

The Physics of Hypofractionation & SRS/SBRT

Abhijit Mandal, PhD Professor (Radiological Physics)

Department of Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005

Learning Objectives: Hypofractionation & SRS/SBRT

- ✓ Technical issues
- ✓ Technical reports / Protocols
- ✓ Quality assurance
- ✓ Safety aspects
- ✓ Limitation

Hypo fractionation

Parameter Fractionation	N (No of Fractions)	D (Total Dose)	d (Dose / Fraction)	X (Fraction / w				
CONVENTIONAL	VENTIONAL 30-35		180-210	5				
HYPO (Moderate)	Ļ	\downarrow	¢	Ļ				
HYPO (Extreme)	$\downarrow\downarrow$	$\downarrow\downarrow$	^	$\downarrow\downarrow$				
HYPER	1	1	Ļ	1				
Moderate hypofractionation								
Extreme hypofractionation Schedule								
		Total dose (Gy)	76–80	57–70.2 38–50				
		Total treatment dura	tion (weeks) 8–9	4–6 1–2				
		Number of fractions	(n) 38–40	19–30 4–5				
		Dose per fraction (G	y) 1.8–2	2.4–4 6–10				
		Interval between fra	ctions (days) 1	1 1-2				

Hypo fractionation : Advantages

shutterstock.com · 2298316957

Merits	Demerits
Cost reduction	Late Tissue toxicity
Convenience	Cosmesis
Radiobiology	Radiobiology

Hypo fractionation : Overcome limitations

- ✓ Lesser resources
- ✓ Old patients
- ✓ Problems in mobility
- ✓ Complicated set ups

- ✓ Palliations
- ✓ Radiobiological limitations

Hypo fractionation : Modern technical advantages

- ✓ High-energy beams (MeV energy range)
- ✓ Achieving high degree target conformity
- ✓ Sparing normal tissues
- ✓ Maintaining precession in delivery

Hypo fractionation : Professionals

- ✓ Radiation Oncologist
- ✓ Radiological Physicist
- ✓ Mould room Technologist
- ✓ Imaging Technologist
- ✓ Dosimetrist
- ✓ Therapy Technologist

Hypo fractionation : Patients selection

- ✓ Justified treatment
- ✓ Cooperative
- ✓ Can tolerate prolonged treatment
- ✓ Unavoidable patients issues
- ✓ Non emergency cases

Hypo fractionation : Equipment

- \checkmark High degree patient setup and immobilization devices.
- ✓ 3D,4D Imaging equipment.
- ✓ High performing Treatment planning software and hardware.
- ✓ Compatible treatment verification /QA equipment.
- ✓ High Precision radiation delivery equipment.

Hypo fractionation : Challenges

Hypo fractionation : Standards / Protocols

- ✓ Timmerman Sheet (RTOG 0236) : 2004
- ✓ AAPM TG-101 :2010
- ✓ NRG/RTOG protocols (RTOG 0915) : 2015
- ✓ HyTEC : 2020

RADIATION THERAPY ONCOLOGY GROUP

RTOG 0236

A Phase II Trial of Stereotactic Body Radiation Therapy (SBRT) in the Treatment of Patients with Medically Inoperable Stage I/II Non-Small Cell Lung Cancer

Image-Suided Radiotherapy Co-Chair Jeff Michalski, M.D. Malinckrodt Institute of Radiology 510 S. Kingshighway St. Louis, Missouri 63110 314-362-8566 FAX 314-362-8551 michalski@radonc.wustl.edu

Radiobiology Co-Chair Jack Fowler, D.Sc., Ph. D. University of Wisconsin Medical School CSC K4/334, 600 Highland Avenue Madison, Wi S3792 608-265-0506 FAX 608-263-9947 [ffowler@humonc.wisc.edu

Thoracic Surgery Co-Chair David Johnstone, M.D. University of Rochester 601 Einwood Avenue, Box: Surgery Rochester, NY 14642 585-275-1509 FAX 585-273-1011 david_johnstone@umc.rochester.edu

Radistion Oncology/Comorbidity Co-Chair Elizabeth Gore, M.D. Medical College of Wisconsin 9200 West Wisconsin Avenue Milwaukee, WI 53226 414-805-4465 FAX 414-805-4369 egore@radonc.mcw.edu Principal Investigator/Radiation Oncology Robert D. Timmerman, M.D. University of Texas Southwestern 5801 Forest Park Road, NF3.302B Dallas, TX 75300 214-645-7637 FAX 214-645-7622 Robert.Timmerman@UTSouthwestern.edu

Thoracic Oncology Co-Chair Hak Choy, M.D. The University of Texas Southwestern 5801 Forest Park Road Dallas, TX75309-0183 214-645-7600 FAX 214-645-9183 Hak.Choy@UTSouthwestern

Medical Physics <u>Co-Chair</u> James M. Galvin, D.Sc. Thomas Jefferson University Hospital 111 South 11th Street Philadelphia, PA 19107-5097 215-955-9855 FAX 215-955-0412 james galvingmalt tju.edu

Activation Date: May 26, 2004 Closure Date: October 13, 2006 Version Date: September 9, 2009 Includes Amendments 1-6 (Broadcast 9/17/09)

RTOG Headquarters/Statistical Unit 215-574-3189 1-800-227-5463, ext. 4189

This protocol was designed and developed by the Radiation Therapy Oncology Group (RTOG) of the American College of Radiology (ACR). It is intended to be used only in conjunction with institution-specific IRB approval for study entry. No other use or reproduction is authorized by RTOG nor does RTOG assume any responsibility for unauthorized use of this protocol.

RTOG 0236

2004

Objective: Determine if radiotherapy involving high biological dose with limited treatment volume (using SBRT techniques) achieves acceptable treatment outcome in patients with medically inoperable early stage non-small cell

lung cancer.

Patients: T1, T2 (≤ 5 cm), T3 (≤ 5 cm), N0, M0

medically inoperable non-small cell lung cancer.

