

Contemporary Management of Brainstem Glioma: Focus on Diffuse Intrinsic Pontine Glioma (DIPG)


Dr Tejpal Gupta, MD, DNB Professor, Radiation Oncology Tata Memorial Centre, Mumbai 38th AROI-ICRO Webinar Series Central Nervous System (CNS) Module 7th-9th July 2021 – Virtual Online

Outline of presentation

- Epidemiology and incidence
- Classification and presentation
- Contemporary management
- Molecular biology
- Emerging therapeutic avenues
- Summary and conclusions

Epidemiology

Patil et al, CBTRUS 2000-2017, Neuro-Oncol 2021 (in press)

Classification of Brainstem Glioma

- **Diffuse brainstem glioma** DIPG is prototypical example
- Focal brainstem glioma

Tectal plate glioma is prototypical example other focal gliomas are rare

• Dorsal exophytic glioma

Gliomas with exophytic component

Anatomic location
Pontine: commonest

• Mesencephalic/midbrain: less common

• Medullary: least common

Cervico-medullary glioma

Arise from medulla and extend inferiorly or can also be due to superior extension of cervical spinal gliomas

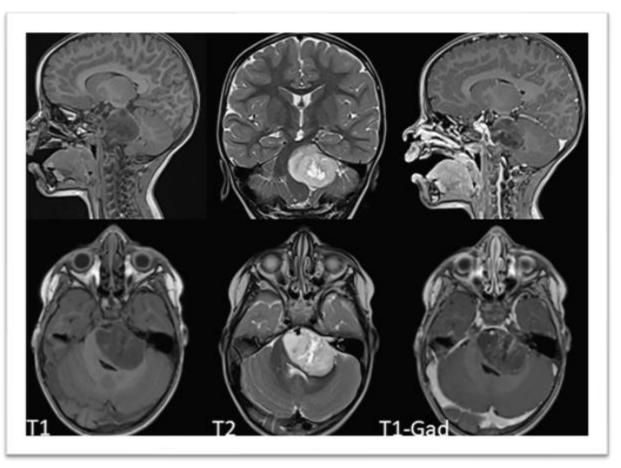

> McLone et al, Pediatric Neurosurgery, 2001 Keating et al, Tumors of Pediatric CNS, 2001

Clinical Presentation

- Can be some what variable depending upon location and size of the lesion
- Focal tectal plate gliomas present generally early with small tumors due to obstructive hydrocephalus
- Common presentation: headache, vomiting, and imbalance
- Dorsal exophytic tumors present with signs/symptoms related to involvement/compression of tracts
- Commonly present with slowly progressive dysarthria, dysmetria, and long tract signs
- Cervico-medullay gliomas are sometimes associated with NF1 and detected on surveillance imaging
- Sporadic cervico-medullary gliomas can present with nuchal pain and lower cranial nerve palsy
- DIPG the prototypical brainstem glioma presents with rapidly progressive signs and symptoms

Focal Tectal Plate Glioma

- Clinically and biologically indolent tumor
- Presents with hydrocephalus most commonly
- Only CSF diversion is recommended
- Endoscopic third ventriculostomy (ETV) is the procedure of choice
- Mostly pilocytic astrocytoma on histology (if biopsied)
- Rarely progresses after CSF diversion
- Occasionally may warrant intervention for progression
- Can be treated with chemotherapy (LGG protocol) in children
- Rarely definitive RT is offered for growth arrest in older children/adults


Dorsal Exophytic Glioma and Cervico-medullary Glioma

- Only biopsy is recommended for histological diagnosis
- Sometimes safe debulking in dorsal exophytic gliomas may be considered
- Commonest histologic diagnosis is Pilocytic Astrocytoma
- BRAF alterations (particularly fusions) are commonly seen in children
- In pre-pubertal children, chemotherapy with low-grade glioma protocol is advisable
- The typical 5-year progression-free survival with chemotherapy is 40%
- In post-pubertal children, focal conformal radiation therapy can be offered
- Radiation therapy provides good symptomatic relief and durable local control
- Targeted therapy is still investigational in pediatric LGG including brainstem glioma

DIPG: prototypical brainstem glioma

- Short latency 2-3 months
- Classical triad of symptoms:
 - Cerebellar signs
 - Long tract signs
 - Multiple cranial nerve abnormalities
- Classical radiology
 - T1 hypointense, T2 hyperintense
 - >2/3rd of Pons, >180 degree basilar artery
 - Nil/minimal contrast enhancement

Clinico-radiological diagnosis

MR Imaging features of Diffuse Intrinsic Pontine Glioma (DIPG)

