

Hadron Therapy: Clinician's Perspective

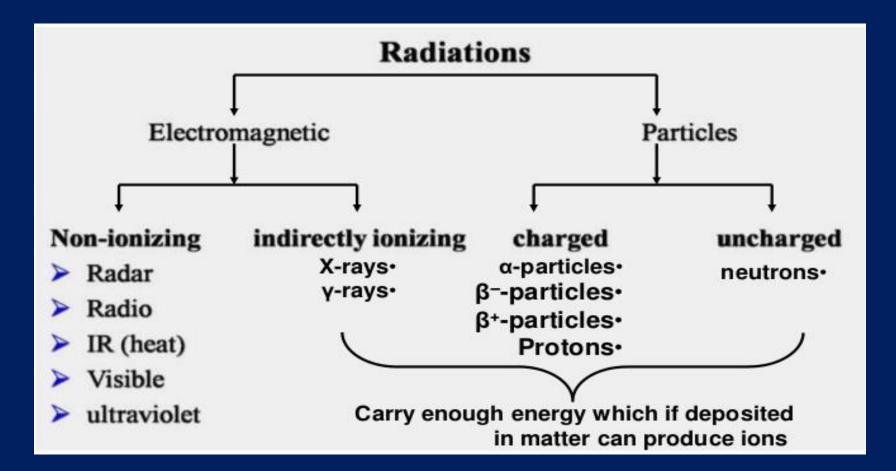
Dr Dodul Mondal Associate Director, Radiation Oncology Max Super Speciality Hospital Saket, New Delhi

AROI – ICRO PG Teaching Course February 2022

COI: None Disclosure: None

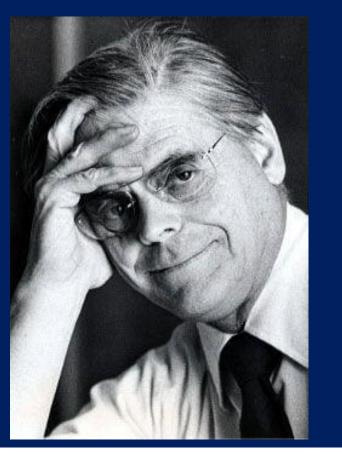
Radiation therapy using heavy particle as source of radiation. The heavy particle can be a proton, carbon ion, neutron or meson etc

Clinician's perspective is a broad-based term



- ≻Types of radiation
- ≻Rationale
- > Physics of particle beam
- Radiobiology of particle beam
- ≻Clinical Utility
- ≻Evidence and drawbacks

Types of Radiation

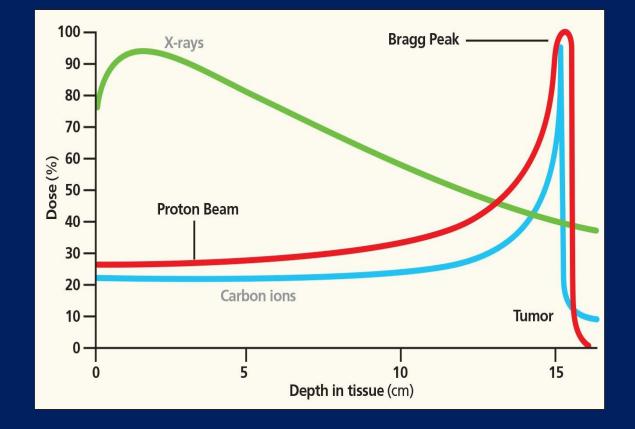

Shortcomings of Photon

- High entry dose
- High exit dose
- Exponential attenuation
- Lateral penumbra

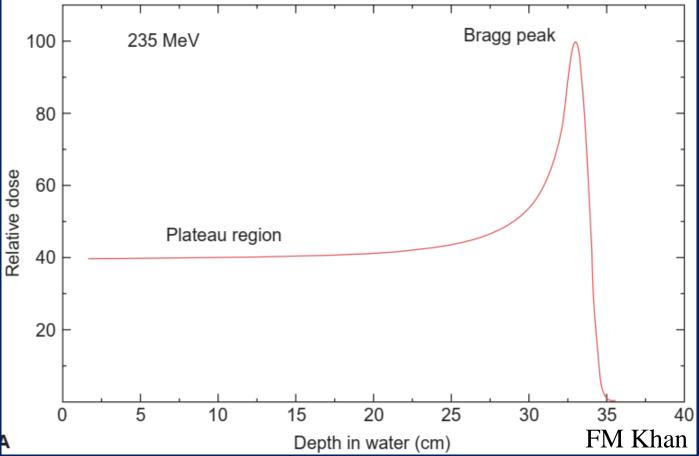
Basics of Heavy Particle Therapy

- Finite range
- Reduced lateral scattering
- Greatest potential increased relative biological effectiveness (RBE)
- Reduced oxygen enhancement ratio (OER)
- Unique effects of densely ionizing radiation
 - Reduced angiogenesis
 - Augmented immune response

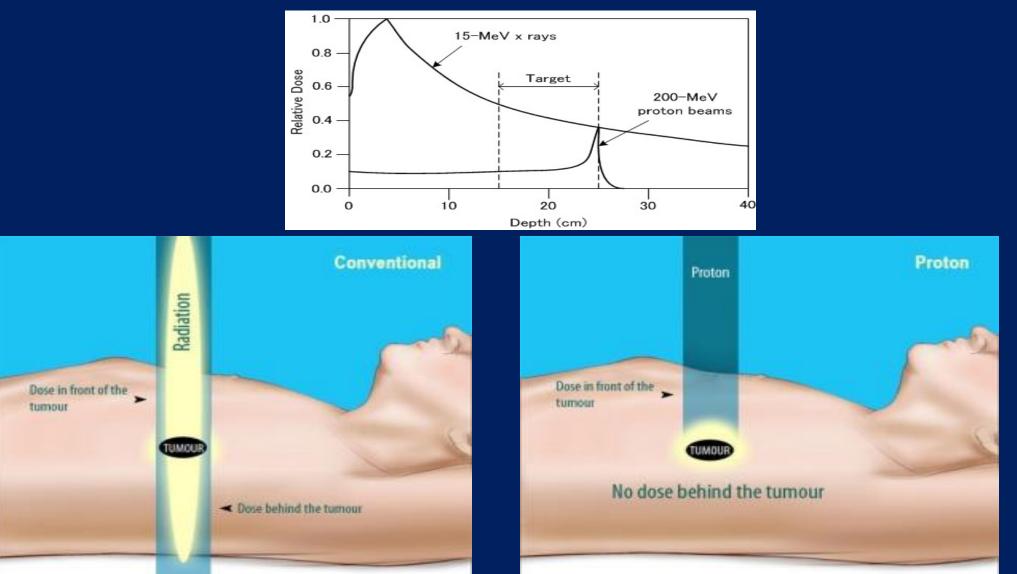
Robert Wilson Proposed proton beam for clinical use 1946