RADIATION THERAPY

Stereotactic Targeting and Treatment:

- \checkmark Targeting, planning, and directing Radiation beams
- ✓ Along any trajectory in 3-D space
- \checkmark Toward a target of known 3-D coordinates

Dose Fractionation :

- ✓ 20 Gy per fraction
- \checkmark At the edge of the PTV.
- \checkmark 3 fractions over 8-14 days for a total of 60 Gy.

Note: Intensity Modulated RT (IMRT) Is Not Allowed

Physical Factors : Photon energies 4-10 MV

Minimum Field Aperture : 3.5 cm(Electronic disequilibrium) Patient Positioning :

- ✓ Stereotactic frames (surround ~ three sides)
- ✓ Reference ~ stereotactic coordinate system

Image Acquisition :

- ✓ Computed Tomography (CT) (Scan sep < 3mm)</p>
- Simultaneous view of patient anatomy and fiducial system

Target :

- ✓ GTV ~ Pulmonary windows
- ✓ GTV and CTV are identical (No Margin)

Technological Factors

- ✓ Coplanar / non-coplanar beam arrangements.
- ✓ Static beams or arcs
- ✓ Preferably: Non opposing , 7- 10 beams, ~ Equal weighting.
- ✓ BEV: Field aperture approximate PTV (No additional margin).
- ✓ PTV ~ 60-90% line (rather than 95-100%).
- ✓ Hotspots within the target.
- ✓ Normalization : Defined point (~ ISO) ~ center of mass of PTV.
- \checkmark No correction for tissue heterogeneity (unit density)

Target

Maximum	Rat	io of	Ratio	of 50%	Maximum Dose 2		Percent of Lung	
PTV	Presc	ription	Presc	ription	cm from PTV in any		receiving 20 Gy	
Dimension	Isodose	Volume	Isodose	Volume	Direction	, D _{2cm} (Gy)	total c	or more,
(cm)	to the	e PTV	to the P	TV, R _{50%}			V ₂₀	o (%)
	Dev	iation	Devi	ation	Dev	viation	Dev	viation
	none	minor	none	Minor	none	minor	none	minor
2.0	<1.2	1.2-1.4	<3.9	3.9-4.1	<28.1	28.1-30.1	<10	10-15
2.5	<1.2	1.2-1.4	<3.9	3.9-4.1	<28.1	28.1-30.1	<10	10-15
3.0	<1.2	1.2-1.4	<3.9	3.9-4.1	<28.1	28.1-30.1	<10	10-15
3.5	<1.2	1.2-1.4	<3.9	3.9-4.1	<28.1	28.1-30.1	<10	10-15
4.0	<1.2	1.2-1.4	<3.8	3.8-4.0	<30.4	30.4-32.4	<10	10-15
4.5	<1.2	1.2-1.4	<3.7	3.7-3.9	<32.7	32.7-34.7	<10	10-15
5.0	<1.2	1.2-1.4	<3.6	3.6-3.8	<35.1	35.1-37.1	<10	10-15
5.5	<1.2	1.2-1.4	<3.5	3.5-3.7	<37.4	37.4-41.7	<10	10-15
6.0	<1.2	1.2-1.4	<3.3	3.3-3.5	<39.7	39.7-41.7	<10	10-15
6.5	<1.2	1.2-1.4	<3.1	3.1-3.3	<42.0	42.0-44.0	<10	10-15
7.0	<1.2	1.2-1.4	<2.9	2.9-3.1	<44.3	44.3-46.3	<10	10-15

OAR

er
er
er
ber
ber

- ✓ 59 patients ,55 were evaluable
- ✓ 44 patients : T1 and 11 patients : T2
- ✓ Median follow-up of 4.0 years
- \checkmark The 5-year primary tumor failure rate was 7%.
- \checkmark The 5-year involved lobe (local) failure rate was 20%.
- \checkmark The 5-year local-regional failure rate was 38%.
- \checkmark The 5-year disseminated failure rate was 31%.
- ✓ The 5 years were DFS~26% and OS~40%
- \checkmark The median overall survival was 4 years
- \checkmark Toxicity grade 3 ~15 and grade 4 ~ 2

Hypo fractionation : AAPM TASK GROUP REPORT- 101

Stereotactic body radiation therapy: The report of AAPM Task Group 101

Stanley H. Benedict, Chairman⁴⁾ University of Virginia Health System, Charlottesville, Virginia 22908 Kamil M. Yenice, Co-Chairman

University of Chicago, Chicago, Illinois 60637 David Followill University of Texas MD Anderson Cancer Center, Houston, Texas 77030

James M. Galvin Thomas Jefferson University Hospital, Philadelphia, Pennsylvania 19107

William Hinson Wake Forest University, Winston Salem, North Carolina 27157

Brian Kavanagh University of Colorado School of Medicine, Aurora, Colorado 80045 Paul Keall

Stanford University, Palo Alto, California 94305 Michael Lovelock

Memorial Sloan-Kettering Cancer Center, New York, New York 10021 Sanford Meeks

M.D. Anderson Cancer Center Orlando, Orlando, Florida 32806 Lech Papiez

University of Texas Southwestern Medical Center, Dallas, Texas 75390 Thomas Purdie

University of Toronto, Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada Ramaswamy Sadagopan

University of Texas MD Anderson Cancer Center, Houston, Texas 77030 Michael C. Schell

University of Rochester Medical Center, Rochester, New York 14642 Bill Salter

University of Utah, Salt Lake City, Utah 84112 David J. Schlesinger

David J. Schlesinger University of Virginia Health System, Charlottesville, Virginia 22908 Almon S. Shiu

University of Texas MD Anderson Cancer Center, Houston, Texas 77030 Timothy Solberg

University of Texas Southwestern Medical Center, Dallas, Texas 75390 Danny Y. Song

Johns Hopkins University, Baltimore, Maryland 21231 Volker Stieber

Forsyth Regional Cancer Center, Winston Salem, North Carolina 27103 Robert Timmerman University of Texas Southwestern Medical Center, Dallas, Texas 75390

