

Immunotherapy in Head and Neck Cancer

<u>Dr Mehlam Kausar</u> <u>MD DM(Medical Oncology)</u> <u>Asst Professor</u> <u>Medical Oncology</u> <u>MGMMC Indore</u>

Nobel Prize in Medicine

Overview

- MOA
- Indications
- Predictive Biomarkers
- Side Effects
- Future Trends
- Conclusion

The Immune Editing Hypothesis (3E's)

Mechanisms of Tumor-induced Immune Tolerance

Role of Checkpoint Inhibitors

Indications

Immune Checkpoint Inhibitors in Head and Neck Cancer

Drug	Approved Indication	Target
Nivolumab ^[1]	Second line in R/M HNSCC with progression on/after platinum-based chemotherapy	PD-1
Pembrolizuma b ^[2]	Second line in R/M HNSCC with progression on/after platinum-containing chemotherapy	PD-1
	First line in R/M HNSCC as a single agent in patients with PD-L1–expressing tumors (CPS ≥ 1) and in combination with platinum + 5-FU for all patients	
Atezolizumab ^{[3}]	Not approved in HNSCC	PD-L1
Durvalumab ^[4]	Not approved in HNSCC	PD-L1
Avelumab ^[5]	Not approved in HNSCC	PD-L1

1.. Nivolumab PI. 2. Pembrolizumab PI. 3. Atezolizumab PI. 4. Durvalumab PI. 5. Avelumab PI.

Phase III CheckMate 141: Nivolumab in Recurrent/Metastatic HNSCC After Platinum Therapy

- Primary endpoint: OS
- Other endpoints: PFS, ORR, DoR, safety, biomarkers, QoL

CheckMate 141: OS for Nivolumab vs Investigator's Choice in Recurrent/Metastatic HNSCC

Ferris. Oral Oncol. 2018;81:45.

Slide credit: clinicaloptions.com

KEYNOTE-012: HNSCC Cohorts

- Nonrandomized, open-label, multicohort phase lb trial
 - Analysis of combined Initial and Expansion Cohorts (N = 192)

- Primary endpoints: ORR per RECIST v1.1 by BICR, safety
- Secondary endpoints: investigator-assessed ORR, PFS, OS, DoR, ORR in HPVpositive patients (initial cohort only)

Mehra. Br J Cancer. 2018;119:153.

Slide credit: <u>clinicaloptions.com</u>

KEYNOTE-012: ORR by PD-L1 Status

PD-L1 Expression Sites Analyzed	PD-L1 Status	Nonresponders, n	Responders, n	ORR, % (95% CI)	P Value
TPS (tumor cells)	Positive	101	22	17.9 (11.6-25.8)	.461
	Negative	53	12	18.5 (9.9-30)	
CPS (tumor and	Positive	120	32	21.1 (14.9-28.4)	
inflammatory cells)	Negative	34	2	5.6 (0.7-18.7)	.023

 Incorporating inflammatory cells into PD-L1 expression analysis enhances ability to detect responders

Chow. J Clin Oncol. 2016;34:3838.

Slide credit: <u>clinicaloptions.com</u>

KEYNOTE-040: Pembrolizumab vs Standard of Care in Recurrent/Metastatic HNSCC

*Investigator's choice of methotrexate 40 mg/m²/wk (in absence of toxicity could increase to 60 mg/m²), docetaxel 75 mg/m² Q3W, or cetuximab loading dose of 400 mg/m² followed by 250 mg/m²/wk.

- Primary endpoint: OS in ITT population
- Secondary endpoints: OS in PD-L1—positive subgroups, PFS, ORR, DoR, safety, tolerability

Cohen. Lancet. 2019;393:156.

Slide credit: clinicaloptions.com

KEYNOTE-040: OS in ITT Population

KEYNOTE-040: TRAEs for Pembrolizumab vs Standard of Care in Recurrent/Metastatic HNSCC

TRAEs, n (%) (≥ 15% Either Arm)	Pembrolizum	nab (n = 246)	SoC (n = 234)		
	Any Grade	Grade 3-5	Any Grade	Grade 3-5	
Any TRAE	155 (63)	33 (13)	196 (84)	85 (36)	
TRAE leading to tx discontinuation	15 (6)	12 (5)	12 (5)	9 (4)	
TRAE mortality	4 (2)	4 (2)	2 (1)	2 (1)	