12 August 2021

Advantages of Heavy Particle

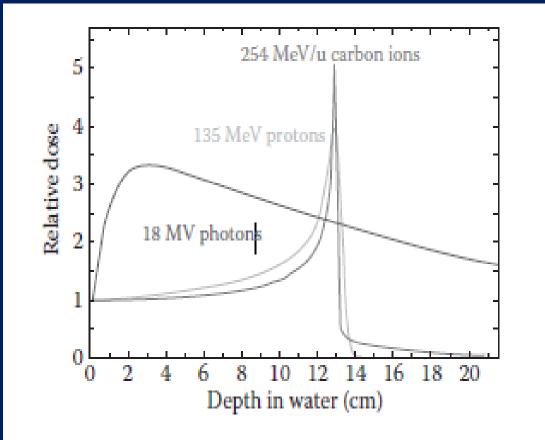

- No exit dose
- Sharp Lateral penumbra
- Bragg peak
- Variable LET

Bragg Peak



• Bragg Curve is a graph of the energy loss rate[LET] as a function of the distance through a stopping medium.

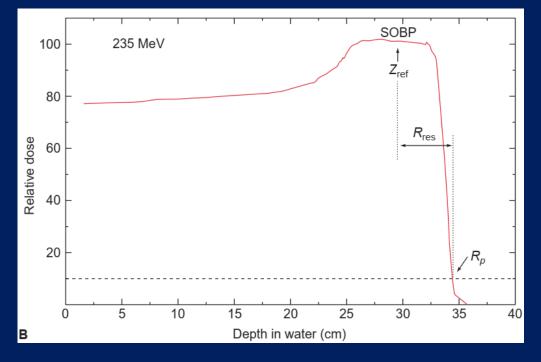
- Proportional to square of nuclear charge Z
- Inversely proportional to square of velocity
- This gives the Bragg Curve its familiar shape, peaking at very low energies, just before the projectile stops.



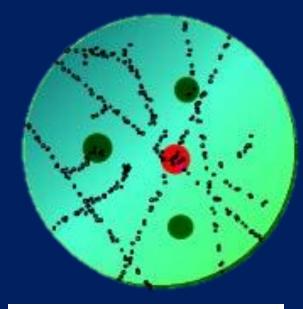
Comparison of Pristine Bragg peak of Proton and Carbon ion

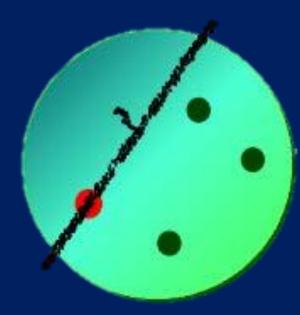
- Carbon ion is 12 times heavier than proton
- Carbon ion PBP is sharper than proton due to its rapid fall off

Courtesy: Proton and Carbon Ion Therapy, CRC press

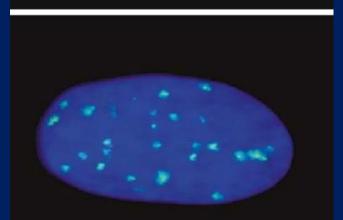


SOBP


- A single proton in a proton beam→ very narrow Bragg peak
- A mono energetic proton beam → range straggling at the very end→ slight broadening of Bragg peak→ not enough
- Plastic or graphite material with different thickness rotated in front of continuous proton beam→ pull back of each ray → different depth of penetration → summation of all Bragg peaks at different depth→ SOBP




Ionization Density (LET)

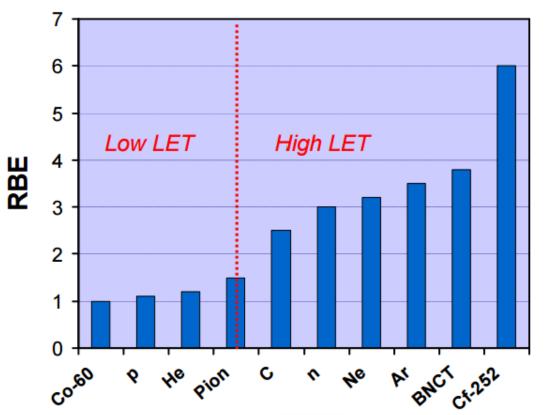

Low LET (Protons)

High LET [(Neutrons)

DNA breaks after high LET beam

DNA breaks after X Rays

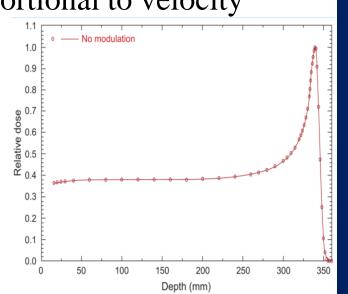
Oncology ClassRoom

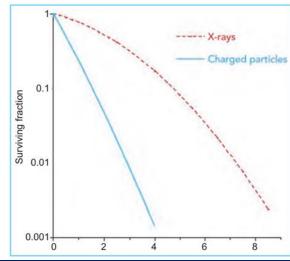


LET and RBE

TYPICAL LET VALUES IN TISSUE RELATIVE BIOLOGICAL EFFECTIVENESS

RADIATION	LET (keV µm ⁻¹)
⁶⁰ Co γ-rays MV x-rays	7
Electrons	7
250 kV x-rays	10
Protons	10
⁴ He ions	15
π̄mesons	20
¹² C ions	75
Fast neutrons	75
²⁵² Cf	100
40Ar ions	120
Boron neutron capture ⁴ He ⁷ Li	200 160