Wolfgang A. Tomé University of Wisconsin, Madison, Wisconsin 53792

Dirk Verellen UV Brussel, Vrije Universiteit Brussel (VUB), Brussels B-1090, Belgium Lu Wang

Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 Fang-Fang Yin

Dake University Medical Center, Durham, North Carolina 27710 (Received 1 December 2009; revised 3 May 2010; accepted for publication 4 May 2010; published 14 July 2010)

4078 Med. Phys. 37 (8), August 2010

0094-2405/2010/37(8)/4078/24/\$30.00 © 2010 Am. Assoc. Phys. Med. 4078

- Practice guideline (SBRT)
- Medical physicists, clinicians, and therapists
- Includes a review of the literature
- Information for establishing a SBRT Program
- ✓ Protocols
- ✓ Equipment
- ✓ Resources
- ✓ QA procedures

 $\checkmark\,$ Prescribing, reporting, and recording.

Comparisons

Characteristic	3D/IMRT	SBRT
Dose/fraction	1.8–3 Gy	6–30 Gy
No. of fractions	10-30	1–5
	CTV/PTV (gross disease+clinical extension):	GTV/CTV/ITV/PTV
Target definition	Tumor may not have a sharp boundary.	(well-defined tumors: GTV=CTV)
Margin	Centimeters	Millimeters
Physics/dosimetry monitoring	Indirect	Direct
Required setup accuracy	TG40, TG142	TG40, TG142
Primary imaging modalities used for treatment planning	СТ	Multimodality: CT/MR/PET-CT
Redundancy in geometric verification	No	Yes
		Strictly enforced (sufficient immobilization
Maintenance of high spatial targeting accuracy	Moderately enforced	and high frequency position monitoring
for the entire treatment	(moderate patient position control and monitoring)	through integrated image guidance)
Need for respiratory motion management	Moderate-Must be at least considered	Highest
Staff training	Highest	Highest+special SBRT training
Technology implementation	Highest	Highest
Radiobiological understanding	Moderately well understood	Poorly understood
Interaction with systemic therapies	Yes	Yes

Patients Selection

- Site : Brain, lung, liver, and spinal tumors.
- SBRT as a boost.
- Preferably : Cross-sectional diameter ~ 5 cm (max)
- SBRT is still developing

Recommendations :

- Unpublished indications
- ✓ Formal prospective clinical trial

Patient Immobilization

- High degree immobilization
- Patient comfort issues
- ✓ Longer treatment setup time
- ✓ Longer irradiation time
- Treatment setup related issue
- Multiple radiation portal entry/exit
- \checkmark Patient position Neck , Hand position etc.

Patient Immobilization : Body

WITH FRAME

WITHOUT FRAME

Stereotactic body frames :

- ✓ Physical immobilization
- ✓ Initial approximation target localization

Patient Immobilization : Accuracy (Body)

Author, year	Site	Immobilization/repositioning	Reported accuracy
		Wood frame/stereotactic coordinates	
Lax, 1994 ^a	Abdomen	on box to skin marks	3.7 mm Lat, 5.7 mm Long
Hamilton, 1995 ^b	Spine	Screw fixation of spinous processes to box	2 mm
		Frameless/implanted fiducial markers with real-time	
Murphy, 1997 ^c	Spine	imaging and tracking	1.6 mm radial
Lohr, 1999 ^d	Spine	Body cast with stereotactic coordinates	≤3.6 mm mean vector
Yenice, 2003e	Spine	Custom stereotactic frame and in-room CT guidance	1.5 mm system accuracy, 2-3 mm positioning accuracy
		MI [™] BodyFix with stereotactic frame/linac/CT on rails	
Chang, 2004 ^f	Spine	with 6D robotic couch	1 mm system accuracy
Tokuuye, 1997	Liver	Prone position jaw and arm straps	5 mm
Nakagawa, 2000 ^g	Thoracic	MVCT on linac	Not reported
Wulf, 2000 ^h	Lung, liver	Elekta [™] body frame	3.3mm lat,4.4 mm long
	-	-	Bony anatomy translation 0.4, 0.1, 1,6 mm (mean
			X, Y, Z; tumor translation before image guidance 2.9,
Fuss, 2004 ⁱ	Lung, liver	MI™ BodyFix	2.5, 3.2 mm (mean X, Y, Z)
Herfarth, 2001 ^j	Liver	Leibinger body frame	1.8–4.4 mm
Nagata, 2002 ^k	Lung	Elekta [™] body frame	2 mm
Fukumoto, 20021	Lung	Elekta [™] body frame	Not reported
		Custom bed transferred to treatment unit after	
Hara, 2002 ^m	Lung	confirmatory scan	2 mm
Hof, 2003 ⁿ	Lung	Leibinger body frame	1.8–4 mm
Timmerman, 2003°	Lung	Elekta [™] body frame	Approx. 5 mm
		Medical Intelligence body frame stereotactic	
Wang, 2006 ^p	Lung	coordinates/CT on rails	$0.3 \pm 1.8 \text{ mm AP}, -1.8 \pm 3.2 \text{ mm Lat}, 1.5 \pm 3.7 \text{ mm SI}$

Accuracy ~ 2-3 mm

Patient Immobilization : Head

WITH FRAME	WITHOUT FRAME
EL CONT	

Accuracy ~ 1-2 mm

Simulation Imaging : Static targets (General)

SBRT demands

- ✓ Precise delineation of patient anatomy
- ✓ Targets segmentation for planning
- ✓ Clear visualization for localization (treatment delivery)

CT or 4DCT (3D anatomical data sets)

- ✓ Visualizations
- ✓ Dose calculation

MRI /PET (3D anatomical / functional data sets)

✓ Assist in target segmentation

✓ Visualization

Simulation Imaging : Static targets (General)

Recommendation:

- \checkmark Patient in the treatment position.
- ✓ Cover the target and all organs at risk
- ✓ Extend
 - ~ 5–10 cm superior / inferior beyond the VOI (Coplanar)
 - ~ 15 cm superior / inferior beyond the VOI (Non coplanar)
- ✓ Slice thickness of 1–3 mm

