Common Soft Tissue Sarcomas- A Brief Outline

Dr Kanika Sood Sharma Director Radiation Oncology Dharamshila Narayana Superspeciality Hospital Delhi

Introduction

Soft-tissue sarcomas (STS) are a diverse group of malignant tumors arising from mesenchymal tissue.

- ~11,000 new cases/yr diagnosed in US
- Occur over all age ranges, median age at diagnosis - 56–65 years
- Account for <1% of adult malignancies
- More common in children- represent up to 15% of paediatric malignancies

Sarcoma Sites

Soft Tissue Sarcomas

SOFT TISSUE (STS) AND BONE SARCOMAS

- Adipocytic
- Chondro-osseous
- Fibroblastic or myofibroblastic
- Fibrohistiocytic
- Nerve sheath
- Pericystic
- Skeletal muscle
- Smooth muscle
- Uncertain differentiation
- Vascular
- Extra skeletal tissues -muscles, fat, blood vessels, nerves, & synovial tissues
- Typically, high grade &, if diagnosed at an advanced stage, survival rates are poor

- Etiology of most cases remains unknown/Environmental factors/genetic predispositions
- Hereditary syndromes such as Li Fraumeni syndrome, familial retinoblastoma harbour mutations affecting tumor suppressor genes - TP53 tumor suppressor gene, RB1, or CHK2
- Exposure to chemical carcinogens-- phenoxy-acetic acid in herbicides
- Radiation induced DNA damage or chromosomal instability as a result of radiation-induced alterations in telomere functions

<u>Clinical presentation</u>

Vary depending on tumor site, subtype & grade

Extremities and superficial trunk : Painless primary soft tissue mass

Retroperitoneum :Abdominal mass, Pain, grows to large size before symptoms

Viscera : Anaemia, melena, abdominal pain, wt loss, painless P/V bleed

H&N : Smaller, Mechanical problems: compression or invasion of adjacent structures.

Anatomic locations:

Liposarcoma is more common in lower extremity
Synovial sarcoma, epithelioid sarcoma & fibrosarcoma -more often in upper extremity
Rarely (<5%) metastasize to lymph nodes (SS, RMS, epithelioid sarcoma, clear cell sarcoma & angiosarcoma)

Evaluation of a Soft-Tissue Sarcoma

Three factors which need to be evaluated as part of the investigation

Staging of STSs

Summa	ary - Soft Tissue Sarcoma
T1	< 5cm
Tla	Superficial
T1b	Deep
T2	> 5cm
T2a	Superficial
T2b	Deep

N1 Rational lumph nodes

TABLE 4: AJCC Staging for Soft-Tissue Sarcoma in the Trunk, Extremity, and Retroperitoneum

Disease Stage	Characteristics
IA	T1N0M0G1, T1N0M0GX
IB	T2N0M0G1, T2N0M0GX, T3N0M0G1, T3N0M0GX, T4N0M0G1, T4N0M0GX
II	T1N0M0G2, T1N0M0G3
IIIA	T2N0M0G2, T2N0M0G3
IIIB	T3N0M0G2, T3N0M0G3, T4N0M0G2, T4N0M0G3
IV, extremity only	Any T with N1, M0, and any G
IV, extremity and retroperitoneum	Any T with any N, M1, and any G

Note—T1 = tumor 5 cm or less in greatest dimension; N0 = no regional lymph node metastasis; M0 = no distant metastasis; G1 = total differentiation, mitotic rate, and necrosis score of 2 or 3; GX = grade cannot be assessed; T2 = tumor greater than 5 cm but less than or equal to 10 cm in greatest dimension; T3 = tumor greater than 10 cm but less than or equal to 15 cm in greatest dimension; T4 = tumor greater than 15 cm in greatest dimension; G2 = total differentiation, mitotic rate, and necrosis score of 4 or 5; G3 = total differentiation, mitotic rate, and necrosis score of 6–8; N1 = regional lymph node metastasis; M1 = distant metastasis; T0 = no evidence of primary tumor. A full description of this staging system is set out in [1].