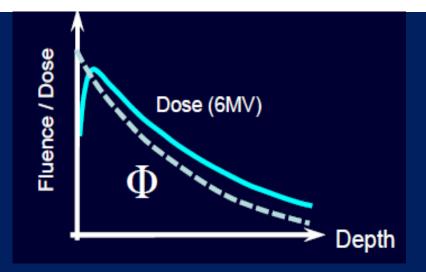


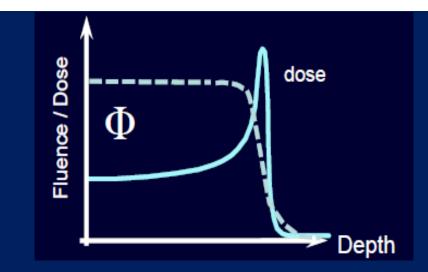


- Charged heavy particle having finite range
- Nucleus of the hydrogen atom, or a hydrogen atom without electron
- > Sharp peak at the end of particle range
- Depends on particle and medium property
 - Square of particle charge
 - Inversely proportional to velocity
- Monoenergetic
- > SOBP

≻ RBE

- Related to LET
- Uniform RBE 1.1
- Reference: 250 kV Xray / 60-Co γ ray

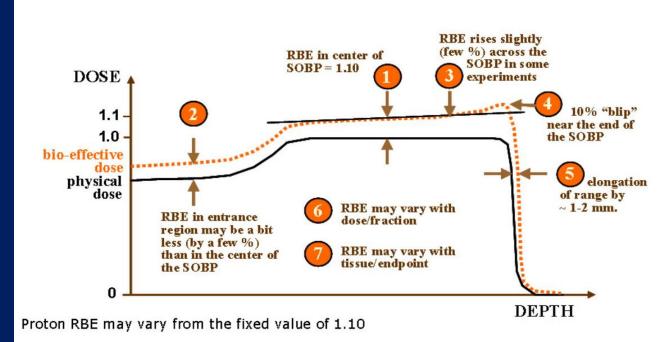




Photon Energy loss: Photon vs Proton Proton

- Attenuation since beginning
- Fluence decreases since beginning
- No substantially change in energy spectrum
- No change in ion pair production per unit length

- No attenuation till bragg peak
- No change in fluence except near the end
- Particle losses its energy gradually
- Production of ion pair gradually increase



RBE for Proton therapy

- Measured as CGE (cobalt gray equivalent)
- Biological effective dose= RBE x physical proton dose {Gy(RBE)}
- Though common practice to use a constant generic RBE of 1.1(ICRU Report 78)
- But proton RBE is not same along the the SOBP

RBE changes with increasing depth

Average proton energy becomes increasingly low as the depth gets larger – so that the LET (and, hence, RBE) becomes therefore increasingly higher with increasing depth.

M. Goitein "Radiation Oncology: A Physicist's-Eye View" © Springer, 2007

Characteristics of carbon ion and proton ions Proton Carbon Ion

- Low LET particle
- Deposition of energy along the track is similar to that of photon before reaching Bragg peak where it becomes denser
- Double strand break is higher than photon therapy

- High LET particle
- Deposition of energy is dense which becomes denser at Bragg peak
- More clustered DNA damage
- Double strand break is much higher than proton

Main difference between proton and photon

	Factors	Protons	Photons
		Sensitive - affect range, distal target	
	CT # and stopping	coverage or distal normal tissue	
′ 1	powers accuracy	sparing	Not sensitive
L	Target motion normal to	Affects margin, may affect dose	
2	beam	distribution distal to target	Affects margin
7	Normal structure motion	Affects range, dose distribution distal	
73	orthogonal to beam	to structure	Minimal effect
	Target motion along		
4	beam direction	No effect	Affects margin
	Normal structure motion		
5	along beam direction	No effect	Minimal effect
L	Complex	Not well characterized, perturb dose	
6 ין	inhomogeneities	distributions, degrade distal edge	Well understood, effect not strong
1	Anatomy changes over		
7	course of RT	Affect dose distribution	Minimal effect
		Impact of uncertainties significant,	PTV concept valid, dose distributions
		PTV concept not valid, validity of	relatively invariant to uncertainties,
8	Plan Evaluation	initial nominal plan questionable	initial plan acceptable approximations

Uncertainties and Problems with heavy Particles

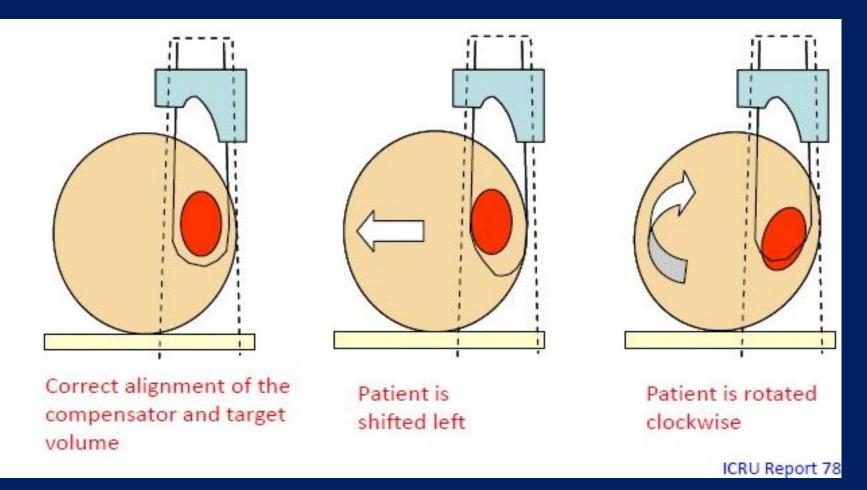
Physics Uncertainty: Range uncertainty

Related to physical dose distribution

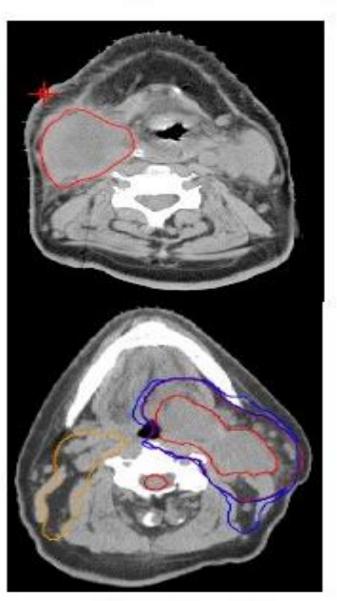
Planning CT image: Daily patient geometry may be different CT number /Hounsfield Unit – Represent photon attenuation power