Simulation Imaging : Moving Targets

Tumour motion : sources

- ✓ Respiration
- ✓ Cardiac function
- Peristaltic activity
- ✓ Organ filling and emptying

Tumour motion : management strategies

- ✓ Slow CT
- ✓ Breath-hold techniques
- ✓ Gated approaches
- ✓ 4DCT (max-intensity projection/min intensity projection)
- ✓ Respiration-correlated PET-CT

Recommendation:

- ✓ If Simulation / localization without sufficient accuracy (motion and/or metal artifacts)
- ✓ SBRT should not be pursued as a treatment option

Treatment planning : Conditions

- ✓ A small volume (gross tumor +close vicinity)
- ✓ Very high dose per fraction
- ✓ Hotspots within the target ~ often acceptable

Normal tissue:

- $\checkmark\,$ High dose should be minimized
- ✓ Sharp dose fall off outside the target.

Treatment planning : strategies

Segmentation:

- ✓ ICRU 50 and 62 :GTV, CTV, PTV, and OAR
- ✓ GTV and CTV ~ Often identical
- CTV size : Tumor motion ~ Added margin : ITV
- Dose heterogeneity
- ✓ Dose prescriptions : Low isodoses (~ 80%)
- $\checkmark\,$ Small/ no margins Penumbra at the target edge
- ✓ Dose heterogeneity acceptable

Dose fall off

- ✓ Energy up to 6 MV
- ✓ Multiple non overlapping beams
- ✓ Resolution of beam shaping device (finer MLC~ 5 mm)

Treatment planning : strategies

Beam selection and beam geometry:

- \checkmark Avoidance of sensitive organs.
- ✓ Mechanical constraints.
- ✓ Short beam paths for most beams.
- ✓ Multiple beam / Arc (Entrance dose < 30% of total dose)
- ✓ Isotopic dose gradient is desirable.

Calculation grid size :

- ✓ Extremely high-dose gradients near the boundary.
- ✓ Isotropic grid size of 2 mm or finer.

Treatment planning : Normal tissue dose tolerance

		One t	fraction	Three fractions		Five fractions			
Serial tissue	Max critical volume above threshold	Threshold dose (Gy)	Max point dose (Gy) ^a	Threshold dose (Gy)	Max point dose (Gy) ⁿ	Threshold dose (Gy)	Max point dose (Gy) ^a	End point (≥Grade3)	
Optic pathway	<0.2 cc	8	10	15.3 (5.1 Gy/fx)	17.4 (5.8 Gy/fx)	23 (4.6 Gy/fx)	25 (5 Gy/fx)	Neuritis	
Cochlea			9		17.1 (5.7 Gy/fx)		25 (5 Gy/fx)	loss	
Brainstem					1/11 (0.1/ clj/14)		25 (5 Gym)	Cranial	
(not medulla)	<0.5 cc	10	15	18 (6 Gy/fx)	23.1 (7.7 Gy/fx)	23 (4.6 Gy/fx)	31 (6.2 Gy/fx)	neuropathy	
Spinal cord	<0.35 cc	10	14	18 (6 Gy/fx)	21.9 (7.3 Gy/fx)	23 (4.6 Gy/fx)	30 (6 Gy/fx)	Myelitis	
and medulla	<1.2 cc	7		12.3 (4.1 Gv/fx)		14.5 (2.9 Gy/fx)		,	
Spinal cord				(in c),in)		(1) (1) (1)			
subvolume									
(5-6 mm above	<10%								
and below level	of								
treated per Ryu)	subvolume	10	14	18 (6 Gy/fx)	21.9 (7.3 Gy/fx)	23 (4.6 Gy/fx)	30 (6 Gy/fx)	Myelitis	
Cauda equina	<5 cc	14	16	21.9 (7.3 Gy/fx)	24 (8 Gy/fx)	30 (6 Gy/fx)	32 (6.4 Gy/fx)	Neuritis	
Sacral plexus	<5 cc	14.4	16	22.5 (7.5 Gy/fx)	24 (8 Gy/fx)	30 (6 Gy/fx)	32 (6.4 Gy/fx)	Neuropathy	
Esophagus ^b	<5 cc	11.9	15.4	17.7 (5.9 Gy/fx)	25.2 (8.4 Gy/fx)	19.5 (3.9 Gy/fx)	35 (7 Gy/fx)	Stenosis/fistula	
Brachial plexus	<3 cc	14	17.5	20.4 (6.8 Gy/fx)	24 (8 Gy/fx)	27 (5.4 Gy/fx)	30.5 (6.1 Gy/fx)	Neuropathy	
Heart/pericardium	<15 cc	16	22	24 (8 Gy/fx)	30 (10 Gy/fx)	32 (6.4 Gy/fx)	38 (7.6 Gy/fx)	Pericarditis	
Great vessels	<10 cc	31	37	39 (13 Gy/fx)	45 (15 Gy/fx)	47 (9.4 Gy/fx)	53 (10.6 Gy/fx)	Aneurysm	
Trachea and large									
bronchus ^b	<4 cc	10.5	20.2	15 (5 Gy/fx)	30 (10 Gy/fx)	16.5 (3.3 Gy/fx)	40 (8 Gy/fx)	Stenosis/fistula	
Bronchus-smaller								Stenosis	
airways	<0.5 cc	12.4	13.3	18.9 (6.3 Gy/fx)	23.1 (7.7 Gy/fx)	21 (4.2 Gy/fx)	33 (6.6 Gy/fx)	with atelectasis	
Rib	<1 cc	22	30	28.8 (9.6 Gy/fx)	36.9 (12.3 Gy/fx)	35 (7 Gy/fx)	43 (8.6 Gy/fx)	Pain or fracture	
	<30 cc			30.0 (10.0 Gy/fx)					
Skin	<10 cc	23	26	30 (10 Gy/fx)	33 (11 Gy/fx)	36.5 (7.3 Gy/fx)	39.5 (7.9 Gy/fx)	Ulceration	
Stomach	<10 cc	11.2	12.4	16.5 (5.5 Gy/fx)	22.2 (7.4 Gy/fx)	18 (3.6 Gy/fx)	32 (6.4 Gy/fx)	Ulceration/fistula	
Duodenum ^b	<5 cc	11.2	12.4	16.5 (5.5 Gy/fx)	22.2 (7.4 Gy/fx)	18 (3.6 Gy/fx)	32 (6.4 Gy/fx)	Ulceration	
	<10 cc	9		11.4 (3.8 Gy/fx)		12.5 (2.5 Gy/fx)			
								Enteritis/	
Jejunum/ileum ^b	<5 cc	11.9	15.4	17.7 (5.9 Gy/fx)	25.2 (8.4 Gy/fx)	19.5 (3.9 Gy/fx)	35 (7 Gy/fx)	obstruction	
Colon ^b	<20 cc	14.3	18.4	24 (8 Gy/fx)	28.2 (9.4 Gy/fx)	25 (5 Gy/fx)	38 (7.6 Gy/fx)	Colitis/fistula	
Rectumb	<20 cc	14.3	18.4	24 (8 Gy/fx)	28.2 (9.4 Gy/fx)	25 (5 Gy/fx)	38 (7.6 Gy/fx)	Proctitis/fistula	
Bladder wall	<15 cc	11.4	18.4	16.8 (5.6 Gy/fx)	28.2 (9.4 Gy/fx)	18.3 (3.65 Gy/fx)	38 (7.6 Gy/fx)	Cystitis/fistula	
Penile bulb	<3 cc	14	34	21.9 (7.3 Gy/fx)	42 (14 Gy/fx)	30 (6 Gy/fx)	50 (10 Gy/fx)	Impotence	
Femoral heads									
(right and left)	<10 cc	14		21.9 (7.3 Gy/fx)		30 (6 Gy/fx)		Necrosis	
Renal									
hilum/vascular	<2/3							Malignant	
trunk	volume	10.6	18.6 (6.2 Gy/fx)			23 (4.6 Gy/fx)		hypertension	