Treatment

Surveillance

- **Goals of treatment --** functional extremity without local tumor relapse
- Involves a **multidisciplinary team decision** - surgical resection with or without adjuvant radiation for successful limb salvage.
- Chemotherapy reserved for management of metastatic disease/ facilitate local tumor down-staging for very extensive lesions

- High-risk pts -follow-up every 3 mos for first 2 years for clinical examination & a chest x-ray or CTscan
- High-risk patients every 6 months until five years & annually till 10 yrs
- MRI- if there is clinical concern for local or regional recurrence

National Cancer NCCN Network®

Comprehensive NCCN Guidelines Version 2.2023 Extremity/Body Wall, Head/Neck

RECURRENT DISEASE	TREATMENT
Local recurrence	Follow Workup, then appropriate Primary Treatment ⁹⁹ pathway (EXTSARC-2, EXTSARC-3, EXTSARC-4)
Single organ and limited tumor bulk that are amenable to local therapy ^{dd}	Options: • Metastasectomy ^{ee} ± neoadjuvant or adjuvant systemic therapy ^w ± RT • SBRT ^{ff} ± systemic therapy ^w • Ablation procedures ^{hh} • Embolization procedures (non-lung metastases) • Observation
Metastatic disease Disseminated metastases	Palliative options: • Systemic therapy ^w • RT/SBRT • Surgery • Observation, if asymptomatic • Supportive care • Ablation procedures ^{hh} • Embolization procedures (non-lung metastases)
Isolated regional disease or nodes	→ • Regional node dissection for nodal involvement ± RT ± systemic therapy ^w

Preop RT indications

- If tumour adjacent to or involving critical structures.
- Likely difficult resection
- Tumour initially

inoperable at diagnosis

Adjuvant RT Indications

- High Grade STS.
- Low-Int Grade STS with close or positive margins.
- Tumour recurrence
- Tumor size of >5 cm
- Lesions deep to or invading superficial fascia

Common Soft Tissue Sarcomas

Malignant peripheral Nerve Sheath

<u>Tumours</u>

Mutations	NF1	87.5
	CDKN2A	75
	TP53	40.3
	EED, SUZ12	Common

Malignant form of benign schwannoma

- Sporadic or as part of NF1
- ✤Age: 20 to 50 years
- Often painless but aggressive in nature
- 20 % local recurrence risk

Prognostic factors include--

- Tumor size at presentation
- Tumor grade

Treatment : Margin negative resection is cornerstone of success

Adjuvant RT : decreased local recurrence in extremity & superficial trunk lesions

Angiosarcoma

- **Origin** Endothelial lining of blood vessels
- Sites Trunk, H & N (Scalp), Viscera
- Common age 7th 8th decade
- High regional node involvement

Causative factors-

- Maximum cases sporadic
- ✤ 40% are radiation associated
- Other association lymphedema

Mutations	TP53, PTPRB	66, 26
Overexpression	VEGF	80

<u>Angiosarcoma</u>

- Metastasis- 20% at presentation
- Commonest lung
- Liver In breast angiosarcoma
 Histology
- Extremely well differentiated to very poorly differentiated
- IHC CD31 & FLI-1

Poor prognostic factors

- Tumor > 5 cm
- Epithelioid component on histology

Angiosarcoma-Treatment

Localized angiosarcoma- Surgery followed by radiotherapy(Margin negative resection whenever possible)

- Poor outcome 5 yr DFS- 53% & Distant failure common
- Chemo & radio-responsive
- Unresectable/ metastatic disease
- Paclitaxel + doxorubicin \rightarrow RT(except when RT is the etiological factor)
- Second-line pazopanib, eribulin mesylate, and trabectedin.
- Propranolol may be a promising alternative.
- TKIs; Angiogenesis inhibitors + cytotoxic agents &Immunotherapy may be active

Dermatofibrosarcoma Pertubrans

- Uncommon, No gender prediliction
- Accounts for 1%- 6% of all STSs & 18% of all cutaneous STS
- African Americans afflicted more than whites
- Commonest age affected- 4th 7th decade
- Translocation t(17;22)(q22;q13) & PDGFB overexpression
- Majority occur on trunk (50%), extremities (35%) & head and neck (15%).