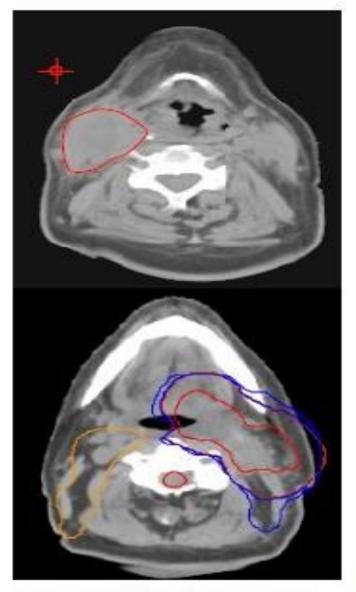
Proton stopping power require HU conversion CT artefacts

Biologic Uncertainty


- □ 1.1 is a close approximation
- □ RBE increased by 5% at 4 mm from the distal edge
- □ RBE increased by 10% at 2 mm from the distal edge
- **U** Varies with type of tissue (low or high α/β)
- ☐ Varies with dose

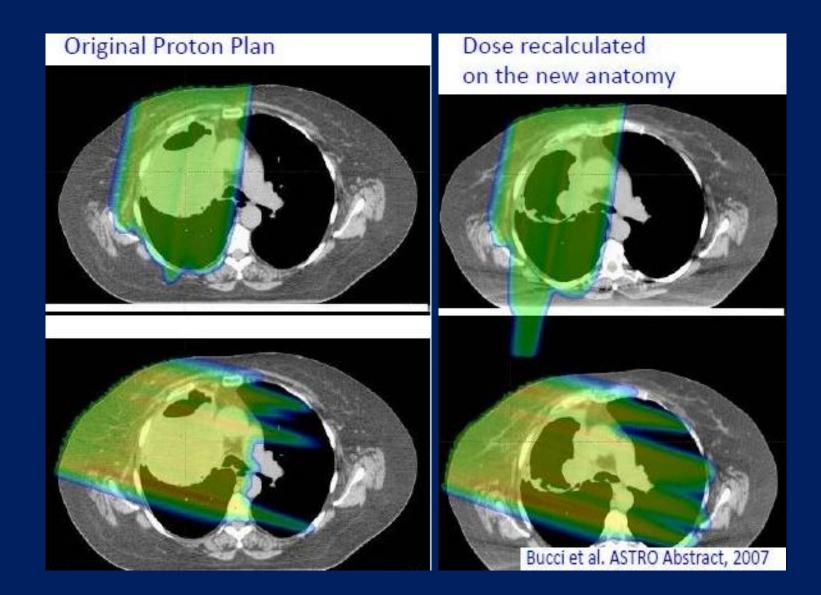
- Limitations of CT data (beam hardening, noise, resolution etc)
- Uncertainty in energy dependent RBE Calibration of CT to stopping power
- CT artifacts
- Variations in patient anatomy
 - Variations in proton beam energy Variations in patient positioning


Misalignment of Compensator with Target



Anatomic Variation During Treatment

Planning CT



Three Weeks into RT

Barker et al. Int J Radiat Oncol Biol Phys 2004;59:960-970.

Impact of Tumor Shrinkage on Dose Distribution

How to mitigate uncertainties

- Rigorous Quality assurance
- Proper patient selection
- Better image registration and site specific treatment
- Immobilization etc

Solution to range uncertainty:

- The depth of the Bragg peak (Distal 90%)
- Modulation: The spread of the Bragg peak
- Apertures: Shaping the beam perpendicular to the path
- Compensators: Distal Shaping

The Place of Ion Beams in Clinical Applications

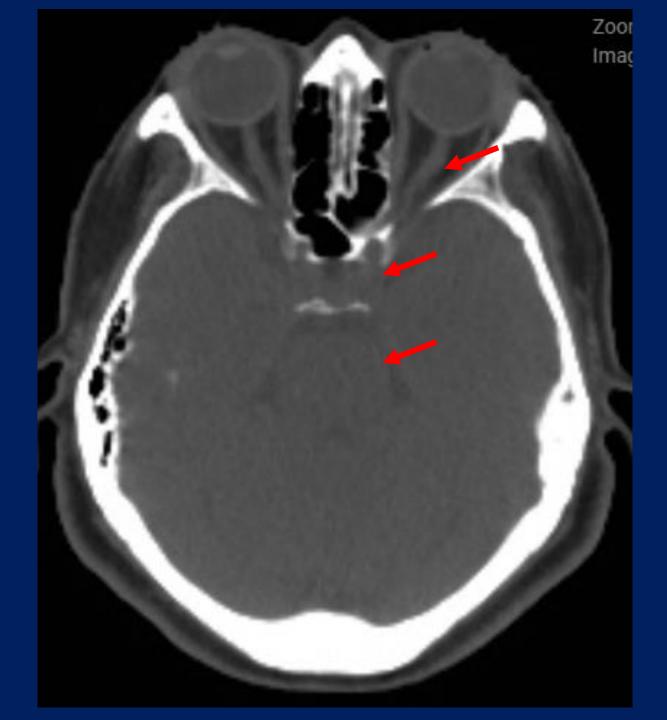
- Better organ sparing (Skull base tumors)
- Better local control needed (Ca Prostate)
- Late morbidity (Pediatric malignancies)
- Complex geometry (Ocular melanoma)
- Large target volume (Childhood Medulloblastoma)

Improving Particle Therapy

- Anatomy variations
 - IGRT/adaptive radiotherapy
 - Robust optimization
- Intra-fractional motion
 - Gating, coaching, tracking...
- Accurate stopping power ratios (CT number conversion)
- Scanning pencil beams (IMPT) with beam angle optimization.