Treatment planning : Reporting

SBRT treatment plans contains

- ✓ Large numbers of beams
- ✓ Unconventional dose fractionations
- ✓ Delivery frequencies
- ✓ Comprehensive image guidance data

Plan Report

- Prescription dose
- ✓ ICRU ref point dose or dose/volume
- ✓ Number of treatment fractions
- ✓ Total treatment delivery period
- ✓ Target coverage
- ✓ Plan conformity
- ✓ Dose falloff outside the target
- ✓ Heterogeneity index
- ✓ Notable high / low dose outside PTV
- ✓ Dose to organs at risk

Target / Tumour localisation

- ✓ Image guidance provides the finest level of localization.
- ✓ Traditional approach ~ 2D MV EPID, Implanted fiducial : Spinal site (2 mm)
- ✓ Volumetric image guidance:
- ✓ KV / MV CBCT
- ✓ Dual or multiple KV Imaging

Target / tumour tracking

- ✓ Monitoring is desirable to track tumour motion
- ✓ Stereoscopic infrared cameras
- ✓ Video photogrammetry
- ✓ Electromagnetic field tracking (Calypso)
- ✓ Surface Guided Radiotherapy

Respiratory gating

- ✓ RPM Gating By Varian Medical System
- ✓ ABC (automatic Breathing Control) By Elekta Medical System)

Special Dosimetry considerations

Problems with small fields and beamlets (< 10 mm) :

- ✓ Loss of lateral electronic equilibrium
- ✓ Volume averaging,
- ✓ Detector-interface artifacts
- ✓ Collimator effects
- ✓ Detector position-orientation effects

Recommendations:

- Dosimeter with a spatial resolution ~ 1 mm
- ✓ Stereotactic detectors
- ✓ Maximum inner dia of a detector < half the FWHM of the smallest beam

Quality assurance: Overview

- ✓ Acceptance
- ✓ Commissioning
- ✓ Quality assurance

✓ Patient specific

Source	Purpose	Proposed test	Reported achievable tolerance	Proposed frequency
				Initial commissioning
Ryu et al., 2001"	End-to-end localization accuracy	Stereo x ray/DRR fusion	1.0 to 1.2 mm root mean square	and annually thereafter
Ryu et al., 2001 ^a	Intrafraction targeting variability	Stereo x ray/DRR fusion	0.2 mm average, 1.5 mm maximum	Daily (during treatment)
_				Initial commissioning
Verellen et al., 2003b	End-to-end localization accuracy	Hidden target (using stereo x ray/DRR fusion)	0.41 ± 0.92 mm	and annually thereafter
				Initial commissioning
Verellen et al., 2003b	End-to-end localization accuracy	Hidden target (using implanted fiducials)	0.28 ± 0.36 mm	and annually thereafter
		Dosimetric assessment of hidden target		Initial commissioning
Yu et al., 2004°	End-to-end localization accuracy	(using implanted fiducials)	0.68 ± 0.29 mm	and annually thereafter
		Constancy comparison to MV imaging isocenter		Baseline at commissioning
Sharpe et al., 2006 ^d	CBCT mechanical stability	(using hidden targets)	0.50 ± 0.5 mm	and monthly thereafter
	Overall positioning accuracy,			
	including image registration	Winston-Lutz test modified to make use of the in-room		Initial commissioning
Galvin et al., 2008e	(frame-based systems)	imaging systems	≤2 mm for multiple couch angles	and monthly thereafter
Palta et al., 2008f	MLC accuracy	Light field, radiographic film, or EPID	<0.5 mm (especially for IMRT delivery)	Annually
	÷	5 / 51 /		Initial commissioning
Solberg et al., 2008g	End-to-end localization accuracy	Hidden target in anthropomorphic phantom	1.10 ± 0.42 mm	and annually thereafter
	Respiratory motion tracking and gating			
Jiang et al., 2008h	in 4D CT	Phantoms with cyclical motion	N/A	N/A
Bissonnette et al., 2008i	CBCT geometric accuracy	Portal image vs CBCT image isocenter coincidence	±2 mm	daily