Reddish/ brown, firm, indurated nodules Usually painless – can be large at presentation May be mistaken for keloid/ hypertrophic scar

Dermatofibrosarcoma Pertubrans

- PDGFB overexpression: Neoadjuvant Imatinib may be useful
- 5 yr survival 92%

Metastasis- Rare & Implies degeneration to fibrosarcoma

Extraosseous Osteosarcoma

- High-grade tumors-comprising nearly 1-1.2% of OS.
- Most commonly affected sitesextremities, thorax & abdomen
- Variants:
- ➢ Osteoblastic
- Chondroblastic
- ➢ Fibroblastic

Prognosis is poor, with 5- year survival ranging from 12 to 25%

Extraosseous Osteosarcoma

Histopathologic diagnosis -Presence of osteoid a homogeneous, pink, structureless extracellular material .Tumour cells- pleiotropic, containing small & round, clear, multinucleated, spindled, epithelioid, plasmacytoid, and/or fusiform cells

- (a) Plain radiographic image demonstrating an ossific mass in the region of the right hip.
- (b) T1 CEMRI demonstrating mass right gluteal musculature with a thin peripheral rim of enhancement.
- c) PETCT demonstrating mass with very high SUV

Extraosseous Osteosarcoma -Etiology

Most cases are sporadic , Environmental & genetic factors have been associated

Up to 60% of high-grade EOS show TP53 mutations, compared with 1% of low grade OS

RB1, located at chromosome 13q14 encodes a 110-kDa protein that negatively regulates progression of cell cycle from G0/G1 into S phase **Extraosseous Osteosarcoma-**Treatment strategies

- Best treatment strategy is surgical resection.
- Surgery combined with pre- and postoperative chemotherapy.
- Multidisciplinary approach, long-term survival has increased to 70%.
- Recurrent disease or metastatic lesions (in lungs) at diagnosis have a lower survival rate of 20%

Liposarcoma (LPS)

- Most frequent STS subtypes in adults
- Arise from primitive mesenchymal cells
- Account for 14 -18% of all STS
- Commonly arising in deep soft tissues thigh/ retroperitoneum
- Prognosis depends on histologic features, site, and size

WD/DDLPS

- Supernumerary ring and/or giant rod chromosomes with amplified segments from 12q13-15 region, harboring several oncogenes including HMGA2, MDM2, CDK4, HMGA2, TSPAN31, OS1, OS9, CHOP & GLI1
- In DDLPS-amplification involving c-Jun & apoptosis signaling kinase 1 (ASK1), located on 1p32 & 6q23 resp.

PLPS

Gains: 1p, 1q21-q32, 2q, 3p,3q, 5p12-p15, 5q, 6p21, 7p, 7q22, Losses 1q, 2q, 3p, 4q, 10q, 11q, 12p13, 13q14, 13q21-qter, 13q23-24

MLPS

Translocation, most commonly

t(12;16)(q13;p11), fusing FUS (transcriptional regulatory domains interacting with the RNA polymeraseII complex) with DDIT3 (a DNAbinding leucine zipper transcription factor that plays a role in cell cycle control and adipocytic differentiation)

Liposarcoma

Morphological diversity correlated with their biologic behaviour

Desmoid Tumours

- Aggressive fibromatosis
- Majority Sporadic (75-85%)
- Age: 30-40 yrs
- Recent pregnancy& Antecedent trauma
- Others related to FAP
- Seen in 20% pts with FAP
- Preceded by colonic polyposis
- Occur at prior colectomy scar

Detailed family history to r/o unappreciated FAP (Gardners Syndrome)

Consider screening colonoscopy

Related to WNT signaling pathway

- Sporadic cases
- CTNNB1 mutation
- Stabilized form of β-catenin
- Accumulates & transported to nucleus
- Activated transcription factors proliferative effects

FAP cases:

APC mutations β-catenin stabilization Specific APC codon mutations confer higher risk of desmoid

- Common sites: Extremity, intra-peritoneal, extraperitoneal, abdominal wall & chest wall
- Asymptomatic firm mass
- Painful mass
- Bowel obstruction/ ischemia

- Margin negative resection
- Difficult large/ infiltrating crucial anatomical structures
- FAP associated desmoids high recurrence rates
- Active surveillance rather than reflexive resection
- Show very little growth after presentation

<u>Undifferentiated Pleomorphic</u> <u>Sarcoma (UPS)</u>

- Previously classified as malignant fibrous histiocytoma (MFH)
- Commonly affects adults aged 50 -70
- 1:2 female: male ratio
- Originate from a primitive pluripotential mesenchymal cell or from high-grade neoplasms of poor differentiation

- C-MYC amplifications, gains involving regions such as 8q21.3-qter and 9q32-qter
- Losses involving multiple regions such as 13q21-q22, and 18q12-q22
- TP53 deficiency renders UPS/MFS cells dependent on Skp2 which survives sarcoma cells by degrading p21 and p27