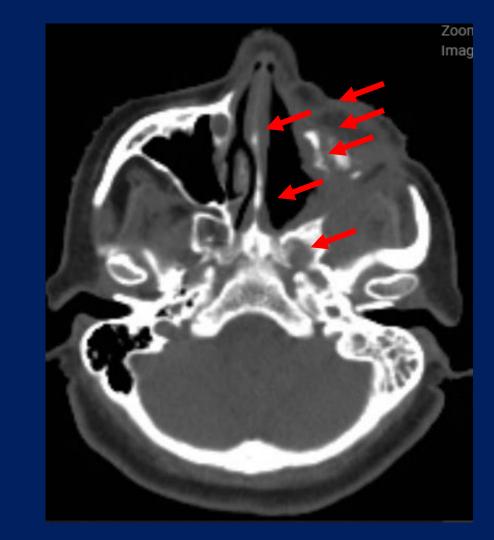
Clinical Aspect

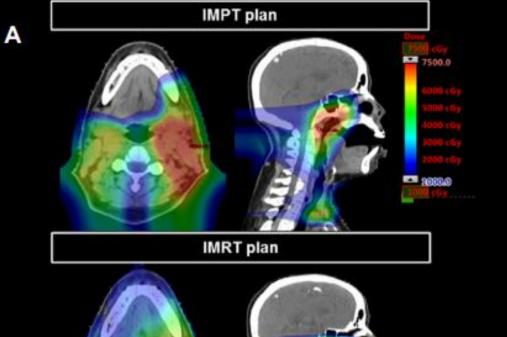
Planning Difficulties with Photon

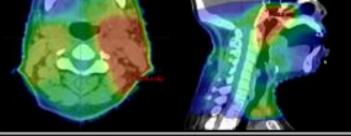


Difficulties in HNC radiation planning

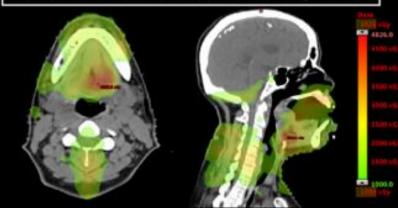
Salivary gland (one side)	Each parotid gland separately	<7 cc Mean dose	20 Gy <26 Gy	32 Gy	xerostomia
Larynx	Starting 1 cm above first appearance of true vocal cord include entire cord, arytenoid muscles, corniculate and arytenoid cartilages and portions of thyroid cartilage abutting these structures ending at the first appearance of the cricothyroid ligament.	<3 cc	39 Gy	63 Gy	necrosis/edema
TM joint	Each side separately starting at the superior articular surface near the zygoma bone and ending at the notch at the superior part of the ramus of the mandible.	<1cc	60 Gy	65 Gy	inflammation






Can proton overcome the difficulties

Difficulties with proton planning:


- Highly sensitive to tissue type
- Uncertainties are more
- HU to stopping power conversion
- Overshoot or undershoot
- Complex local anatomy
 - Skin
 - Soft tissue, fat, muscle
 - Bone
 - Air cavities
 - Nerves
 - Brain
- Lack of trained manpower

Dose Subtraction (dose avoided using IMPT)

IMPT plan 7000.0 1000000 IMRT plan Dose Subtraction (dose avoided using IMPT) 4000.0

В

Blanchard P, 2018

100.0

Can we predict radiation toxicity with proton beam therapy using photon data?

International Journal of Radiation Oncology biology • physics

www.redjournal.org

- NTCP models
- Radiobiological model
 - Xerostomia
 - Dysphagia or feeding tube dependence
 - Hypothyroidism
 - Laryngeal edema
 - Nausea
 - Acute mucositis

Clinical Investigation

A Model-Based Approach to Predict Short-Term Toxicity Benefits With Proton Therapy for Oropharyngeal Cancer

Jean-Claude M. Rwigema, MD,^{*,†} Johannes A. Langendijk, MD, PhD,[‡] Hans Paul van der Laan, PhD,[‡] John N. Lukens, MD,^{*} Samuel D. Swisher-McClure, MD,^{*} and Alexander Lin, MD^{*}

*Perelman School of Medicine, University of Pennsylvania, Department of Radiation Oncology,

- Statistically significant reductions in the mean NTCP values
- Largest difference in grade ≥2 dysphagia and grade ≥2 xerostomia

Clinical Utility

pISSN 1598-2998, eISSN 2005-9256

https://doi.org/10.4143/crt.2021.299

Cancer Res Treat. 2021;53(3):621-634

Special Article

Who Will Benefit from Charged-Particle Therapy?

Kyung Su Kim¹, Hong-Gyun Wu^{2,3,4,5}

¹Department of Radiation Oncology, Ewha Womans University College of Medicine, Seoul, ²Department of Radiation Oncology, Seoul National University Hospital, Seoul, ³Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, ⁴Cancer Research Institute, Seoul National University College of Medicine, Seoul, ⁵Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea

California, PBT (2003-2016) [11]			n, PBT 2013) [77]	Japan, CIRT (1994-2017) [78]			UK (Christie), PBT (2018-2019) [8]		
Site	Percentage	Site	Percentage	Site	Percentage	Population	Site	Percentage	
Prostate	41.3	Prostate	30.0	Prostate	24.7	Pediatric and	CNS	38.9	
Breast	14.0	Liver	19.0	Bone and soft tissue	11.5	young adult	H&N	15.7	
Eye/orbit	11.8	H&N	13.0	H&N	9.6	(~24 yr)	Body	10.2	
Lung	6.1	Lung	12.0	Lung	9.2		Spine	6.5	
CNS	6.0	GI	6.0	Pancreas	5.4		CSI	1.9	
Lymphoma/leukemia	2.9	Pancreas	4.0	Liver	5.3	Adult	CNS	8.3	
Liver	2.4	Sarcoma	3.0	Rectum (recur)	4.9		H&N	3.7	
H&N	2.3	CNS	3.0	Uterus	2.5		Body	0.9	
Female genital	2.1	Others	10.0	Uveal melanoma	1.8		Spine	13.9	
Colon and rectum	3.0			Abdominal LN	1.2				
Others	9.1			CNS	0.9				
				GI tract	0.8				
				Re-irradiation	9.2				
				Others	13.0				
Total	100	Total	100	Total	100	Total		100	
	(n=8,609)		(n=15,000		(n=11,580)			(n=108)	
			approximately)						

Country	United	NHS England Indications of PBT
United	Astro Model P(Kingdom [8]	
States [7]		Pediatric tumor
States [7]	including intr	Most pediatric tumors, malignant and benign
	Tumors that	Adult
	or chondro:	Base of skull tumors (radioresistant)
	Primary or n	Spinal and paraspinal tumors (radioresistant)
	e e	Paranasal sinus tumors with base of skull involvement
	treatment 0 Netherlands [9]	Health Council of the Netherlands. Proton Radiotherapy
	Hepatocellul	Standard indication
	Primary or b	Skull base or spinal chordoma and chondrosarcoma
	childhood t	Other intracranial, spinal, and paraspinal tumors, including meningioma
		Pediatric tumors, including bone tumors, soft-tissue sarcoma, low-grade glioma, meningioma,
	Patients with	medulloblastoma, ependymoma, and neuroblastoma
	to NF-1 pat	Potential indications (cases for which protons may be specifically utilized to improve local control)
	Malignant ar	Re-irradiation (malignant brain tumors, head and neck cancer)
	0	Paranasal sinus tumors, nasopharyngeal carcinoma, prostate, NSCLC, retroperitoneal sarcoma
	Advanced (e	Model based indication (cases where proton will be utilized to reduce side effect)
	Cancers of th	Re-irradiation (meningioma, head and neck cancer)
	Non-metasta	Head and neck cancers, prostate
	Re-irradiatio	Reduction of secondary cancer
	Re-maulano	Breast cancer
		Lymphoma
		Testis