Imaging Feature	N	% cases*	Note
Tumor Extension			AV.
No extension beyond Pons	15	4.2	411
Cerebellum	85	23.8	CN
Midbrain	245	68.6	6
Thalami	25	7.0	5
Medulla	260	72.8	
Internal Capsule	24	6.7	V.
Brachium Pontis	284	79.6	
Extension Beyond Pons and BP	319	89.4	
% Pons involved		CC.	
1-33%		0.3	
34-66%	21	5.9	
67-100%	335	93.8	
< 50%	3	0.8	
> 50%	354	99.2	
Tumor Morphology			
Margin (well-defined)	15	4.2	
Eccentric	50	14.0	
Exophytic	229	64.1	
Heterogeneity (marked)	54	15.1	
Atypical features but likely DIPG	92	25.8	
Tumor Signal			
T1 hypointense/T2 hyperintense	336	95.7	351 with both T1 and T2 sequences
T2 hypointensity (any)	189	53.2	2 missing T2 sequence
Non-necrotic T2 hyperintensity (any)	128	36.1	2 missing T2 sequence
Stripes visible	251	70.5	1 incomplete data
Enhancement			
Enhancement (any)	239	68.9	of 347 that had contrast
Homogeneous	2	0.8	of 239 that had enhancement
Ring Enhancement	122	51.5	of 239 that had enhancement
Patchy Enhancement	162	67.4	of 239 that had enhancement
Patchy and Ring Enhancement	46	19.2	of 239 that had enhancement

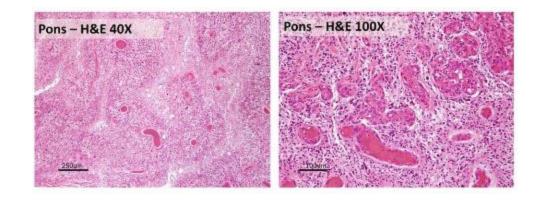
Diffusion/Hemorrhage/Necrosis

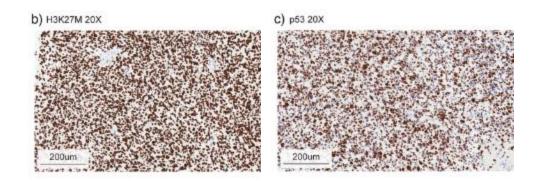
Diffusion restriction (any)	184	63.2 of 291 with diffusion sequence
Hemorrhage (any)	102	28.6
Hemorrhage (> minimal)	40	11.2
Hemorrhage (any, GRE/SWI)	73	50.0 of 146 with SWI or GRE sequence
Hemorrhage (>minimal.,GRE/SWI)	31	21.2 of 146 with SWI or GRE sequence
Necrosis (any)	156	43.6
Necrosis + Ring Enhancement	118	34.0 of 347 that had contrast
Necrosis with no Ring Enhancement	37	10.7 of 347 that had contrast
Spectroscopy		
NAA/Cr (decreased)	66	75.0 of 88 with spectroscopy
Cho/Cr (increased)	74	84.1 of 88 with spectroscopy
Cho/NAA (increased)	75	85.2 of 88 with spectroscopy
mI/Cr (increased)	34	41.0 of 83 with assessable mI
Lactate present	56	64.4 of 87 with assessable lactate
Other Features		CN
Hydrocephalus	79	22.1
Subependymal signal	78	21.8 *see note
Distant Disease	11	3.1 of 357 cases
Distant Disease (spine available)	9	6.8 of 133 with spine imaging

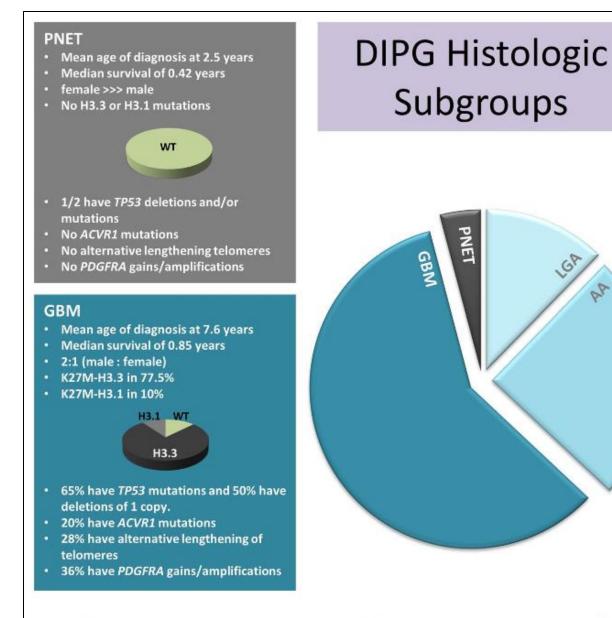
Leach et al, IDIPG Registry, Neuro-Oncol 2020

Is biopsy needed in DIPG?

