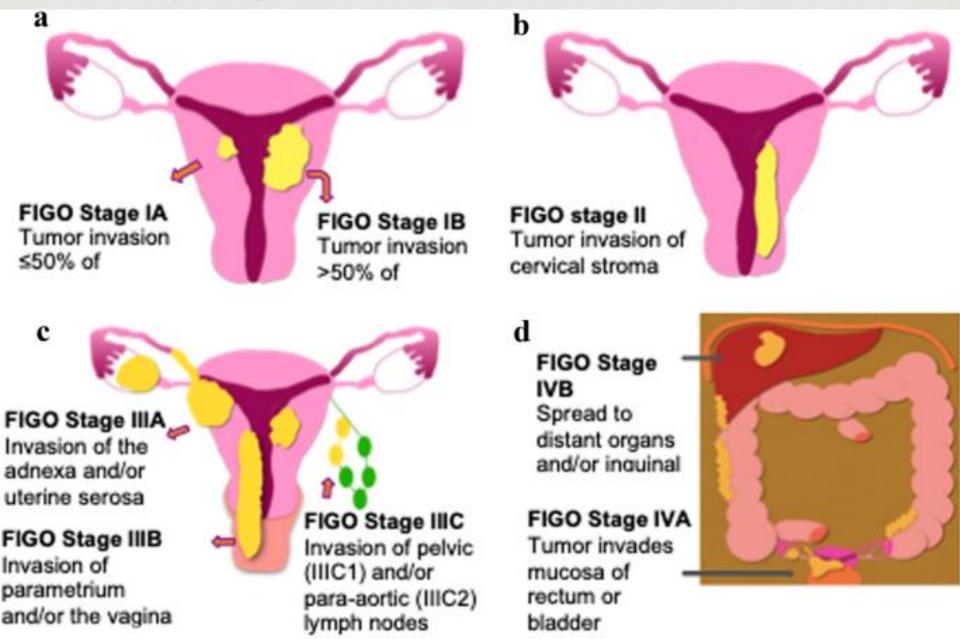


Evaluation, Risk-based Stratification & Molecular Classification in Endometrial Cancer

DR ABHISHEK SHINGHAL MAHAMANA PANDIT MADAN MOHAN MALAVIYA CANCER CENTRE & HOMI BHABHA CANCER HOSPITAL, VARANASI (Units of Tata Memorial Centre, Mumbai. Grant-in-Aid Institute of Dept. of Atomic Energy)

Burden of Disease


- Realized incidence of 8.7 per 100,000 females (1).
- № In India it is the second most common Gynecological malignancy with 16,413 new cases and 6,385 deaths every year (1).
- № The incidence peaks between ages 60 and 70 years, but 2 to 5 percent of cases occur before age 40 years (2).

Risk Factors

Estrogen related factors:	Other
1. Early menarche <12- RR- 2.4	1. Advanced age >60
2. Late menopause >55- RR- 1.8	2.Lynch syndrome/ Hereditary non polyposis colon cancer (HNPCC)- 40-60%
3. Nulliparity or history of infertility -RR-3	3. T2 Diabetes – RR-2.1
4. Use of tamoxifen in postmenopausal women- RR-4	4. Metabolic syndrome – RR – 1.89
5. Unopposed estrogen therapy (10-30 fold)	5. overweight/ Obesity – RR- 1.32/2.21
6. Estrogen secreting tumors (Granulosa & thecal cell tumors of ovary)	6. Hypertension – RR- 1.81
7.Polycystic ovarian disease- RR- 2.79	7.Family history of endometrial cancer
8. Liver cirrhosis	8. Prior pelvic irradiation

Ref: Zucchetto Aet Eur J Cancer Prev 2009, Esposito Ket al. Endocrine 2014

Staging in Endometrial Cancer

Histological Classification

Uterine Carcinomas:

- Endometrioid adenocarcinomas (75-80%)
 - Villoglandular
 - Adenoacanthoma (adenoca with benign squamous elements)
 - Secretory
 - Ciliated
- Mucinous adenocarcinoma
- Papillary serous adenoca (1-5%)
- Clear cell adenocarcinoma (5-10%)
- Squamous cell carcinoma
- Undifferentiated carcinoma