<u>Undifferentiated Pleomorphic</u> <u>Sarcoma (UPS)</u>

- UPS can arise anywhere in body
- Most frequent locations are in deep soft tissue of extremities & retroperitoneum.
- Extremities (lower >> upper), Head & neck
- Previous RT site
- Site of chronic ulceration (rare)
- Elderly pts (peak- 60-70 yrs)
- Solitary, painless, soft firm, skin colored, deep seated mass

<u>Undifferentiated</u> <u>Pleomorphic</u> <u>Sarcoma (UPS)</u>

Surgery mainstay of treatment

Wide or radical excision including **infiltrative** "**tail**" is required; prone to local recurrence & metastasis.

Wide excision followed by radiotherapy recommended for deep lesions

- Recurrence: 30-35%
- Mets: in 50% at presentation contraindication for surgical resection
- 5 yr disease specific survival 65%

Deletione	PTEN
Deletions	RB1
	TP53
Mutations	ATRX
	MED12
Amplification	MYOCD

Histologically-High cellularity, commonly arranged in fascicles. -abundant pink to deep red cytoplasm on H&E staining, with cigarshaped, centrally located nuclei

Leiomyosarcoma (LMS)

- Arising from smooth muscles -affecting retroperitoneum, uterus, skin, superficial soft tissues & deep compartments of extremities.
- Account for 10-15% of all STS
- Categorized into 3 major groups
- Somatic soft tissue LMS
- ≻Cutaneous LMS
- Vascular LMS
- LMS are refractory tumors showing treatment resistance.
- Prognosis is poor with low survival rates compared to other STSs .

<u>Leiomyosarcoma</u> (LMS)

Malignant smooth muscle cell tumor. 2nd most common STS after liposarcoma **Sites**

Retroperitoneum > Peritoneal cavity (uterus)

o 25% - trunk & extremity

Predisposition

Prior radiation exposure

Immunosuppression

EBV related tumors

Leiomyosarcoma (LMS)

- Margin negative resection should be attempted
- In case of Uterine TAH + BSO
- Tumors invading/ closely abutting IVC-Neoadjuvant RT may be useful
- Tumor resection + IVC ligation/Patching of IVC/ Inter-positioning graft of IVC
- Collaterals preserved ligation of IVC without reconstruction

Metastasis

- Mainly haematogenous
- Lung > liver
- Poor response to chemo doxorubicin, ifosamide, docetaxel, gemcitabine

Extraosseous Ewing Sarcoma (EES)

- Rare, small, round, blue cell tumor of with same histology & pathogenesis as ES of bone.
- Seen in 2nd or 3rd decade of life, 1:2 female:male ratio.
- Commonly sites lower extremity, head & neck, paravertebral region & pelvis
- About 10% of cases arise in extra skeletal soft tissues
- Extraskeletal location can be present as an extension from a primary bone tumor (parosteal or periosteal location)

- CD99-negative ESFT express CAV-1.
- Fli-1, HNK-1 & ERG expressed in ESFT
- Epithelial differentiation (CK-AE1/AE3) in 20–30% of ESFT

Tumor cells, intermixed with round cells showing fine chromatin. Stroma can be scant & fibrotic or can show sclerosis & lace-like appearance.

Extraosseous Ewing Sarcoma (EES)

- Prognosis & management -osseous Ewings Sarcoma
- Systemic chemotherapy is combined with surgery &/or radiotherapy, depending on location &size of neoplasm.
- Vincristine, doxorubicin, and cyclophosphamide alternating with ifosfamide & etoposide (VDC/IE) - chemotherapy regimens
- Targeted therapeutics -clinical responses for IGF-1R inhibitors
- Immunotherapies are emerging option in advanced EES

)	
		7		
	T			
1			r	

Gastrointestinal Stromal Tumor (GIST)

- Mesenchymal-derived tumor arising from digestive tract—spindle cell neoplasm of smooth muscle origin
- Accounts for ~3% of all GI malignancies
- Affects adults 40 -70 years & No gender predilection
- **Origin** Interstitial cells of Cajal within myenteric plexus.(function as pacemakers in viscera)
- Sites Stomach, small bowel, rectum.