- Associated with significant morbidity (nearly 10-20%)
- Limited therapeutic options based on biopsy results
- Widespread availability of MRI with characteristic neuro-imaging


Magnetic Resonance Scans Should Replace Biopsies for the Diagnosis of Diffuse Brain Stem Gliomas: A Report from the Children's Cancer Group


A. Albright;Roger Packer;Robert Zimmerman;Lucy Rorke;James Boyett;G. Hammond;


Biopsy in DIPG is typically reserved for doubtful diagnosis or biological/translational research

Histo-pathological spectrum

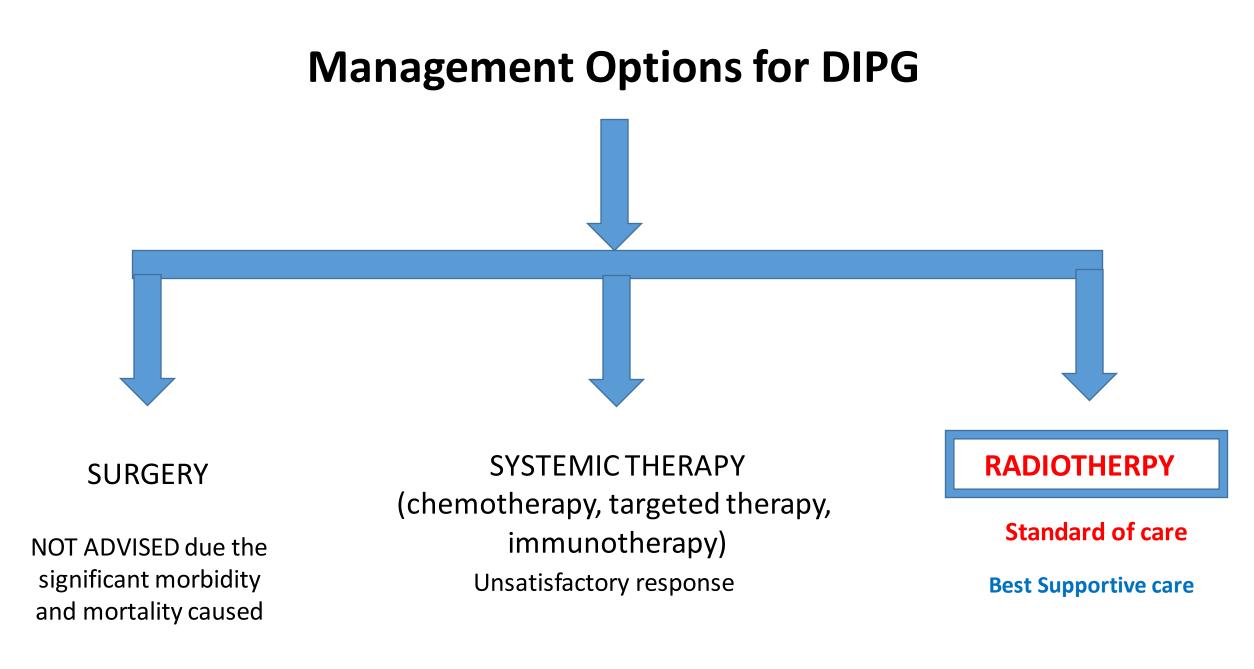
- Majority are high-grade tumors
- Sometimes lower grade astrocytomas seen
- Grade does not correlate with prognosis
- H3K27/ACRV1/PDGFR mutations
- A subset demonstrates PNET-like features

Low-grade astrocytoma

- Mean age of diagnosis at 4.2 years
- Median survival of 0.88 year
- 1:1 (male : female)
- 71% have K27M-H3.3 mutations
- No K27M-H3.1 mutations

- No TP53 mutations or deletions
- No ACVR1 mutations
- No alternative lengthening of telomeres
- 40% have PDGFRA gains/amplifications

Anaplastic Astrocytoma


- Mean age of diagnosis at 6.7 years
- Median survival of 0.83 years
- 1:2 (male : female)
- K27M-H3.3 in 33.3%
- K27M-H3.1 in 26.6%

- 25% have TP53 mutations and 14% have deletions of 1 copy
- 25% have ACVR1 mutations
- 17% have alternative lengthening of telomeres
- 43% have PDGFRA amplifications