EXTREME Chemotherapy* + Cetuximab: OS

KEYNOTE-048: Study Design

KEYNOTE-048: Baseline Characteristics, ITT Population

	Pembrolizumab Al	one vs EXTREME	Pembrolizumab + Chemo vs EXTREME		
Characteristic	Pembrolizumab (n = 301)	EXTREME (n = 300)	Pembro + Chemo (n = 281)	EXTREME (n = 278*)	
Age, median, yrs (range)	62 (22-94)	61 (24-84)	61 (20-85)	61 (24-84)	
Male, n (%)	250 (83.1)	261 (87.0)	224 (79.7)	242 (87.1)	
ECOG PS 1, n (%)	183 (60.8)	183 (61.0)	171 (60.9)	170 (61.2)	
Current/former smoker, n (%)	239 (79.4)	234 (78.0)	224 (79.7)	215 (77.3)	
p16 positive (oropharynx) , n (%)	63 (20.9)	67 (22.3)	60 (21.4)	61 (21.9)	
PD-L1 status, n (%)					
 TPS ≥ 50% 	67 (22.3)	66 (22.0)	66 (23.5)	62 (22.3)	
 CPS ≥ 20 	133 (44.2)	122 (40.7)	126 (44.8)	110 (39.6)	
 CPS ≥ 1 	257 (85.4)	255 (85.0)	242 (86.1)	235 (84.5)	
Disease status,† n (%)					
 Metastatic 	216 (71.8)	203 (67.7)	201 (71.5)	187 (67.3)	
 Recurrent only[‡] 	82 (27.2)	94 (31.3)	76 (27.0)	88 (31.7)	

*Patients randomized to EXTREME during pembro + chemo enrollment hold excluded from pembro + chemo vs EXTREME efficacy comparisons. †3 patients in pembro arm, 3 patients in EXTREME arm, and 4 patients in pembro + chemo arm had neither metastatic nor recurrent disease. *Includes locally recurrent disease and disease that spread to cervical lymph nodes. Data cutoff date: June 13, 2018.

Burtness. Lancet. 2019;394:1915.

Slide credit: clinicaloptions.com

 \mathbf{O}

KEYNOTE-048: OS for Pembrolizumab + Chemotherapy vs EXTREME

KEYNOTE-048: Response for Pembrolizumab + Chemotherapy vs EXTREME

Confirmed Response, n (%)	Pembro + Chemo (n = 281)	EXTREME (n = 278)
ORR	100 (35.6)	101 (36.3)
CR	17 (6.0)	8 (2.9)
PR	83 (29.5)	93 (33.5)
SD	78 (27.8)	94 (33.8)
PD	48 (17.1)	34 (12.2)
Non-CR/non-PD*	13 (4.6)	9 (3.2)
Not evaluable or assessed†	42 (14.9)	40 (14.4)

*No measurable disease per central review at baseline and no CR or PD.

⁺No postbaseline imaging assessment evaluable for response or who did not have postbaseline imaging. Response assessed per RECIST v1.1 by BICR. Data cutoff date: June 13, 2018.