70% GIST – KIT gene mutations 07% GIST – PDGFRA mutations 15% GIST – Wild type KIT & PDGFRA genotypes Other mutations – SDH (Carney- Stratakis syndrome), BRAF, KRAS and NF1 (NFtype 1)

GIST

- Asymptomatic (incidental)
- Pain, Nausea, vomiting, GI blood loss (rare
- Associated syndromic features
- CT findings
- Well encapsulated with heterogeneous contrast enhancement
- Endoscopic US guided needle biopsy spindle cell neoplasm
- Pre-op staging: CECT chest, abdomen, pelvis

PRIMARY PRESENTATION	NEOADJUVANT THERAPY ⁿ Imatinib ^{e,o} for <i>KIT</i> or <i>PDGFRA</i> mutations (excluding <i>PDGFRA</i> exon 18 mutations that are insensitive to imatinib, including D842V) Avapritinib for GIST with <i>PDGFRA</i> exon 18 mutations that are insensitive to imatinib (including <i>PDGFRA</i> D842V) <i>NTRK</i> -directed therapies for <i>NTRK</i> fusions For succinate dehydrogenase (SDH)-deficient GIST: Sunitinib or	FOLLOW-UP THERAPY
GIST with significant morbidity ^h SDHB immunohisto- chemistry (IHC)	For succinate dehydrogenase (SDH)-deficient GIST: Sunitinib or Observation (category 2B) or Clinical trial	<pre>treatment response^{p,q} and evaluate patient adherence Progression^q If surgery not feasible, see GIST-5</pre>
	BRAF-directed therapies for certain BRAF mutations	
	Forgo neoadjuvant therapy if other mutations	 ^o Medical therapy is the usual course of treatment. However, patient may probleeding or symptomatic tumor or poor treatment tolerance. ^p PET/CT may give indication of imatinib efficacy after 2–4 weeks of therapy

Congenital Fibrosarcoma (CFS)

- Congenital (or infantile) fibrosarcoma (CFS) malignant neoplasm of fibroblasts that occurs in pts aged 2 years or younger.
- Excellent prognosis & a very low metastatic rate.

PTUG N	TD V 2
EIVO-N	TRES
TDMD N	TRK5
IPM3-N	IKKI
LMNA-N	I KKI
MIR384	FI-NIRKI
SQS1MI	I-NTRKI
TPR-NT	RKI
STRN-N	TRK2
NTRK1	rearrangement, not otherwise specified
ETV6 re	arrangement, not otherwise specified
RET-MY	H10
RET-K1/	AA1217
RET-CLI	P2
BRAF po	pint mutations
FOXN3-	BRAF and TRIPP1-BRAF
EPB41L2	2-BRAF
KIAA154	49-BRAF
OSBP-BI	RAF
DAAM1-	-BRAF
SEP7-BR	LAF
CUX1-B	RAF
BRAF re	arrangement, not otherwise specified
BRAF in	tragenic deletion
BRAF in BMPR1/	tragenic deletion and ETV6-NTRK3 A-RAF1

- Sheets of malignant spindle cells forming interlacing cords with focal collections of inflammatory cells.
- Areas of haemorrhage, necrosis, & calcifications
- Mitoses can often be identified

<u>Congenital Fibrosarcoma</u> (CFS)

- Limited number of IFS can regress spontaneously
- Surgical extirpation curable treatment approach
- Conservative surgery so as to avoid functional damage
- About 48%–62% of primary tumors are unresectable & require a multidisciplinary strategy

- Preop chemotherapy used in inoperable pts → delayed conservative surgery or complete resection when tumor shrinkage is achieved
- **Postop chemotherapy** recommended as first-line treatment for pts with macroscopic residual disease to decrease local recurrence
- Radiotherapy application is limited

Synovial Sarcoma (SS)

- Aggressive subtype-arising from synovial tissue lining joint cavities of extremities,
- Often affects adolescents and young adults
- Accounts for $\sim 8\%$ of all STS
- Trauma can draws attention to an already existing mass
- Deep soft tissue of extremities & predilection for lower extremities..
- Head & neck area is 2nd most common site- retropharyngeal & parapharyngeal
- Less frequent in trunk.
- Unusual locations such as skin, lung, prostate, bone, kidney, and CNS.

t(X;18)(p11;q11) chromosomal translocation in over 95% FISH & RT-PCR demonstrate SS18-SSX1 gene fusion in about 70%, mostly biphasic cases. Other related fusions are SS18-SSX2 and SS18-SSX4.

Synovial Sarcoma (SS)

Expansile, multilobular mass - circumscribed by a pseudocapsule (Averages 3–10 cm in dia.)