Uterine Sarcomas: (3%)

- Leiomyosarcoma
- Endometrial stromal

sarcoma

Adenosarcoma

- Carcinosarcoma
 - (Malignant Mixed
 - Mullerian Tumour/

MMMT)

Histological Grading

FIGO histological grading is based on degree of differentiation:

G1: \leq 5% non squamous or non morular solid growth pattern

G2: 6–50% non squamous or non morular solid growth pattern

G3 : >50% non squamous or non morular solid growth pattern

GX : Grade cannot be assessed

G1 : Well differentiated

G2 : Moderately differentiated

G3 : Poorly differentiated or

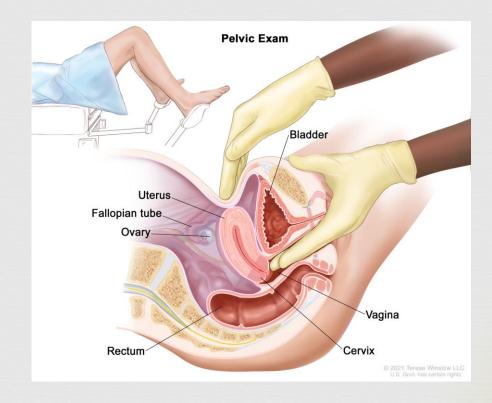
undifferentiated

High risk histology: Serous, clear cell and MMMTs- *high risk* – Grade 3

Clinical Presentation

Abnormal Uterine Bleeding
 present in 75 to 90 percent of cases.

∞ Abnormal Cervical Cytology


∞ Incidental finding on Imaging

Incidental finding after hysterectomy or during abdominopelvic surgery

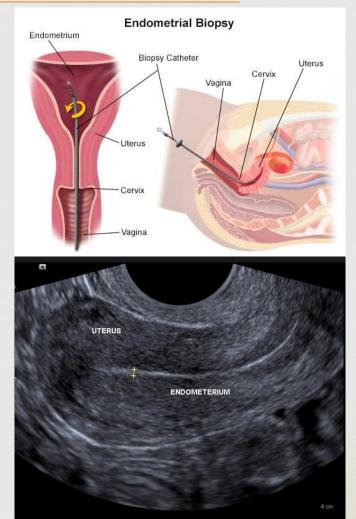
Evaluation

➡ History ,Physical examination, including bimanual pelvic and bidigital examination

 Assessing baseline fitness of patient:
 Routine blood investigations
 Chest X Ray

Establish Diagnosis

∞ TVS

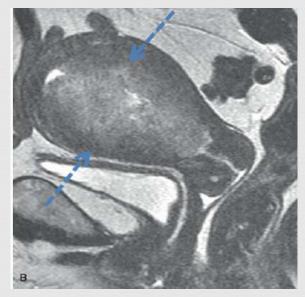

- 5mm thickness in post menopausal women – abnormal
- ✓ Sensitivity of 96%
- Premenopausal women endometrial thickness fluctuates with hormone levels

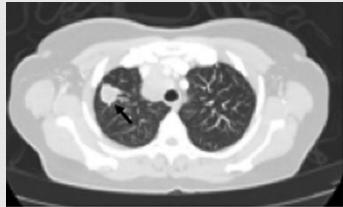
∞ Endometrial tissue sampling- Gold std

- Biopsy- Pippelle (Sensitivity 91% in premenopausal, 99.6% in postmenopausal)- OPD Biopsy
- D and C- Not routinely required if patient is asymptomatic and is planned for surgery

∞ Hysteroscopy Biopsy

If TVS is abnormal but biopsy is inconclusive

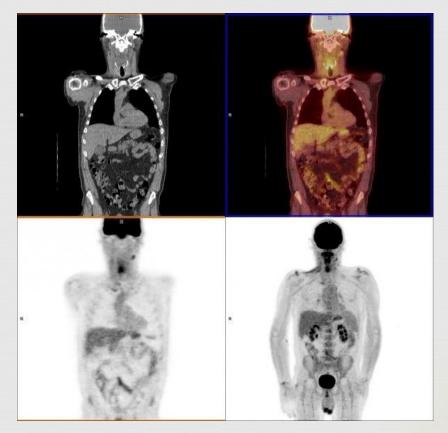

Staging


∞ MRI Pelvis:

- For determining extent of myometrial invasion
- To delineate cervical stromal involvement
- Prior to fertility sparing treatment
- To rule out residual disease (post incomplete surgery)
- Status of Pelvis Lymphadenopathy

∞ CECT Thorax + Abdomen

 In advanced stages (To rule out distant metastasis).