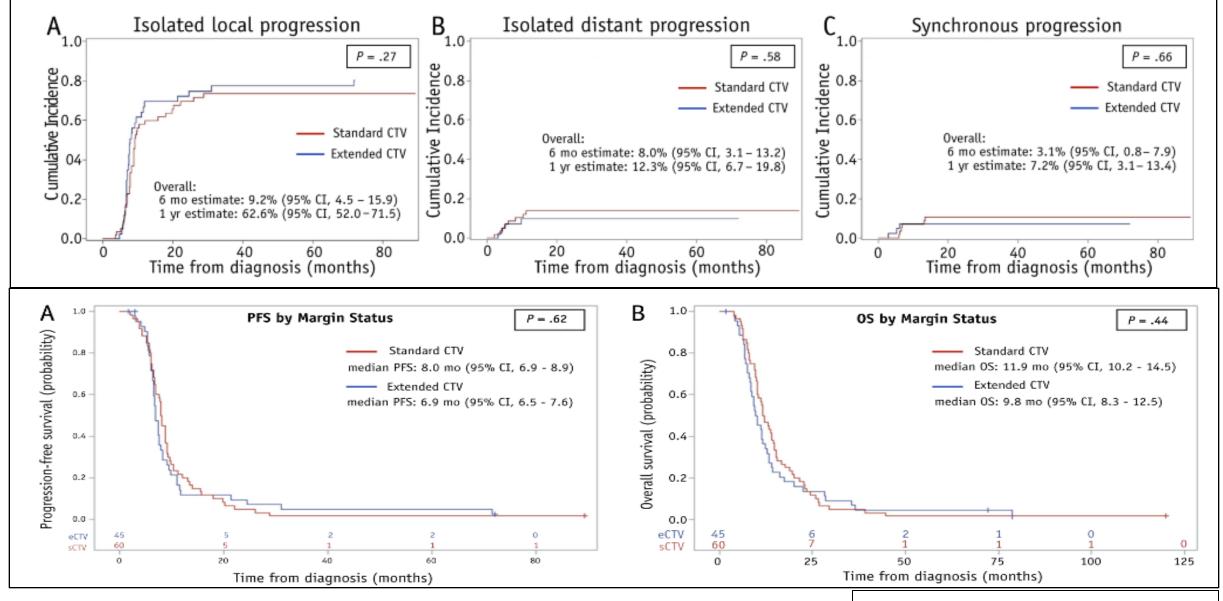
Fig. 3 DIPG histologic subgroups have some unique clinical and molecular features including mean age of diagnosis, sex, H3.3 and H3.1 mutations, *TP53* mutations and deletions, *ACVR1* mutations, *PDGFRA* gains/amplifications and alternative lengthening of telomeres (ALT)

Buczkowicz et al, Acta Neuropathol 2014

RADIOTHERAPY

• Most effective therapy in DIPG

- It induces
 - Neurological improvement (around 85%)
 - Reduction/discontinuation of steroids
 - Radiological response (around 50%)


• Numerous studies have proven effectiveness

Radiation Therapy in DIPG

- Fractionation schedules
 - Conventional fractionation (1.8-2.0Gy/fraction): considered as standard
 - Hypofractionated RT: non-inferior to standard fractionation
 - Hyperfractionated RT: no benefit over standard fractionation
- Standard dose-fractionation: 54Gy/30 fractions
- RT techniques: Conventional/3D-CRT/IMRT
- Target Volumes and Margins: Variable practice globally