Secondary changes can be present as necrosis, cyst formation, hemorrhage, myxoid areas & calcification.

Sheets of spindle cell proliferation. "School of fish" is a characteristic growth pattern of this type

Biphasic SS have the addition of characteristics of the epithelial component in varying proportions

Synovial Sarcoma (SS)

- Prognosis is poor with 50- 70% of cases developing metastases.
- **Management strategy** wide resection followed by polychemotherapy with or without irradiation
- Multiple chemotherapy for advanced disease.
- Targeted, immune, and metabolic therapies are in testing.

Rhabdomyosarcoma (RMS)

- Most common STS in childhood populations----50% of STSs in children
- Two thirds cases occur before age of 6 years, a second peak during mid-adolescence
- Arising in limbs, central axis, or head and neck areas

Table 1 (RM	IS subtypes based on histolog	ical morphology		
Subtype	Embryonal	Pleomorphic	Spindle cell	Alveolar
Histology	Small, round-to-elongated cells with interspersed loose myxoid stroma	Large anaplastic cells with enlarged, hyperchromatic nuclei, multipolar mitotic figures	Relatively differentiated spindle colls with features reminiscent of smooth muscle neoplasms	Discohesive primitive round cells within interwoven fibrous septa
Location	Genitourinary tract, head and neck, urinary bladder, prostate, biliary tract, abdomen, pelvis, retroperitoneum	Extremities, chest and abdomen	Paratesticular, and head and neck in children; head and neck in adults	Extremities, head and neck, chest, genital organs, abdomen, and anal area
Age (years)	<10	6080	<10 >40	10-25
-% of all RMS cases	60%	10%	10%	20%
nognosis*	Favourable	Unfavourable	Favourable (children) Unfavourable (adults)	Unfavourable

Rhabdomyosarcoma (RMS)

- Surgical resection & radiotherapy in conjunction with systemic chemotherapy because of high metastatic potential
- Management strategies for adults with RMS are similar to those for children
- International Society of Paediatric Oncology Malignant Mesenchymal Tumor (MMT) Group prefers use of chemotherapy as a front-line approach with its aim at avoiding, major surgical procedures & long-term effects of radiotherapy
- Soft Tissue Sarcoma (STS) Committee of the Children's Oncology Group (COG) (COG-STS) apply local control measures for non-metastatic cases soon after initial operation or biopsy

Small molecule inhibitors include

- Targeting of IGF-1 receptor
- Anti-angiogenic drugs
- Kinase Inhibitors-Sorafenib (Nexavar)
- mTOR inhibitors such astemsirolimus (Torisel) & everolimus (Afinitor)
- Additional therapeutic focus immune mediated destruction of PAX FOXO1 fusion oncoprotein by vaccination or by kinase inhibitors

Low Risk Group (A)

Localized non alveolar RMS, microscopically completely resected (IRS Group I), at all sites, & nodes negative & tumour size < 5 cm & age < 10 years

Subgroup B Treatment

Localised non alveolar RMS, microscopically completely resected (IRS Group I), at all sites & nodes negative & tumour size > 5 cm or age > 10 years

Subgroup C treatment (ARM SR-C) Non alveolar RMS, IRS Group II or III, localised in orbit, head and neck non PM or GU including bladder-prostate, and nodes negative and any size or age

Subgroup D

non alveolar, fusion negative RMS, IRS Group II or III, localised in parameningeal, extremities, or "other sites" & nodes negative & any tumour size or age

Rhabdomyosarcoma (RMS) Risk Groups

Treatment strategies designed are based on both pre-treatment clinical & radiographic data, as well as surgical & pathological findings

