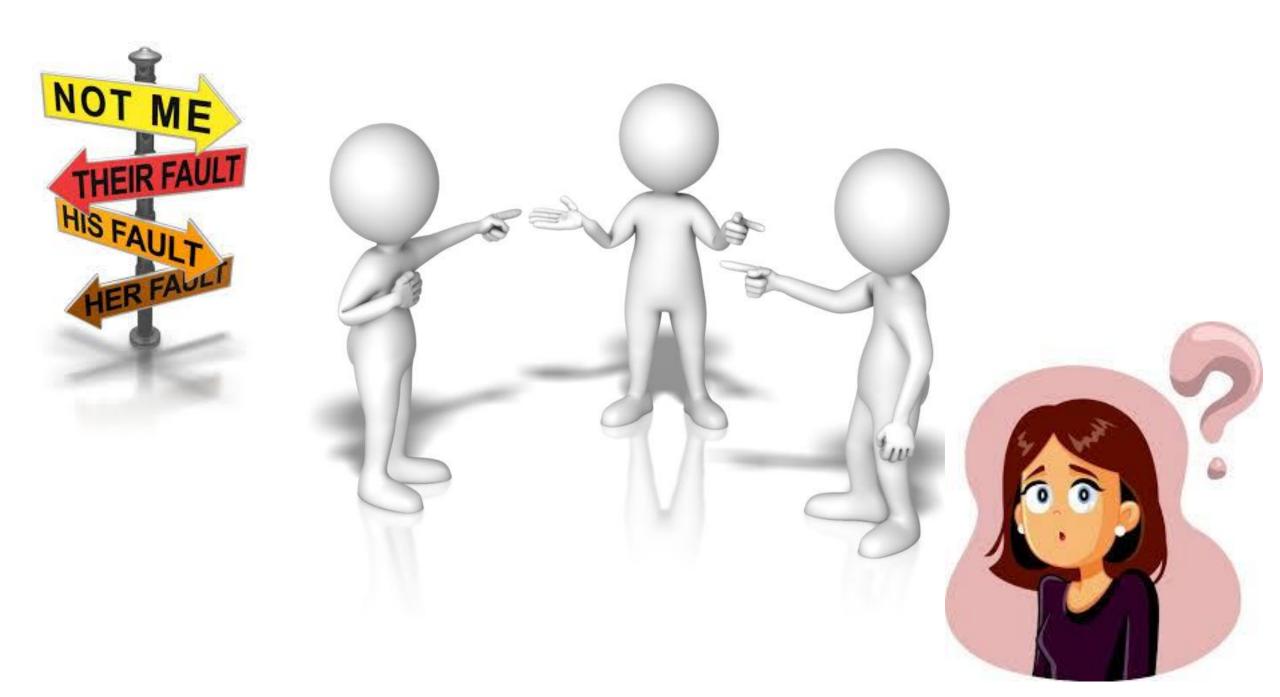

PMRT in Breast Reconstruction:

Surgical factors

- Implant + PMRT:
 - capsular contracture,
 - compromises in the RT plan
 - asymmetry and impaired cosmesis,
 - infections,
 - incision breakdown
 - implant loss

• Autologous + PMRT:

- compromises in the RT plan
- fat necrosis,
- vascular complications,
- fibrosis,
- contour deformities,
- need for reoperation,
- flap loss


PMRT in Breast Reconstruction:

Surgical factors Location Type Time • Implant + PMRT: • Implant Immediate • Sub pectoral • capsular contracture, compromises in the RT plan Autologus Delayed Subcutaneous asymmetry and impaired cosmesis, • • 2 staged infections, • incision breakdown implant loss Timing Outcome Autologous + PMRT: < 4 months Yale **Higher infection** compromises in the RT plan Less capsular contracture fat necrosis, ٠ < 6 months UCSF Implant failure more vascular complications, ٠ MD 7.1 m (median) Flap based fibrosis, ٠ 20 % implant based Anderson contour deformities, ٠ need for reoperation, ٠ **Subcutaneous Subpectoral** flap loss • Decreassed Edge visibility Less Post Op visits Pros Patient factors: increased risk poor outcome **Faster expansion Decreased Capsular contracture** higher BMI ٠ Lack of animation deformity smoking, Increased Edge visibility Increassed pain Cons diabetes ٠ Increased procedure time Increased Capsular contracture Risk of breast animation deformity

Others: Multifactorial

- Pain
- Fatigue

- Exercise: safe, effective, and low-cost measure
 - Improve both quality of life and quantity of life
 - reduce
 - ✓ Pain
 - ✓ Fatigue
 - ✓ BCRL
- Nutrition:
 - Fruits , Vegetables
 Avoid red meat, processed food, alcohol
- Mindfulness based intervention
 - ➢Yoga
 - Stress reduction
 - ≻CBT

"The good physician treats the disease; the great physician treats the patient with the disease." - William Olser

veeroesquotes.com