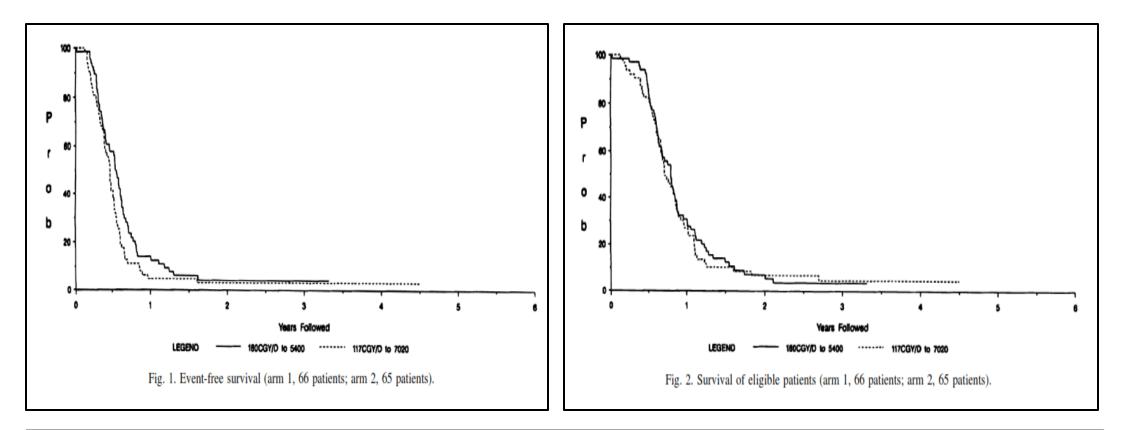
Recommended Target Volumes and Margins

Tinkle et al, IJROBP 2020

Advances in Radiation Oncology (2019) 4, 520-531

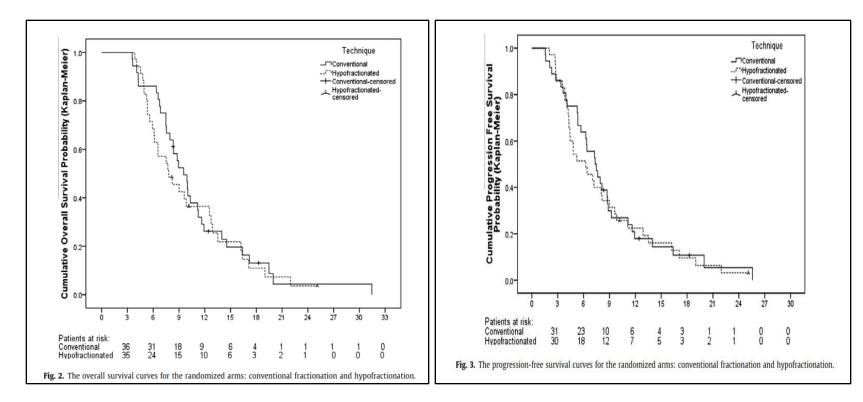
www.advancesradonc.org

Critical Review


Role of Radiation Therapy in the Management of Diffuse Intrinsic Pontine Glioma: A Systematic Review

Matthew Gallitto BA^a, Stanislav Lazarev MD^a, Isaac Wasserman MPH^a, James M. Stafford PhD^b, Suzanne L. Wolden MD^c, Stephanie A. Terezakis MD^d, Ranjit S. Bindra MD, PhD^e, Richard L. Bakst MD^{a,*}

Reference	No. of	Total RT	RT dose per	Biologically effective	Median
	patients	dose (Gy)	fraction (Gy)	dose (Gy ₁₀)	OS (mo
Conventional R	T				
25	44	55.8	1.8	66	_
95	43	54	1.8	64	9.9
48	22	54	1.8	64	10.4
27	25	59.4	1.8	70	12.1
96	26	54	1.8	64	12
39	25	54	1.8	64	13.3
97	22	54-59.4	_	_	_
44	43	54	1.8	64	9.5
69	64	54	1.8	64	_
98	22	50-70	1.5	57-81	14.2
47	25	54	1.8	64	_
56	50	54	1.8-2	64-65	13
99	32	54.7	_	_	11.7
49	21	54	1.8	64	11.7
40	23	54	_	_	26.1
100	38	54	_	_	14.8
50	58	59.4	1.8	70	9.6
46	35	54	1.8	64	_
73	31	54	1.8	64	6.3
64	37	54	1.8	64	13.6
55	20	54	1.8	64	9.2
57	30	54	1.8	64	9
28	21	54	1.8-2	64-65	12
71	23	54	2	65	17
37	33	55.8	_	_	12
45	32	54	1.8	64	8.3
65	20	54	1.8	64	8
51	38	54	1.8	64	11
101	36	50-55	1.6-1.8	58-66	10


Does hyperfractionated RT help improve outcomes?

Conclusion: The major conclusion from this trial is that the hyperfractionated method of Rx 2 did not improve event-free survival (p = 0.96) nor did it improve survival (p = 0.65) over that of the conventional fractionation regimen of Rx 1, and that both treatments are associated with a poor disease-free and survival outcome. © 1999 Elsevier Science Inc.

POG-9239, Mandell et al, IJROBP1999

What about hypofractionated RT?

Conclusions: Hypofractionated radiotherapy offers lesser burden on the patients, their families and the treating departments, with nearly comparable results to conventional fractionation, though not fulfilling the non-inferiority assumption.

Table 3

Radiotherapy -related acute side effects related to suffered by children in the two groups (hypofractionated and conventional).

Side effect	Score	Hypofractionated	Conventional	р
Skin	0	19	19	0.82
	1	10	12	
	2	6	5	
Hearing	0	33	34	0.65
	1	2	1	
	2	1	1	
Decreased appetite	0	32	34	0.58
	1	1	2	
	2	2	0	
Dysphagia	0	31	33	0.64
	1	2	2	
	2	2	1	
Fatigue	0	20	22	0.64
	1	5	6	
	2	10	8	
Insomnia	0	33	33	0.66
	1	2	3	
Night mares	0	33	34	0.97
	1	2	2	
Seizures	0	35	35	0.32
	1	0	1	