Table I. Recommended of Paone Real montance covered maneadors for charged Particle merapy non-beverar countines

	Tesus	
Japan [10]	Public Health Insurar	ce of Particle Therapy
	PBT	
	Pediatric cancer	
	Bone and soft tis:	sue sarcoma
	Head and neck	
	Prostate	
	CIRT	
	Bone and soft tis:	sue sarcoma
	Head and neck	
	Prostate	
	Vorea [10]	Public Health Insurance of PBT
	Korea [10]	rublic riealth insurance of r b i
		Pediatric cancer
		Re-RT
		Brain, skull base, and spinal tumors
		Head and neck cancer including orbit
		Thorax tumor (lung, esophagus, and mediastinum except breast
		Abdominal tumors (hepatobiliary, pancreas, and retroperitoneun

Some Case Studies

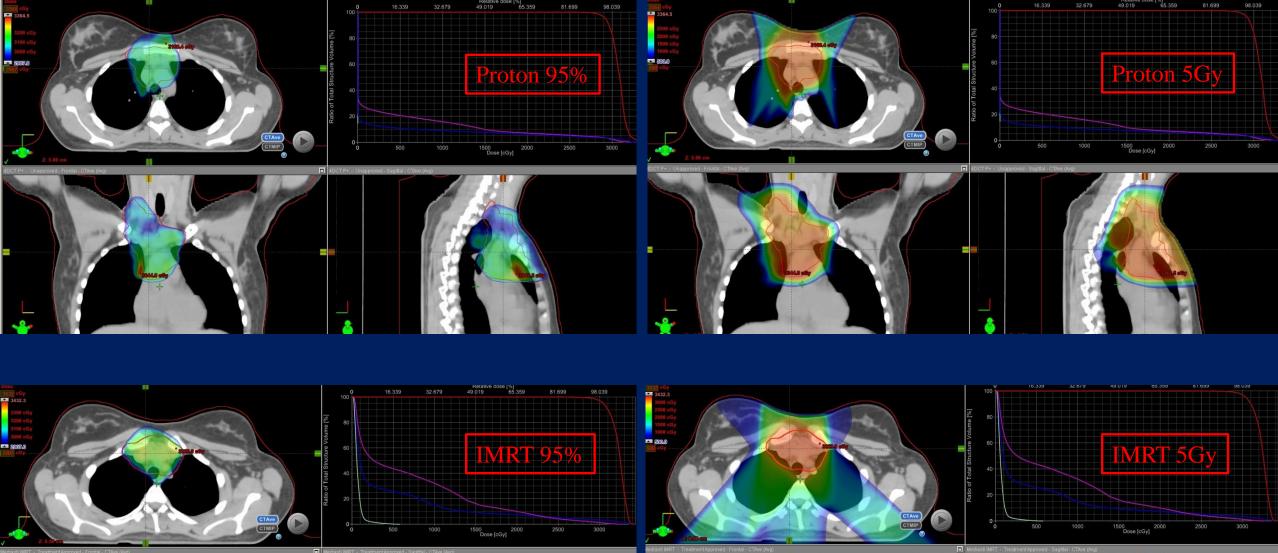
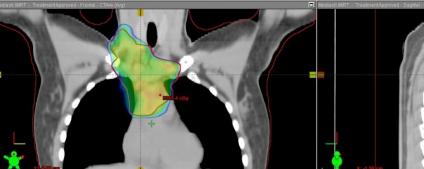
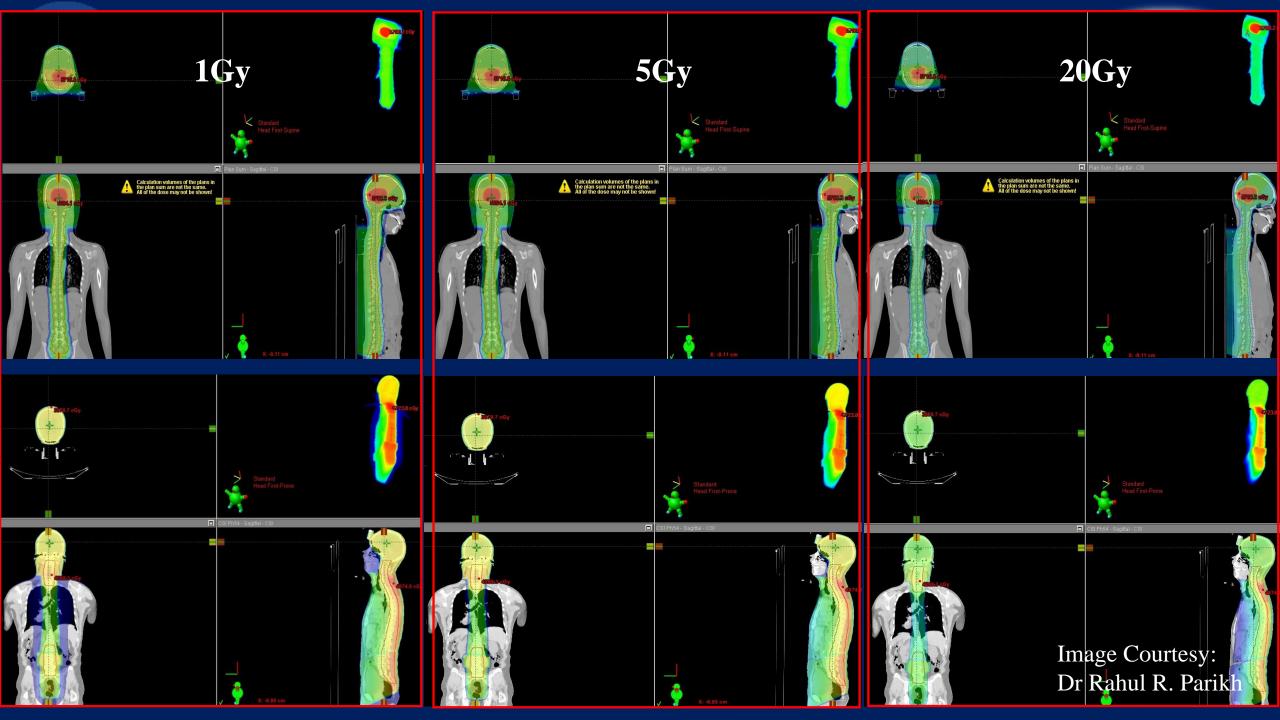
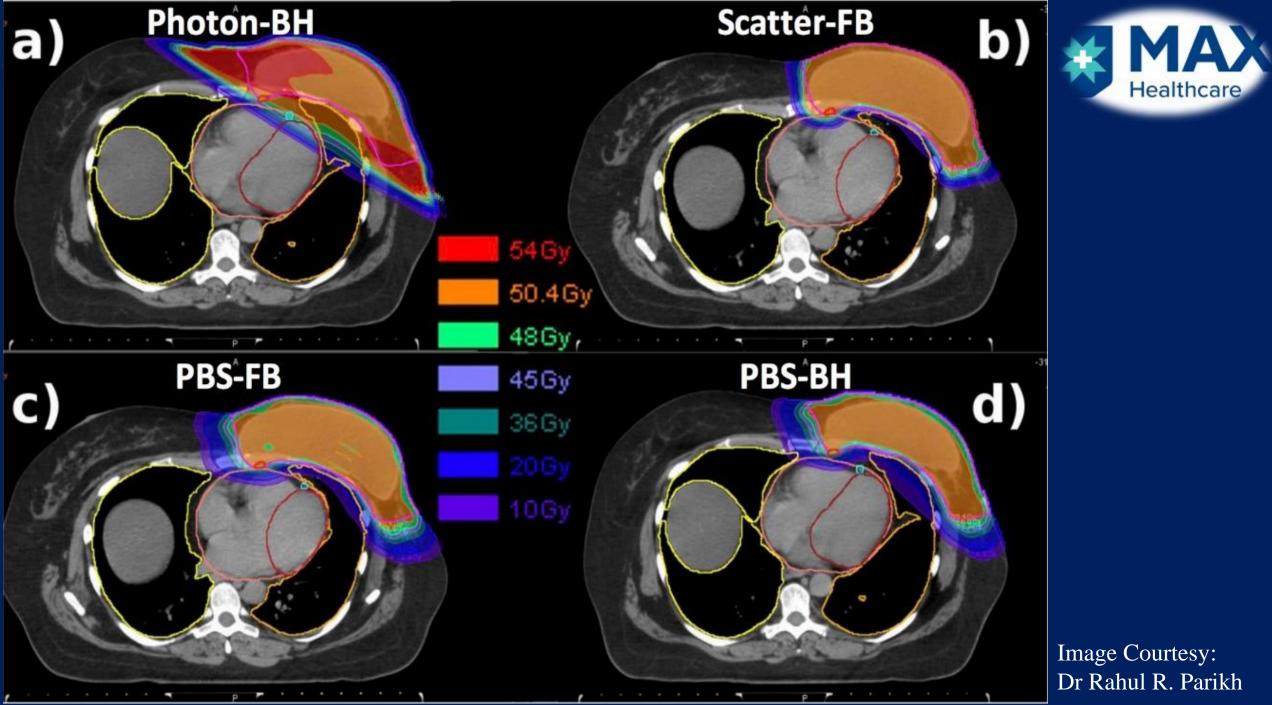
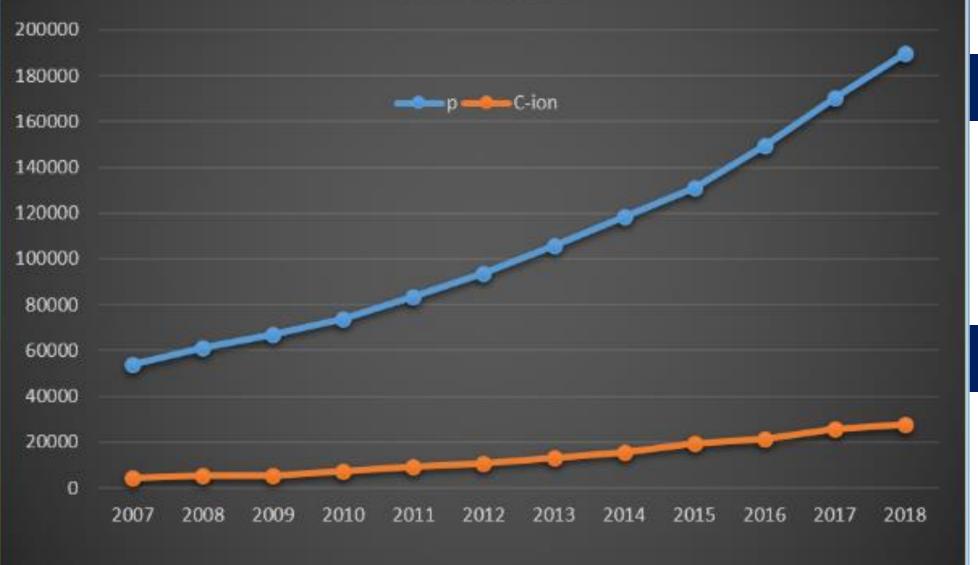