Additional tests

∞ PET CECT:

- In advanced stages
- ☑ LN/ Distant mets
- CS Recurrent disease
- ∽ Disadvantage if <5mm sensitivity is as low as 12%

∞ CA -125 :

- Could be elevated in patients with Ca Endometrium
- Mot routinely done
- CS Preop levels >40U/mL → s/o regional LN mets and can be used as an indication for full pelvic/ PALND in the absence of metastatic disease.

MRI, PET/CT and ultrasound in the preoperative staging of endometrial cancer – A multicenter prospective comparative study

Sofie Leisby Antonsen ^{a,*}, Lisa Neerup Jensen ^b, Annika Loft ^c, Anne Kiil Berthelsen ^c, Junia Costa ^c, Ann Tabor ^{b,o}, Ingelise Qvist ^d, Mette Rodi Hansen ^e, Rune Fisker ^f, Erik Søgaard Andersen ^g, Lene Sperling ^h, Anne Lerberg Nielsen ⁱ, Jon Asmussen ^j, Estrid Høgdall ^k, Carsten L. Fagö-Olsen ^a, Ib Jarle Christensen ¹, Lotte Nedergaard ^m, Kirsten Jochumsen ⁿ, Claus Høgdall ^o

Models for optimizing predictive value of myometrial invasion, cervical invasion and lymph node metastases in endometrial cancer patients.

Imaging	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)	Accuracy (%)
Myometrial invasion					
PET/CT + MRI + 2DUS	100	27.8	38.7	100	50.4
PET/CT + MRI	100	35.1	37.0	100	53.0
PET/CT + 2DUS	95.7	35.7	41.7	94.6	55.2
MRI+2DUS	95.7	45.2	43.6	95.9	60.7
Cervical invasion					
PET/CT + MRI + 2DUS	46.2	81.3	40.0	84.8	73.8
PET/CT + MRI	51.3	89.8	55.6	88.1	82.1
PET/CT + 2DUS	45.2	86.8	48.7	85.2	77.8
MRI+2DUS	40.5	87.5	47.2	84.2	77.3
Lymph node metastases					
PET/CT + MRI	85.7	88.2	37.5	98.8	88.6

PPV: positive predictive value, NPV: negative predictive value.

Surgical Staging

Surgery - mainstay of treatment Reaction Extrafascial total hysterectomy with bilateral

- salpingo-ophorectomy
 - Inspection of the pelvic & abdominal cavities
 - Biopsy of any suspicious extrauterine lesions
 - Peritoneal washings in most cases
 - Surgical assessment of lymph nodes ranges

 - Sentinel lymph node biopsy / Pelvic +/- para-aortic lymphadenectomy
 - Omental bx in clear cell / serous carcinoma and carcinosarcoma histologies

Risk based Stratification

Need to identify patients with higher chances of local and/or distant recurrences.

In 1983 Bokhran described two risk types:

础 Type 1 EC

- ∽ Comprise 65% of EC
- 🕫 Estrogen driven
- use Lower grade or endometrioid histologies
- S Favourable prognosis
- ∞ Type 2 EC
 - Solution Clinically aggressive histologies
 - S Diverse mix of high grade histologies
 - S Poor treatment outcomes