Zaghloul e al, R&) 2014

Systematic review of hypofractionated RT in DIPG

Medicine

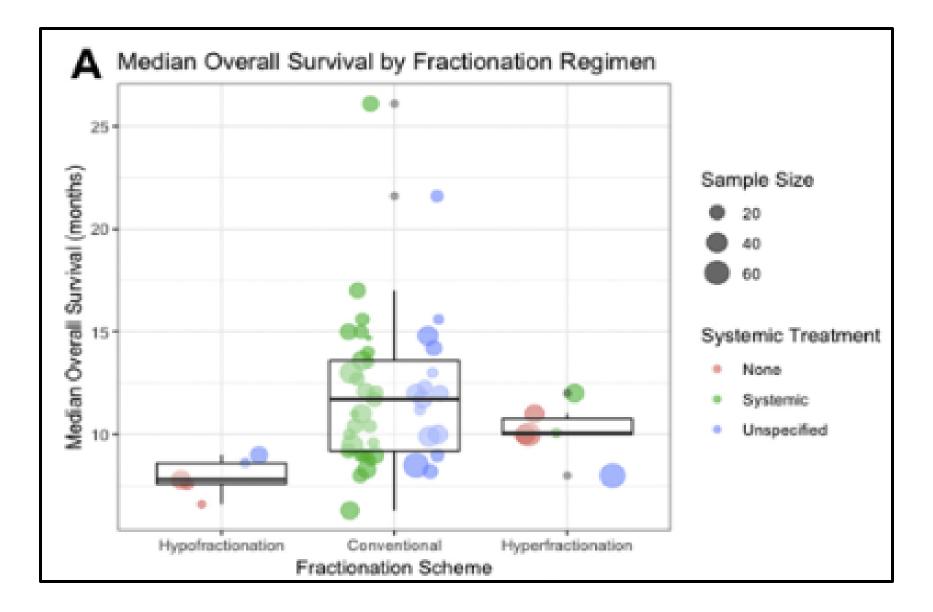
OPEN

Systematic Review and Meta-Analysis

Hypofractionated radiotherapy versus conventional radiotherapy for diffuse intrinsic pontine glioma

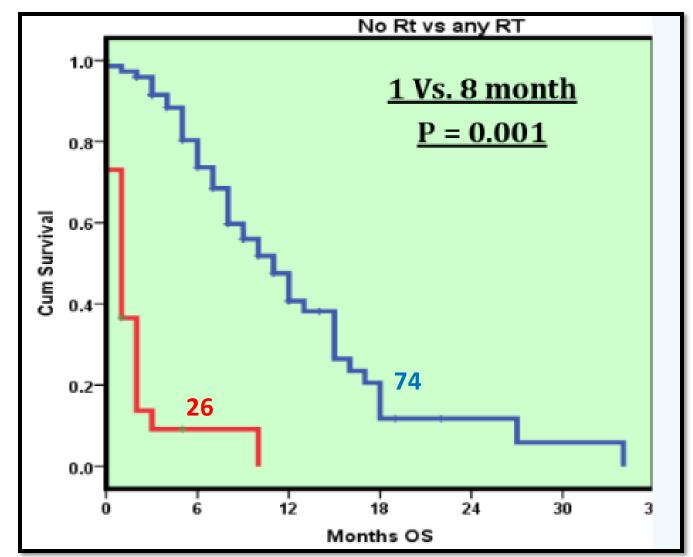
A systematic review and meta-analysis

Jaehyeon Park, MD, Ji Woon Yea, MD, PhD, Jae Won Park, MD, PhD*10


			-
-	-	- 1	-

Summary of the included studies.

Study	Country	Year	Number (CFRT/HFRT)	Randomization	Median age	Dose	Chemoradiotherapy
Hayashi ^[10] (2020)	Japan	2000–2018	15/9	No	6.3 (1.6–14)	50.4–59.4 Gy/28–33 fx. vs 44.8 Gy/16 fx.	No
Izzuddeen ^[11] (2020)	India	2016–2018	18/17	Randomized phase II	7 (4–35)	60 Gy/30 fx. vs 39 Gy/13 fx.	Yes (concurrent and adjuvant temozolomide)
Jansssens ^[7] (2013)	Netherlands, UK, Canada, Belgium	2002–2010	27/27	Matched cohort	7.5 (3.7–13.7)/7.3 (2.8–14.6)	54 Gy/30 fx. vs 44.8 Gy/16 fx. or 39 Gy/13 fx.	No
Zaghloul ^[8] (2014)	Egypt	2007-2011	35/36	Randomized phase III	7.9 ± 3.6	54 Gy/30 fx. vs 39 Gy/13 fx.	No