Quality assurance: Tests list

- ✓ Minimizing systematic errors
- ✓ Explore in detail every aspect of the system
- ✓ Periodic and treatment-specific quality assurance
- \checkmark Integrity of the simulation imaging data
- ✓ Dose-calculation algorithms
- ✓ Verify the coincidence of radiation and mechanical isocenter
- ✓ MLC leaf sequencing
- ✓ MU calculation algorithms
- ✓ Leaf speed
- ✓ Machine dose rates used for SBRT
- ✓ Accuracy of calibration at these dose rates
- ✓ Delivery precision at small MUs
- ✓ Patient positioning and localization
- ✓ Motion tracking and gating

Hypo fractionation : AAPM TASK GROUP REPORT- 101 Contd.. Quality assurance: Isocenter checks

✓ This technique was introduced by Lutz, Winston

- \checkmark A small metallic ball (made of steel, titanium or tungsten)
- \checkmark Represents the isocenter
- \checkmark Fixed on the treatment table by a locking mechanism.
- \checkmark The phantom position is adjustable in 3D : micrometer tool.
- The collimated beam is used to expose
- Radiographic film mounted perpendicular to the beam
- Center of the sphere shadow and the field center matching
- ✓ Which must be within ±1 mm for stereotactic treatments)
- ✓ Measurements repeated (0°, 90°, 180°, and 270°)
- ✓ Alternatively Portal imaging can also used.

Patient Safety

- ✓ Verification of correct patient
- ✓ Correct patient plan
- ✓ Correct isocenter
- ✓ Correct and properly configured immobilization devices
- ✓ Collision with patient or patient accessories
- ✓ Beam interference : arm, elbow, chin or accessories
- ✓ Treatment plan verification
- ✓ Second MU calculation or measurements

Hypo fractionation : HyTEC

Objectives:

Systematically pool published peer-reviewed clinical data to further refine dose, volume, and outcome estimates for both normal tissue complication probability (NTCP) and tumor control probability (TCP) for SRS/ SBRT.

QUANTEC focused on NTCP : Conventional

✓ HyTEC includes TCP as well : SRS/SBRT/SABR

HyTEC Introduction

High Dose per Fraction, Hypofractionated Treatment Effects in the Clinic (HyTEC): An Overview

Jimm Grimm, PhD,*, Lawrence B. Marks, MD, Andrew Jackson, PhD, Brian D. Kavanagh, MD, Jinyu Xue, PhD, and Ellen Yorke, PhD

Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania; Department of Medical Imaging and Radiation Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina; Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado; and ^{}Department of Radiation Oncology, NYU Langone Medical Center, New York, New York

Received Oct 2, 2020. Accepted for publication Oct 8, 2020.

Introduction

formation files.

Rubin et al,1-3 Emami et al,4-5 and Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC)[®] provided estimates of dose, volume, and outcome data primarily for conventionally fractionated radiation therapy based on expert opinion and/or the available published literature. Similar compilations for hypofractionated high-dose-perfraction regimens (often termed stereotactic radiosurgery [SRS], stereotactic body radiation therapy [SBRT], or SARR) have been provided 741 (eg. American Association of Physicists in Medicine (AAPM) Task Group Report TG10110 and associated undated constraints11). These landmark dose-volume guidance documents, along with many clinical reports, cooperative trials,12-18 and some

pooled analyses,7,10,20 have helped shape current clinical practice and are important contributions.

Radiation Oncology biology • physics

www.redjournal.org

The main objective of the current HyTEC (Hy Dose per Fraction, Hypofractionated Treatment Effects in the Clinic) initiative is to systematically pool published peer-reviewed clinical data to further refine dose, volume, and outcome estimates for both normal tissue complication probability (NTCP) and tumor control probability (TCP)21-24 for SRS/ SBRT. As with OUANTEC, the aim was to extract and pool published data in a clinically useful format. While QUANTEC focused on NTCP, HyTEC also includes TCP, as favorable tumor control has been the driving force in the growth of SBRT. We are most appreciative of the many authors who have contributed data on this topic to the current literature and thus have made this HyTEC effort possible.

Corresponding author: Jimm Grimm, PhD; E-mail: JimmGrimmJr@ of the study. E.Y. was partly supported by NCI Cancer Center Support Grant P30 CA008748 Data sharing statement: Data generated and analyzed during this study

Acknowledgements-The Steering Committee thanks the many are included in the HyTEC organ-specific papers and supplementary intigators whose published work was reviewed and the Red Jos for their natience and commitment to the project. We especially thank the many authors who have contributed to this initiative for their efforts, Disclosures: J.G. received grants from Accuracy and from NovoCure outside the submitted work and was issued a natent, DVH Evaluator, A.J. patience, and flexibility, to the American Association of Physicists in received partial support from NIH geant P30 CA008748 during the conduct Medicine staff and leadership for their orgoing support and vision, and to the many committee-member reviewers for their guidance.