Risk Group	Subgroup	Fusion Status	IRS Group	Site Node Stage		Size or Age
Low Risk	Α	Fusion StatusIRS GroupNegativeINegativeINegativeII, IIINegativeII, III	Any	NO	Both Favourable	
Standard	в	Negative	I	Any	NO	One or both Unfavourable
Risk	С	Negative	IRS GroupSiteNode StageSize or AgeIAnyN0Both FavourableIAnyN0One or both UnfavourableII, IIIFavourableN0AnyII, IIIUnfavourableN0AnyII, IIIUnfavourableN0AnyII, IIIAnyN1AnyII, IIIAnyN1AnyII, IIIAnyN1AnyII, IIIAnyN1AnyII, IIIAnyN1AnyII, IIIAnyAnyAnyII, IIIAnyAnyAny	Any		
	D	Negative	II, III	Unfavourable	N0	Any
High Risk	k GroupSubgroupFusion StatusIRS GroupSiteNo Statusw RiskANegativeIAnyNo Statusmdard kBNegativeIAnyNo Statusmdard kBNegativeIAnyNo StatusDNegativeII, IIIFavourableNo StatusDNegativeII, IIIUnfavourableNo StatusIn RiskENegativeII, IIIAnyNo StatusFPositiveI, II, IIIAnyNo Statusy High kGPositiveII, IIIAnyNo Status	N1	Any			
		NO	Any			
Very High	G	Positive	II, III	Any	te Node Stage Solution NO Boomy NO CU inable NO CU inable NO NO CU inable NO	Any
Risk	н	Any	IV	Any	Any	Any

Subgroup E

non alveolar, fusion negative RMS, IRS Group II or III, any site and nodes positive and any tumour size or age

Subgroup F

Alveolar, fusion positive RMS, IRS Group I or II or III, and any site & nodes negative & any tumour size or age

Subgroup G

Alveolar, fusion positive RMS, IRS Group II or III, and any site & nodes positive & any tumour size or age

Subggroup H

Alveolar/non-alveolar fusion positive/negative RMS, IRS Group IV, and any site & nodes any & any tumour size or age

V	V	٧	٧			V	V	V	V			٧	٧	V	٧			V	V	٧	V
А			А			А			А			А			А			А			A
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1			2			3			4			5			6			7			8
rinti		F m	L	DW	Ri	sk	Gr	ou	p (/	<u>}</u>	1 00	o cir	ale i	ntro		un ini	octiv				
cristi	ne 1	.5 m	na/m	² (m	axin	num	sind	ale d	lose 2	2 ma	i) as	a sir	nale i	intrav	/enou	is ini	ectio	on.			
	V A <u>1</u> 1	V V A <u>1 2</u> 1	V V V A $\frac{1 2 3}{1}$	V V V V A A <u>1 2 3 4</u> <u>1 2 2</u> <u>Lo</u>	$\begin{array}{cccc} V & V & V \\ A & A \\ $	V V V V A A <u>1 2 3 4 5 6</u> <u>1 2</u> <u>Low Ri</u>	V V V V V A A A <u>1 2 3 4 5 6 7</u> <u>1 2 3 Low Risk</u>	V V V V V A A A A 1 2 3 A Low Risk Gr B B B	V V V V V V V A A A <u>1 2 3 4 5 6 7 8 9</u> <u>1 2 3</u> <u>Low Risk Grou</u>	V V V V V V V A A A A A 1 2 3 4 4 Low Risk Group (A	V V V V V V V V V A A A A <u>1 2 3 4 5 6 7 8 9 10 11</u> <u>1 2 3 4 5 6 7 8 9 10 11</u> <u>1 2 3 4</u> <u>Low Risk Group (A)</u>	V V V V V V V V A A A A <u>1 2 3 4 5 6 7 8 9 10 11 12</u> <u>1 2 3 4 5 6 7 8 9 40 11 12</u> <u>1 2 3 4</u> <u>Low Risk Group (A)</u>	V V V V V V V A A A A A A 1 2 3 4 5 5 Low Risk Group (A) Design of the set	V V V V V V V V A A A A A A 1 2 3 4 5 5 Low Risk Group (A)	V V	V V	V V	V V V V V V V V V V V A A A A A A A A 1 2 3 4 5 6 6 Low Risk Group (A) Enderge (maximum single dose 2 mg) as a single intravenous injection A B B	V V V V V V V V V V V A A A A A A A A A A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 Event Composition A	V V	V V

The treatment comprises of 4 cycles of Ifosfamide, Vincristine and Actinomycin D (IVA) followed by 5 courses of Vincristine and Actinomycin D (VA). The total duration of chemotherapy is 25 weeks.

Summary

- Rare heterogeneous group of cancers of mesenchymal origin
- More common in paediatric age groups
- Many STSs are highly aggressive tumors with a strong propensity for local recurrence and metastasis
- Metastatic spread represents the single-most powerful predictor of poor outcome in high-risk STSs
- Genetic and non-genetic factors play a role in sarcomagenesis
- Multimodality treatment is desirable with margin negative surgery the curative procedure followed by risk adapted adjuvant treatment.

Suggested readings

Thank You