Chuche or Cubaroun	Indland Datia	SE	Experimental			Hazard Ratio	Hazard Ratio	Risk of Bias
Study or Subgroup Hayashi 2020	log[Hazard Ratio] -0.1257	0.4688	Total 9			t IV. Fixed, 95% Cl 6 0.88 [0.35, 2.21]	IV, Fixed, 95% Cl	A B C D E F G
Izzuddeen 2020		0.49280538				6 1.09 [0.42, 2.87]		
Janssens 2012	0.0431	0.2744	27			6 1.04 [0.61, 1.79]		
Zaghloul 2014	0.13102826	0.2533				6 1.14 [0.69, 1.87]		
Total (95% CI)			88	9	6 100.09	1.07 [0.77, 1.47]	+	
	0.24, df = 3 (P = 0.97); F= 0%						
Test for overall effect						0.1 Favour	0.2 0.5 1 2 5 s (experimental) Favours (control)	10
Risk of bias legend								
(A) Random sequen	ce generation (selecti	on bias)						
	Iment (selection bias							
(C) Blinding of partici	pants and personnel	(performance	e bias)					
	me assessment (dete							
(E) incomplete outco	me data (attrition bias)						
(F) Selective reporting	g (reporting bias)							
(G) Other bias								
			Figure	- 0 E	aroot pl	ot of overall survival.		
a			perimental Co			Hazard Ratio	Hazard Ratio	Risk of Bias
		SE	Total	Total		IV. Fixed, 95% CI	Hazard Ratio IV. Fixed, 95% Cl	Risk of Bias
Hayashi 2020	-0.539	SE 0.4835	Total 9	Total 15	12.0%	IV. Fixed, 95% Cl 0.58 [0.23, 1.50]		
Hayashi 2020 Izzuddeen 2020	-0.539 -0.1335	SE 0.4835 0.504	Total 9 17	Total 15 18	12.0% 11.1%	N. Fixed, 95% Cl 0.58 [0.23, 1.50] 0.88 [0.33, 2.35]		
Hayashi 2020 Izzuddeen 2020 Janssens 2012	-0.539 -0.1335 0.2231	SE 0.4835 0.504 0.2747	Total 9 17 27	Total 15 18 27	12.0% 11.1% 37.2%	N. Fixed, 95% Cl 0.58 [0.23, 1.50] 0.88 [0.33, 2.35] 1.25 [0.73, 2.14]		
Hayashi 2020 Izzuddeen 2020 Janssens 2012	-0.539 -0.1335 0.2231	SE 0.4835 0.504	Total 9 17	Total 15 18	12.0% 11.1% 37.2%	N. Fixed, 95% Cl 0.58 [0.23, 1.50] 0.88 [0.33, 2.35]		
Study or Subgroup Hayashi 2020 Izzuddeen 2020 Janssens 2012 Zaghloul 2014 Total (95% CI)	-0.539 -0.1335 0.2231	SE 0.4835 0.504 0.2747	Total 9 17 27	Total 15 18 27 36	12.0% 11.1% 37.2% 39.7%	N. Fixed, 95% Cl 0.58 [0.23, 1.50] 0.88 [0.33, 2.35] 1.25 [0.73, 2.14]		
Hayashi 2020 Izzuddeen 2020 Janssens 2012 Zaghloul 2014 Total (95% Cl) Heterogeneity: Chi ² :	-0.539 -0.1335 0.2231 0.0953 = 2.04, df = 3 (P = 0.5	SE 0.4835 0.504 0.2747 0.2659	Total 9 17 27 35	Total 15 18 27 36	12.0% 11.1% 37.2% 39.7%	N. Fixed, 95% Cl 0.58 [0.23, 1.50] 0.88 [0.33, 2.35] 1.25 [0.73, 2.14] 1.10 [0.65, 1.85] 1.04 [0.75, 1.45]	N. Fixed, 95% Cl	A B C D E F G
Hayashi 2020 Izzuddeen 2020 Janssens 2012 Zaghloul 2014 Total (95% Cl) Heterogeneity: Chi ² :	-0.539 -0.1335 0.2231 0.0953	SE 0.4835 0.504 0.2747 0.2659	Total 9 17 27 35	Total 15 18 27 36	12.0% 11.1% 37.2% 39.7%	Image: Normal System N	N. Fixed, 95% Cl	A B C D E F G • • • ? • ? ? ? • • • ? • ? ? ? ? • • • ? • ? ? ? ? • • • ? • • • ? ?
Hayashi 2020 Izzuddeen 2020 Janssens 2012 Zaghloul 2014 Total (95% CI) Heterogeneity: Chi ² : Test for overall effec	-0.539 -0.1335 0.2231 0.0953 = 2.04, df = 3 (P = 0.5	SE 0.4835 0.504 0.2747 0.2659	Total 9 17 27 35	Total 15 18 27 36	12.0% 11.1% 37.2% 39.7%	Image: Normal System N	N. Fixed, 95% Cl	A B C D E F G • • • ? • ? ? ? • • • ? • ? ? ? ? • • • ? • ? ? ? ? • • • ? • • • ? ?
Hayashi 2020 Izzuddeen 2020 Janssens 2012 Zaghloul 2014 Total (95% CI) Heterogeneity: Chi ² : Test for overall effec <u>Risk of blas legend</u>	-0.539 -0.1335 0.2231 0.0953 = 2.04, df = 3 (P = 0.5	SE 0.4835 0.504 0.2747 0.2659 6); I ² = 0%	Total 9 17 27 35	Total 15 18 27 36	12.0% 11.1% 37.2% 39.7%	Image: Normal System N	N. Fixed, 95% Cl	A B C D E F G • • • ? • ? ? ? • • • ? • ? ? ? ? • • • ? • ? ? ? ? • • • ? • • • ? ?