Could not capture biological diversity and clinical outcomes of all histologies

	Low	Low Intermediate	High Intermediate	High
PORTEC -1-2000	Stage Ia, grade 1	Stage I with Gr 1 and MMI≽50% , Gr 2 with any MMI Gr 3 with MMI <50%	Age >60 years with Gr 1 or 2 and MMI >50% Age >60 with Gr 3 and MMI <50%	Stage III–IV disease Uterine serous carcinoma or clear cell carcinoma of any stage
2004	Grade 1 or 2, endometrioid cancers confined to the endometrium stage IA	Age ≼50 years + ≼2 RFs Age 50–69 years + ≼1 RF Age ≽70 years + no RF	Any age + 3 risk factors Age 50–69 years + ≥2 RFs Age ≥70 years + ≥1 RFs	High-risk Stage III–IV disease-any histology or grade Uterine serous carcinoma or clear cell carcinoma of any stage
0040	Stage IA IB, endometrioid type, LVSI negative	Stage IA grade 3 endometrioid adenocarcinoma; any grade of non-endometrioid carcinoma, any LVSI Stage IB, Gr 1–2 endometroid, LVSI positive Stage IB, Gr 3 endometrioid; non- endometrioid- any LVSI / any grade Stage IC, stage II, any grade, any LVSI		Stage III–IV, any grade, any LVSI
0010	Stage IA (Gr 1 & 2) endometrioid type	Stage IB (Gr 1 and 2) endometrioid		Stage IB Gr 3 endometrioid type ,All stages with non- endometrioid type
Modified ESMO- 2014		Stage I endometrioid, grade 1–2, ≥50% MMI, LVSI negative	•	Stage I endometrioid, grade 3, ≥50% MMI, regardless of LVSI status Stage II, Stage III endometrioid, no residual disease Non-endometrioid

ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer

Diagnosis, Treatment and Follow-up

Nicoletta Colombo, * Carien Creutzberg, † Frederic Amant, ‡ Tjalling Bosse, § Antonio González-Martín,// Jonathan Ledermann,¶ Christian Marth,# Remi Nout, ** Denis Querleu, †† Mansoor Raza Mirza, ‡‡ Cristiana Sessa, §§ and the ESMO-ESGO-ESTRO Endometrial Consensus Conference Working Group

Risk stratification	Factors
Low risk	Stage I endometrioid, grade 1–2
Intermediate low risk	Stage I endometrioid, grade 1–2, ≥50% MMI, LVSI negative
Intermediate high risk	Stage I endometrioid, grade 3, <50% MMI, regardless of LVSI status Stage I endometrioid, grade 1–2, LVSI unequivocally positive, regardless of DOI
High risk	Stage I endometrioid, grade 3, ≥50% MMI, regardless of LVSI status Stage II, Stage III endometrioid, no residual disease Non-endometrioid

International Journal of Gynecological Cancer • Volume 26, Number 1, January 2016

Caveats of Histo-morphological Classification

- Identifying patients requiring adjuvant therapy remain a tremendous challenge.
- ➡ Histologic subtype assignment having moderate concordance among pathologists ranging from 60-70% only (5,6).
- Poor reproducibility in identifying multiple pathologic features
- № Need for bringing more reproducibility and objectivity

Integrated genomic characterization of endometrial carcinoma

The Cancer Genome Atlas Research Network*

Disadvantages of TCGA Classification

Final validation of the ProMisE molecular classifier for endometrial carcinoma in a large population-based case series

S. Kommoss¹, M. K. McConechy², F. Kommoss³, S. Leung⁴, A. Bunz¹, J. Magrill⁵, H. Britton⁵, F. Kommoss^{1,6}, F. Grevenkamp¹, A. Karnezis⁵, W. Yang⁵, A. Lum⁵, B. Krämer¹, F. Taran¹, A. Staebler⁷, S. Lax⁸, S. Y. Brucker¹, D. G. Huntsman⁵, C. B. Gilks⁵, J. N. McAlpine^{9,*†} & A. Talhouk^{5†}

∞ More practical classification

See A Used Immunohistochemistry tests (Except POLE EDM) for testing which serves as surrogate for TCGA classification

> Annals of Oncology 29: 1180–1188, 2018 doi:10.1093/annonc/mdy058 Published online 7 February 2018