Int J Radiation Oucol Biol Phys, Vol. 110, No. 1, pp. 1-10, 2021 0360-3016/5 - see front matter @ 2020 Elsevier Inc. All rights reserved. https://doi.org/10.1016/j.jjrohp.2020.10.035

Hypo fractionation : HyTEC Project and group

Established within the Biological Effects Sub-Committee (BESC) of AAPM as the Working Group on Biological Effects of Hypo fractionated Radiotherapy / SBRT (WGSBRT). ✓ Physicians

- ✓ Clinical physicists
- ✓ Radiobiologists
- ✓ Biostatisticians
- ✓ Bio-mathematicians

Hypo fractionation : HyTEC (Historical context)

Hypo fractionation : HyTEC

Comparison : Emami etal , QUANTEC, HyTEC

Characteristic	Emami et al.	QUANTEC	HyTEC
Scope	26 normal tissues/organs	16 normal organs	7 normal organ papers; NTCP 9 disease site papers; TCP
3D data available	Minimal	More/moderate (studies span ≈ 18-year interval)	Moderate but rapidly increasing
Format dose, volume, and outcome data	Uniform levels of risk (eg, TD 5/5, 50/5); uniform irradiation of 1/3, 2/3, 3/3's of an organ	Nonuniform levels of risk across organs; range of dose-volume metrics	Nonuniform levels of risk across organs; range of dose-volume metrics

Abbreviations: 3D = 3-dimensional; HyTEC = Hy Dose per Fraction, Hypofractionated Treatment Effects in the Clinic; NTCP = normal tissue complication probability; QUANTEC = Quantitative Analyses of Normal Tissue Effects in the Clinic; TCP = tumor control probability; TD 5/5 and TD 50/5 = tolerance dose resulting in a 5% and 50% risk of toxicity at 5 years, respectively.

Hypo fractionation : HyTEC Report

- $\checkmark\,$ Articles addressing TCP and NTCP
- ✓ Six anatomic sites:
- 1. Cranial
- 2. Head and neck
- 3. Thoracic
- 4. Abdominal
- 5. Pelvic
- 6. Spinal
- ✓ Nine articles for TCP
- ✓ Seven articles for NTCP

Hypo fractionation : HyTEC Report : NTCP

Table 2 Summary of NTCP ⁶ estimates after SRS/SBRT from the HyTEC reports ⁶							
				Dose (Gy) or			
	Volume	Number of		dose-volume			
Organ	segmented	Iractions	Endpoint	parameters	Rate (%)*	Notes	
Brain; for	Total brain	1	Symptomatic	$V_{12Gy} \le 5 \text{ cm}^3$	10%	From Table 3 and Figs. 4	
metastasis	target	1	Symptomatic	$V_{mov} \leq 10 \text{ cm}^3$	15%	Consistent with	
	unger		necrosis	 n2dy ≤ 10 cm 	15.0	QUANTEC.	
		1	Symptomatic	$V_{12Gy} \le 15 \text{ cm}^3$	20%	Prior whole brain RT	
			necrosis			appears to not markedly	
		3	Edema or necrosis	$V_{20Gy} \le 20 \text{ cm}^3$	$\leq 10\%$	increase risks in most reports (with the	
		3	Edema or	$V_{20Gy} \le 30 \text{ cm}^3$	$\leq 20\%$	exception of brain	
			necrosis			stem). [†] However, repeat	
		5	Edema or	$V_{24Gy} \le 20 \text{ cm}^2$	$\leq 10\%$	SRS/fSRS to the same	
		5	Edema or	$V_{max} \leq 30 \text{ cm}^3$	< 20%	area has been associated with	
			necrosis	Judy 1 to the		markedly increased	
						risks.	
Brain; SRS for	Total brain	1	Symptomatic	$V_{12Gy} \le 10 \text{ cm}^3$	$\leq 10\%$	From Figure 2 in paper	
arteriovenous	including		necrosis				
malformation	target						
Optic pathway	Optic nerves and	1	Neuropathy	$D_{max} < 1012 \ Gy$	< 1%	From Table 3 in paper.	
	chiasm	3	Neuropathy	$D_{max} < 20 \text{ Gy}$	< 1%	Consistent with	
		2	Neuropatny	$D_{max} < 25$ Gy	< 1%	Prior RT exposure of the	
						optic pathway (either	
						whole brain RT or SRS/	
						fSRS) appears to	
						risks.	
Canotid artema	Each constid	5	Grade 2.5	D < 20.20 C	< 2.120	Dage volume metric	
(re-treatment)	artery	3	bleeding	D _{max} < 20-50 Gy	2012%	shown is for the	
(reirradiation SBRT	
						dose in patients with	
						prior RT	
	Each carotid	5	Grade 3-5	$D_{0.5cc} < 20 \ \mathrm{Gy}$	< 2-12%	Dose-volume metric	
	artery		bleeding			shown is for the	
						dose in patients with	
						prior RT	
Lungs	Combined lungs	3-5	Grade ≥ 2	Mean dose \leq 8 Gy;	10-15%	Preexisting interstitial	
	minus target ⁸		toxicity ¹	$V_{20Gy} < 10-15\%$		lung disease appears to	
Liver: SBRT for	Liver minus	3	Grade > 3 liver	Mean dose < 13 Gr	<20%	For patients with intact	
primary lesions	GTVs	2	enzyme change	mean dose 5 15 Gy	12010	liver function. Various	
	Liver minus	6	Grade \geq 3 liver	Mean dose $\leq 18~{\rm Gy}$	<20%	clinical factors (eg,	
Lines SPRT 6	GTVs	-	enzyme change	Maan door < 15.0	-2007	underlying liver	
metastases	GTVs	3	enzyme change	wheah dose \leq 15 Gy	<20%	Child Pugh score	
	Liver minus	6	Grade ≥3 liver	Mean dose ≤ 20 Gy	<20%	platelet count) can	
	GTVs		enzyme change			reduce liver tolerance."	
						Consistent with	
						QUANTEC (that	
						radiation induced liver	
						injury; this includes	
						liver enzyme changes).	
						(continued on part page)	