KEYNOTE-048: OS (CPS ≥ 20) for Pembrolizumab vs EXTREME

KEYNOTE-048: OS (CPS ≥ 1) for Pembrolizumab vs EXTREME

KEYNOTE-048: PFS for Pembrolizumab vs EXTREME

KEYNOTE-048: OS in Subgroups for Pembrolizumab vs EXTREME

CPS ≥ 20				CPS≥1			
Subgroup	No. of Deaths/No. of	Patients	HR (95% CI)	Subgroup	No. of Deaths/No. of P	atients	HR (95% CI)
Overall	177/255	— — — I	0.67 (0.50-0.90)	Overall	383/512		0.76 (0.62-0.93)
Age				Age	,		
< 65 yrs	119/165		0.68 (0.47-0.97)	< 65 yrs	249/329		0.74 (0.57-0.95)
≥65 yrs	58/90		- 0.70 (0.42-1.18)	≥ 65 yrs	134/183		0.81 (0.58-1.14)
Sex				Sex			
Male	148/212		0.63 (0.46-0.88)	Male	320/429		0.74 (0.59-0.92)
Female	29/43		0.80 (0.38-1.70)	Female	63/83		0.89 (0.54-1.46)
ECOGPS	67/140			ECOGPS	1 42 /205		
0	67/110	_ _	- 1.01 (0.62-1.63)	0	142/205		0.93 (0.67-1.29)
1 Decion of onrol	110/145	— —	0.48 (0.32-0.70)	1 Pogion of onro	241/307		0.69 (0.53-0.89)
Region of enrol	iment Ap/cp			North Amor			- 0.01 (0.00 1.40)
North Americ	ca 40/63		1.04(0.56-1.94)	North Ameri	122/166	7	0.91(0.60-1.40)
Europe	57/86		0.89(0.53-1.49)	Europe Bost of work	125/100 d 175/224		0.77(0.55-1.10)
Rest of World	80/106	-	0.38 (0.24-0.61)	Smoking statu	u 175/224	_	0.75 (0.54-0.98)
Shower	17/61	_	0.70 (0.44.1.40)	Novor	s 03/120		0 71 (0 47 1 07)
Former	47/04		- 0.79(0.44-1.40)	Formor	222/210		0.71(0.47-1.07)
Furner	104/155		0.64 (0.45-0.94)	Curront	56/80	ł	0.64(0.03 - 1.03)
n16 status (or	23/37 -		0.61 (0.27-1.57)	n16 status (or	onharyny)	_	0.04 (0.37-1.08)
Prositivo		1	0.98 (0.46.2.09)	Positivo	68/109		0 73 (0 45-1 17)
Nogativo	150/203		0.57 (0.41 0.79)	Negative	315/403		0.73(0.43-1.17) 0.77(0.62-0.96)
	150/205	_	0.57 (0.41-0.75)	Disease status	515,105		0.77 (0.02 0.90)
Metastatic	114/167		0.65 (0.45-0.95)	Metastatic	257/347		0.66 (0.52-0.85)
Recurrent	62/84		- 0.76 (0.46-1.25)	Recurrent	124/159		- 1.04 (0.73-1.48)
			,		· · · · · ·		
	0.1	0.5 1	2		0.1	0.5 1	2
	Pembrolizumab A	lone Better	EXTREME Better		Pembrolizumab A	lone Better	EXTREME Better
	p16-negativ	e subgroup incl	udes participants with nonoropha	aryngeal tumors. D	ata cutoff date: June 13, 20	18.	
Burtness. Lancet. 2	2019;394:1915.					Slide	credit: <u>clinicaloptions.com</u>

Biomarkers

Current and Potential Biomarkers of Response to Immunotherapy in HNSCC

- Immune cell infiltration
- PD-L1 expression (85% CPS \geq 1, 45% CPS \geq 20)
- Interferon gene expression signature profiles
- High mutation burden/neoantigens
- T-cell clonality
- Gut microbiome

PD-L1 Expression in HNSCC

PD-L1 Expression on Tumor and Tumor-infiltrating Lymphocytes

Nivolumab in HPV Positive vs HPV Negative Patients

Ferris. Oral Oncol. 2018;81:45.

Slide credit: <u>clinicaloptions.com</u>

Mutational Load and GEP-Associated Best Overall Response: HPV/EBV—Whole Exome Sequencing

- ML and GEP weakly correlated, remained significant predictors in adjusted multivariate model
 - (ML, P = .0349; GEP, P = .0056)
- Strongest response with high ML or GEP, particularly with both

Haddad. ASCO 2017. Abstract 6009.

Slide credit: <u>clinicaloptions.com</u>

Adverse Events

Immune-Related Adverse Events Can Affect Any Organ System

AFS

PD-1 Inhibitor Time to Onset and Time to Resolution

Based on Melanoma Data

- Pooled data from largest and most comprehensive analysis to date of the safety profile of anti–PD-1 monotherapy
- Understanding typical onset of immune-related select AEs may help in recognition, management, and resolution in clinical practice

Weber. J Clin Oncol. 2016;35:785.

Slide credit: clinicaloptions.o

General Guidelines for Management of Immune-Related AEs

- Grade 1: asymptomatic to mild symptoms
 - Observation
 - Intervention not needed
- Grade 2: moderate symptoms
 - Local or noninvasive intervention indicated
 - Withhold drug, consider re-dose if toxicity resolves to grade ≤ 1
 - Low-dose corticosteroids likely needed
 - May be able to continue treatment

- Grade 3: medically significant but not immediately lifethreatening
 - Stop immunotherapy immediately
 - Hospitalization indicated
 - High-dose steroids indicated
 - Slow steroid taper over ≥ 1 mo once toxicity resolves to grade ≤ 1
- Grade 4: life-threatening consequences
 - Urgent intervention
 - Permanently discontinue

CTCAE v4.03. June 2010. Atezolizumab adverse reaction management brochure. Permanentuy Nivolumab adverse reaction management guide. Pembrolizumab adverse reaction treatment management guide.