DNA Polymerase epsilon (POLE) mutated

∧ These are Copy number (CN) stable EC

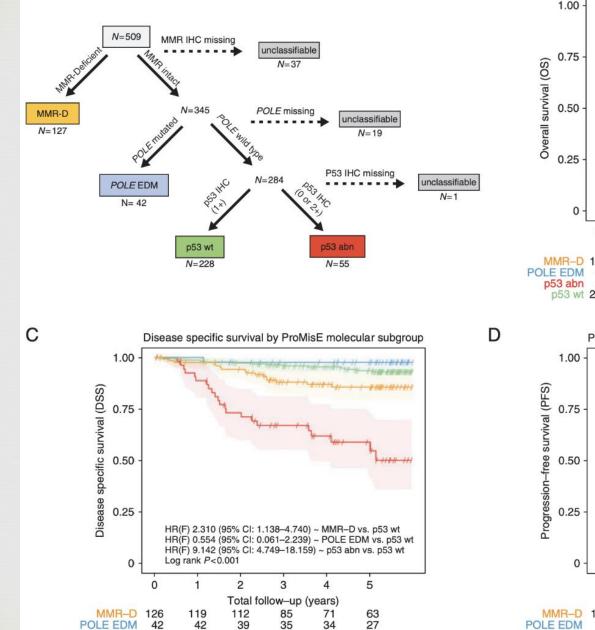
- Recurrent mutations in exonuclease domain of POLE gene
- № Highest somatic mutation frequencies exceeding 100 mutations per megabase (Mb)
- Mostly of endometrioid histologic type

Mismatch repair deficient (MMRd)

- MMR proteins constitutes: mutL homolog 1 [MLH1], postmeiotic segregation 2 [PMS2], mutS homolog 2 [MSH2], or mutS homolog 6 [MSH6]
- Represent the subtype № Epigenetic silencing of MLH1 contributes to majority of this subtype
- Includes both somatic and germline mutations (Lynch syndrome)

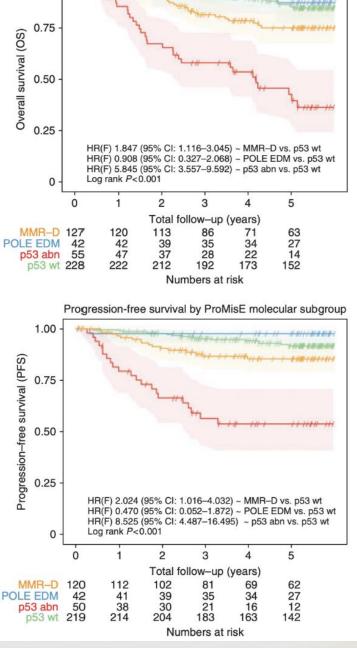
p53 wild-type (p53wt)

Note: No


№ Has Intermediate to Favorable prognosis

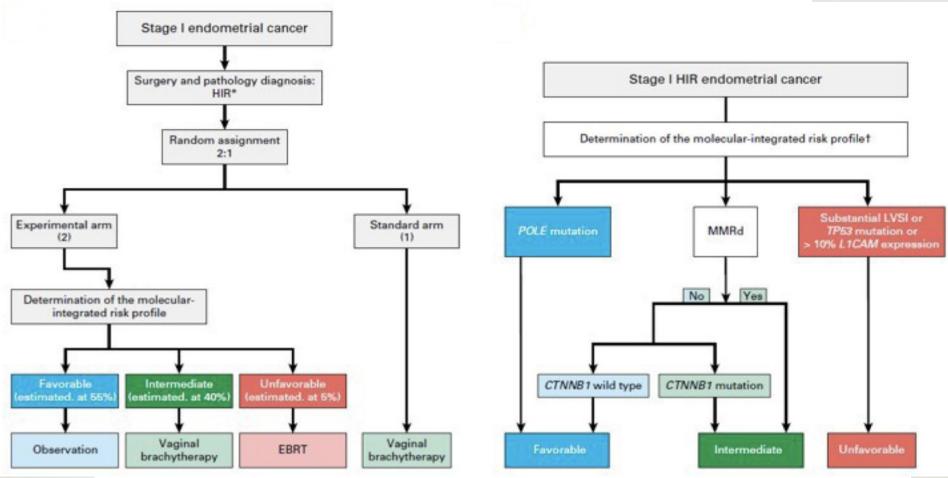
p53 abnormal (p53abn)