Image Courtesy: Dr Rahul R. Parikh




Image Courtesy: Dr Rahul R. Parikh

Criticism

Patients treated with Protons and C-lons worldwide

316registeredphaseIIItrials,only 1out of 38 onHNC!!!

Patient treated Proton: 2007:20000 2018:200000 10X increase

Patient treated Carbon Ion: 2007: 1000 2018: 25000 25X increase

Proton trials: 20 years analysis of clinical trials

INTERNATIONAL JOURNAL of PARTICLE THERAPY

A 20-Year Analysis of Clinical Trials Involving Proton Beam Therapy

Bismarck C. L. Odei, BS¹; Dustin Boothe, MD²; Sameer R. Keole, MD³; Carlos E. Vargas, MD³; Robert L. Foote, MD⁴; Steven E. Schild, MD³; and Jonathan B. Ashman, MD, PhD³

¹David Geffen School of Medicine, University of California, Los Angeles, CA, USA
 ²Huntsman Cancer Center, University of Utah, Salt Lake City, UT, USA
 ³Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
 ⁴Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA

Abstract

Purpose: Clinical trials (CTs) in proton beam therapy (PBT) are important for determining its benefits relative to other treatments. An analysis of PBT trials is, thus,

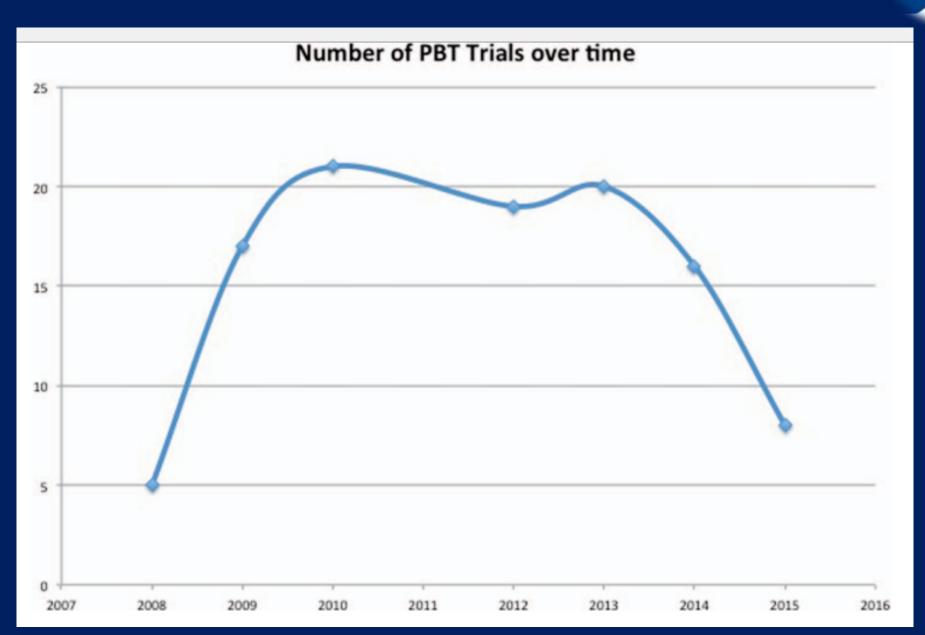
Characteristics	No. of trials (N = 152)	Trials, %		
Primary site				
Gastrointestinal system	32	21.1		
Central nervous system	31	20.4		
Lung	21	13.8		
Prostate	19	12.5		
Breast	10	6.6		
Sarcoma	15	9.9		
Eye	8	5.3		
Other	16	10.5		
Sex				
Female	10	6.6		
Male	21	13.8		
Both	121	79.6		
Age				
Children included	28	18.4		
Adult Only	124	81.6		
Location		\frown		
North America	131	86.2		
Europe	10	6.6		
Asia	11	7.2		

Oncology	Characteristics	No. of trials (N = 152)	Trials, %
lass Room	Randomization		
	Randomized	35	(23.0)
	Nonrandomized	37	24.3
	Unspecified	80	52.6
	Treatment endpoint		\frown
	Safety and efficacy	94	61.8
	Efficacy	28	18.4
	Safety	7	4.6
	Bioequivalence	1	0.7
	Unspecified	22	14.5
	Intervention model		
	Single group	84	55.3
	Parallel group	55	36.2
	Unspecified	11	7.2
	Masking		\frown
	Open label	134	88.2
	Single blind	4	2.6
	Double blind	2	1.3
	Unspecified	12	7.9
	Recruiting status		
	Active, recruiting	79	52.0
	Active, not recruiting	37	24.3
	Complete	13	8.6
	Terminated	12	7.9
	Not yet recruiting	6	3.9



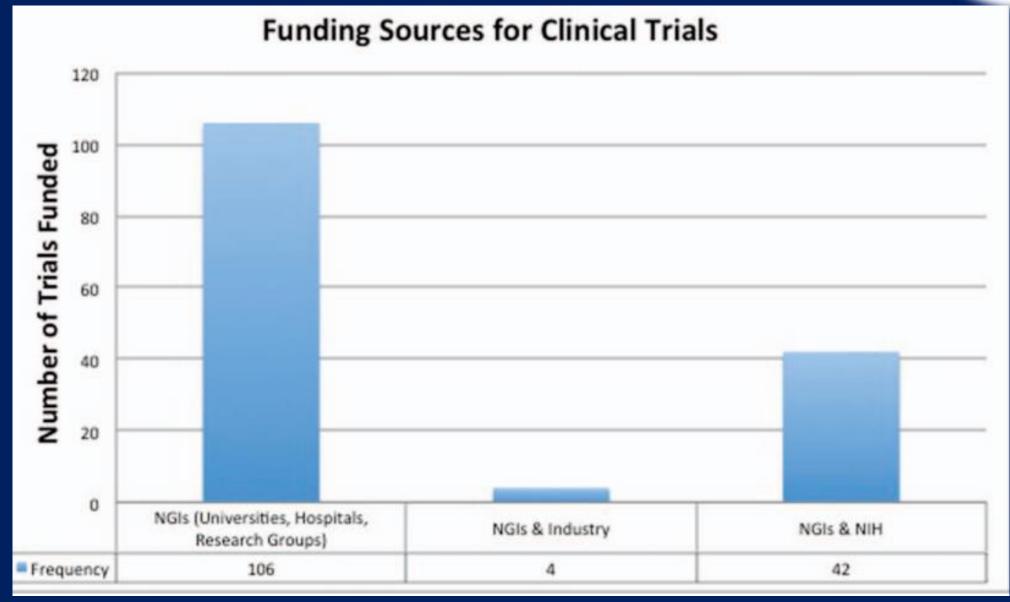
Source of potential bias and data manipulation

Phases of clinical trials in proton beam therapy



Number of proton beam therapy clinical trials over time

Healthcare


Oncology

ClassRoom

Funding sources for proton beam therapy clinical trials

Conclusion about PBT trials

PBT CTs focused on a diverse range of malignancies
Phase II trials represent the largest type of PBT CTs
Only a few trials employed a phase III design
Phase III RCTs may be appropriate for some but not all
Challenges to PBT trial funding,
Minimal support from industry
Modest support from the NIH
A Principal Barrier to Enrolment: Insurance Coverage

Conclusion

Useful in certain clinical scenarios
Bragg peak
Uncertainties
Normal tissue sparing
Second malignancy less
Can help dose escalation
Requires judicious use
Promising future tool

Acknowledgement and Courtesy

The organizers

AROI

ICRO

Prof. D. N. Sharma

Dr Rahul R. Parikh

Dr Atif J. Khan

Rihan Millevoi

CINJ

Dr Alexander Lin

Roberts Proton Therapy Center

My hospital My patients My teachers

My family

My students

THANK YOU

Dr Dodul Mondal