Table 2 (continu	ved)					
Organ	Volume segmented	Number of fractions	Endpoint	Dose (Gy) or dose-volume parameters	Rate (%)*	Notes
Liver; SBRT for metastases	Liver minus GTVs	3-6	Liver dysfunction and grade 3-5 general GI toxicity¶	\geq 700 cm ³ receives \leq 15-17 Gy [#]	<13%	Critical volume limit, spare 700 cm ³ **
Bladder	Bladder (as a solid organ) ^{††}	4-5	Late grade ≥2 urinary toxicity	V _{Prescription Dose} < 5-10 cm ³	<20%	In context of prostate SBRT. All reviewed prescription doses were
Rectum	Rectum (as a solid organ) ^{††}	4-5	Late grade ≥3 bowel toxicity	D _{max} < 35-38 Gy	<3%	35-40 Gy in 4-5 fractions. See Pelvic NTCP paper, Table 4,
Urethra	Prostatic urethra	4-5	Late grade ≥2 urinary toxicity	D _{max} < 38-42 Gy	<20%	for additional constraints. Many of the reviewed studies treated every-other-day in hopes of reducing toxicity.
Spinal cord	Spinal cord, canal, or thecal sac ^{‡‡}	1 2 3 4 5	Myelopathy	$\begin{array}{l} D_{max} < 12.4\text{-}14 \ \text{Gy} \\ D_{max} < 17\text{-}19.3 \ \text{Gy} \\ D_{max} < 20.3\text{-}23.1 \ \text{Gy} \\ D_{max} < 23\text{-}26.2 \ \text{Gy} \\ D_{max} < 25.3\text{-}28.8 \ \text{Gy} \end{array}$	1-5% 1-5% 1-5% 1-5% 1-5%	These data are for patients without prior RT (from Table 3 in paper). Information for the setting of re-irradiation are in Table 4 of the paper. Consistent with QUANTEC.

Hypo fractionation : HyTEC Report : TCP

Table 3 Summary of TCP estimates from the HyTEC reports*									
	Volume			Dose (Gy), or					
Tumor	segmented,	Number of		dose-volume					
site/type	margin	fractions	Endpoint	parameters	Rate (%)	Notes			
Brain metastases	GTV + 0-2 mm margin ⁵	1	2-year local control,	≤2 cm, 18-24 Gy	80%-95%	1-year local control ≈ ≥85%-90%			
	-	1	by lesion size	2-3 cm, 18 Gy	66%	1-year local control ≈ 75%			
		1		>3 cm, 15 Gy	47%	1-year local control ≈ 70%			
		3		2-3 cm, 24-30 Gy	65%-84%	1-year local control ≈ 80%			
		3		>3 cm, 21-27 Gy	53%-69%	1-year local control = 75%			
		5		2-3 cm, 30-35 Gy	75%-85%	1-year local control ≈ 80%			
Vestileules	CTTL: 0.3	5	10	>3 cm, 25-30 Gy	59%-69%	I-year local control ≈ 75%			
Schwarmoma	GTV+ 0-2	1	3-5 year local	212 Gy	291%	Most appliable data are			
Schwannonia	min margin-	5	control	25 Gv	>91%	with a single fraction			
Head & neck:	GTV + 0-6	5	2-year local	45 Gy	50%	Majority of newer studies			
retreatment	mm margin	-	control			used 2-6 mm margin			
Lung; T1-2	ITV or	3	1-5 year local	33 Gy	<50%	Based on minimal data			
lesions	IGTV + 3-8 mm		control						
		3	1-5 year local control	45-54 Gy	≥75%	In most studies			
		3	1-5 year local control	≥60 Gy	≥80%-85%	In most studies			
		4	1-5 year local control	42-48 Gy	≥70%	In most studies			
		4	1-5 year local control	>52 Gy	≥80%-85%	In most studies			
		5	1-3 year local control	\geq 50 Gy	\geq ≈ 80%	In all studies			
Liver; primary	Variable	3-5	2-year local	$BED_{10} =$	90%	No clear dose response			
tumor			control	60-72 Gy*		relationship within the			
						range of reported			
						schedules (including 11-			
						18 Gy x 3; 12 Gy x 4; 8-			
						To Gy X 5). Authors			
						as a conservative			
						approach			
Liver metastases	Variable	1-5	2-year local	BED ₁₀ > 100 Gy*	≥90%	Estimated based on BED10			
			control		_	>112, including 15-25			
						Gy x 3			
		1-5		BED10 < 100 Gy*	65%-76%	Estimated based on BED10			
						ranging from 60-84 Gy,			
						including 24-26 Gy x 1;			
						10-12.5 Gy x 3; 10 Gy x			
Advanal	Mixed®®	Madian St	Lucar local	Drescription	>.056%	4 Model based estimate			
Aurenai	MIXed	Median 5	control	RED.	293%	Clinical examples of			
			control	1164 Gy		fractionation schedules			
						providing BEDs in this			
						range include 15 Gy x 3			
						= 45 Gy (BED ₁₀ =			
						112.5) and 11 Gy x 5 =			
						55 Gy (BED ₁₀ = 115.5			
						Gy). Respiratory motion			
						control in all studies.			
						(continued on next page)			

Table 3 (continued	I)					
Tumor site/type	Volume segmented, margin	Number of fractions	Endpoint	Dose (Gy), or dose-volume parameters [‡]	Rate (%) [†]	Notes
Pancreas	GTV + 2-5 mm	1 3 5	l-year local control	20-25 Gy 30-36 Gy 33 Gy	79%-88% 79%-86% 77%	Rates shown are without surgery (reported local control rates are higher in patients with surgery pre- or post-SBRT)
Prostate, low-intermediate risk	Varied: prostate + 0-5	5	5-year freedom from biochemical	36.1 Gy ¹⁴	95%	
Prostate, high risk	mm PTV margin	5	relapse	38.7 Gy ^{‡‡}	95%	Caution is needed in interpreting these data because few such patients are included in the published literature and these are likely highly selected patients.
Spine®	CTV	1	2-year local	18 Gy	82%	Much uncertainty exists in
	+ 0-2 mm	1	control	20 Gy	90%	interpreting the data from
		1		22 Gy	94%	the literature and in the
		1		24 Gy	96%	creation of these resultant
		2		24 Gy	82%	model based estimates.
		3		27 Gy	78%	
		3		30 Gy	85%	

Hypo fractionation : Limitations

✓ More resource intensive : special equipment

- $\checkmark\,$ Higher man-hour for planning and QA time
- ✓ Higher complicated process : Potential for error
- ✓ High degree immobilization : uncomfortable ,invasive
- ✓ Longer treatment execution time
- ✓ Limited randomized data.

THANK YOU