№ Has high somatic Copy-number alterations and mutation profiles


 Associated with worse prognosis accounting for 50-70% of endometrial cancer mortality

p53 abn p53 wt 228 Numbers at risk

В



Overall survival by ProMisE molecular subgroup

Risk group	Molecular classification unknown	Molecular classification known*†
Low	Stage IA endometrioid + low-grade‡ + LVSI negative or focal	 Stage I–II <i>POLEmut</i> endometrial carcinoma, no residual disease Stage IA MMRd/NSMP endometrioid carcinoma + low-grade‡ + LVSI negative or focal
Intermediate	 Stage IB endometrioid + low-grade‡ + LVSI negative or focal Stage IA endometrioid + high-grade‡ + LVSI negative or focal Stage IA non-endometrioid (serous, clear cell, undifferentiared carcinoma, carcinosarcoma, mixed) without myometrial invasion 	 Stage IB MMRd/NSMP endometrioid carcinoma + low-grade‡ + LVSI negative or focal Stage IA MMRd/NSMP endometrioid carcinoma + high-grade‡ + LVSI negative or focal Stage IA p53abn and/or non-endometrioid (serous, clear cell, undifferentiated carcinoma, carcinosarcoma, mixed) without myometrial invasion
High–intermediate	 Stage I endometrioid + substantial LVSI regardless of grade and depth of invasion Stage IB endometrioid high-grade‡ regardless of LVSI status Stage II 	 Stage I MMRd/NSMP endometrioid carcinoma + substanti al LVSI regardless of grade and depth of invasion Stage IB MMRd/NSMP endometrioid carcinoma high-grade‡ regardless of LVSI status Stage II MMRd/NSMP endometrioid carcinoma
High	 Stage III–IVA with no residual disease Stage I–IVA non-endometrioid (serous, clear cell, undifferentiated carcinoma, carcinosarcoma, mixed) with myometrial invasion, and with no residual disease 	 Stage III–IVA MMRd/NSMP endometrioid carcinoma with no residual disease Stage I–IVA p53abn endometrial carcinoma with myometrial invasion, with no residual disease Stage I–IVA NSMP/MMRd serous, undifferentiated carcinoma, carcinosarcoma with myometrial invasion, with no residual disease
Advanced metastatic	 Stage III–IVA with residual disease Stage IVB 	 Stage III–IVA with residual disease of any molecular type Stage IVB of any molecular type

Tailored Adjuvant Therapy in POLE-mutated and p53-wildtype Early Stage Endometrial Cancer (TAPER)

molecular profile-based adjuvant treatment for women with high-intermediate risk endometrial cancer

van den Heerik ASVM, et al. Int J Gynecol Cancer 2020;30:2002–2007. doi:10.1136/ijgc-2020-001929

Current impact of Molecular Markers

Molecular markers introducing more objectivity
 ■

∧ Data emerging in its usage as Predictive factor

Multi institutional collaborative studies needed further for its validation and adaptation in Indian setting

References

- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4. PMID: 33538338.
- 2. Epidemiology of Endometrial Cancer Consortium (E2C2) <u>https://epi.grants.cancer.gov/eecc/</u>
- 3. Lago V, Martín B, Ballesteros E, et al. Tumor Grade Correlation Between Preoperative Biopsy and Final Surgical Specimen in Endometrial Cancer: The Use of Different Diagnostic Methods and Analysis of Associated Factors. Int J Gynecol Cancer 2018; 28:1258.
- 4. Batista TP, Cavalcanti CL, Tejo AA, Bezerra AL. Accuracy of preoperative endometrial sampling diagnosis for predicting the final pathology grading in uterine endometrioid carcinoma. Eur J Surg Oncol 2016; 42:1367
- 5. Gilks CB, Oliva E, Soslow RA. Poor interobserver reproducibility in the diagnosis of highgrade endometrial carcinoma. Am J Surg Pathol 2013; 37:874
- 6. Han G, Sidhu D, Duggan MA, et al. Reproducibility of histological cell type in high grade endometrial carcinoma. Mod Pathol 2013; 26:1594

THANK YOU!!

T

T

U.I.

11

T

-

1

TITI

-

ΤŤ

П

PHOTO: AN

A