Immunotherapy-Related AEs in Head and Neck Cancer: Special Considerations

- Early progression of HNC with immune checkpoint inhibition
- Pseudoprogression in HNC < 1%</p>
- Patients with prior definitive or postoperative therapy may have earlier radiation-induced apical lung injury with increased risk of pneumonitis^[1]
- Patients with bulky tumors are often highly symptomatic
 - Early progression or pseudoprogression may increase risk pain, dysphagia, tumor bleeding, or airway compromise
- There exists anecdotal evidence of increased carotid bleeding
 - Vascular endothelium expresses PD-L1^[2]
 - Patients must be warned to alert physician to any herald bleeding and they should be referred immediately to interventional neurovascular radiology

Future Directions

Contemporary Trial Design in the Immunotherapy Era

- Rapid proliferation of studies in HNSCC
- 2 main themes:

1. Use of PD-1 inhibitors in previously untreated locally advanced HNSCC

- Neoadjuvant, concurrent, and adjuvant administration
- 2. Optimizing activity in recurrent/metastatic HNSCC
 - Combinations in first-line therapy and after prior checkpoint inhibitors
 - Salvage therapy or reirradiation
 - Cellular therapeutics

Combined Radiation, Anti–CTLA-4, and Anti–PD-1 Therapies: Prolonged Survival, Decreased Resistance

OS in Mice Treated With Combined CTLA-4/PD-1 Blockade

- Major tumor regressions in melanoma patients with CTLA-4 antibody and radiation therapy, tumor responses outside XRT field
 - Effect reproduced in mouse models
- Combined treatment improved responses, but resistance was common
 - Resistance due to PD-L1 upregulation and associated with T-cell exhaustion
 - Addition of PD-L1 blockade improved responses in resistant tumors after radiation therapy plus a CTLA-4 antibody
- Responses stronger in treatment-naive tumors when PD-L1/PD-1 antibodies added to radiation therapy plus CTLA-4 blockade

Neoadjuvant Single-Agent Checkpoint Inhibition in HNSCC: Human Safety Data

Trial	Phas e	N	Treatment	Outcomes
NCT02296684 [[] 1]	II	24	Pembrolizumab x 1 prior to surgery	42% with pathologic evidence of tumor regression
CheckMate 358 ^[2]	1/11	29	Nivolumab x 2 doses prior to surgery	28.5% experienced TEAEs; no surgical delays
NCT02274155 [[] 3]	Ib	17	MEDI6469 (OX40 antibody) x 3 doses prior to surgery	No grade ≥ 3 AEs, no surgical delays
NCT03247712 [[] 4]	I	10	Nivolumab x 3 doses + SBRT prior to surgery	No surgical delays Grade 1/2 mucositis dermatitis 5 patients with adrenal insufficiency Delayed healing

1. Uppaluri. ASCO 2017. Abstr 6012. 2. Ferris. ESMO 2017. Abstr LBA46. 3. Bell. ASCO 2018. Abstr 6011. 4. Leidner. AACR 2019.

Neoadjuvant Single-Agent Checkpoint Inhibition in HNSCC: Human Safety Data

Trial	Phas e	N	Treatment	Outcomes
NCT02296684 [[] 1]	II	24	Pembrolizumab x 1 prior to surgery	42% with pathologic evidence of tumor regression
CheckMate 358 ^[2]	1/11	29	Nivolumab x 2 doses prior to surgery	28.5% experienced TEAEs; no surgical delays
NCT02274155 [[] 3]	Ib	17	MEDI6469 (OX40 antibody) x 3 doses prior to surgery	No grade ≥ 3 AEs, no surgical delays
NCT03247712 [[] 4]	I	10	Nivolumab x 3 doses + SBRT prior to surgery	No surgical delays Grade 1/2 mucositis dermatitis 5 patients with adrenal insufficiency Delayed healing

1. Uppaluri. ASCO 2017. Abstr 6012. 2. Ferris. ESMO 2017. Abstr LBA46. 3. Bell. ASCO 2018. Abstr 6011. 4. Slide credit: clinicaloptions. Leidner. AACR 2019.

Prospectively Reported Combination Therapies in Recurrent/Metastatic HNSCC

- Anti–PD-1 and PD-L1 mAbs and
 - Cytotoxic chemotherapy
 - Hypofractionated radiation therapy
 - CTLA-4 blockade
 - T-cell agonists/NK cell agonists
 - Therapeutic vaccines
 - Small molecule inhibitors

Summary

- Immunotherapy is active in head and neck cancer and proper selection of patient is needed.
- Need more specific biomarkers to know who will benefit the most.
- More appropriate combination strategies are needed for improving outcomes.
- Potentially practice-changing trials are anticipated in locally advanced HNSCC approached with curative intent
- Various combination strategies being explored in the recurrent/ metastatic setting
- Cellular therapeutics gaining momentum in HNSCC

THANK YOU