Hayashi 2020 Izzuddeen 2020 Janssens 2012 Zaghloul 2014 Total (95% CI) Heterogeneity: Chi ² : Test for overall effec <u>Risk of blas legend</u> (A) Random sequer	-0.539 -0.1335 0.2231 0.0953 = 2.04, df = 3 (P = 0.5 t Z = 0.25 (P = 0.81)	SE 0.4835 0.504 0.2747 0.2659 6); P = 0% tion bias)	Total 9 17 27 35	Total 15 18 27 36	12.0% 11.1% 37.2% 39.7%	Image: Normal System N	N. Fixed, 95% Cl	A B C D E F G • • • ? • ? ? ? • • • ? • ? ? ? ? • • • ? • ? ? ? ? • • • ? • • • ? ?
Hayashi 2020 Izzuddeen 2020 Janssens 2012 Zaghloul 2014 Total (95% CI) Heterogeneity: Chi ² : Test for overall effec <u>Risk of blas legend</u> (A) Random sequer (B) Allocation conce	-0.539 -0.1335 0.2231 0.0953 = 2.04, df = 3 (P = 0.5 t Z = 0.25 (P = 0.81)	SE 0.4835 0.504 0.2747 0.2659 6); P = 0% (tion bias) (s)	<u>9</u> 17 27 35 88	Total 15 18 27 36	12.0% 11.1% 37.2% 39.7%	Image: Normal System N	N. Fixed, 95% Cl	A B C D E F G • • • ? • ? ? ? • • • ? • ? ? ? ? • • • ? • ? ? ? ? • • • ? • • • ? ?
Hayashi 2020 Izzuddeen 2020 Janssens 2012 Zaghloul 2014 Total (95% CI) Heterogeneity: Chi ² : Test for overall effec <u>Risk of blas legend</u> (A) Random sequer (B) Allocation conce (C) Blinding of partic	-0.539 -0.1335 0.2231 0.0953 = 2.04, df = 3 (P = 0.5 t Z = 0.25 (P = 0.81) nce generation (select alment (selection bia ipants and personne	SE 0.4835 0.504 0.2747 0.2659 6); P = 0% tion bias) s) el (performan	Total 9 17 27 35 88	Total 15 18 27 36	12.0% 11.1% 37.2% 39.7%	Image: Normal System N	N. Fixed, 95% Cl	A B C D E F G • • • ? • ? ? ? • • • ? • ? ? ? ? • • • ? • ? ? ? ? • • • ? • • • ? ?
Hayashi 2020 Izzuddeen 2020 Janssens 2012 Zaghloul 2014 Total (95% CI) Heterogeneity: Chi ² : Test for overall effec Risk of blas legend (A) Random sequer (B) Allocation conce (D) Blinding of outco	-0.539 -0.1335 0.2231 0.0953 = 2.04, df = 3 (P = 0.5 t Z = 0.25 (P = 0.81) t ce generation (select alment (selection bia alment (selection bia ipants and personne me assessment (de	SE 0.4835 0.504 0.2747 0.2659 6); P = 0% tion bias) s) d (performant tection bias)	Total 9 17 27 35 88	Total 15 18 27 36	12.0% 11.1% 37.2% 39.7%	Image: Normal System N	N. Fixed, 95% Cl	A B C D E F G • • • ? • ? ? ? • • • ? • ? ? ? ? • • • ? • ? ? ? ? • • • ? • • • ? ?
Hayashi 2020 Izzuddeen 2020 Janssens 2012 Zaghloul 2014 Total (95% CI) Heterogeneity: Chi ² : Test for overall effec Risk of blas legend (A) Random sequer (B) Allocation conce (C) Blinding of partic (D) Blinding of outco (E) Incomplete outco	-0.539 -0.1335 0.2231 0.0953 = 2.04, df = 3 (P = 0.5 t Z = 0.25 (P = 0.81) t z = 0.25 (P = 0.81)	SE 0.4835 0.504 0.2747 0.2659 6); P = 0% tion bias) s) d (performant tection bias)	Total 9 17 27 35 88	Total 15 18 27 36	12.0% 11.1% 37.2% 39.7%	Image: Normal System N	N. Fixed, 95% Cl	A B C D E F G • • • ? • ? ? ? • • • ? • ? ? ? ? • • • ? • ? ? ? ? • • • ? • • • ? ?
Hayashi 2020 Izzuddeen 2020 Janssens 2012 Zaghloul 2014 Total (95% CI) Heterogeneity: Chi ² : Test for overall effec <u>Risk of blas legend</u> (A) Random sequer (B) Allocation conce (C) Blinding of partic (D) Blinding of outco (E) Incomplete outco (F) Selective reportin	-0.539 -0.1335 0.2231 0.0953 = 2.04, df = 3 (P = 0.5 t Z = 0.25 (P = 0.81) t z = 0.25 (P = 0.81)	SE 0.4835 0.504 0.2747 0.2659 6); P = 0% tion bias) s) d (performant tection bias)	Total 9 17 27 35 88	Total 15 18 27 36	12.0% 11.1% 37.2% 39.7%	Image: Normal System N	N. Fixed, 95% Cl	A B C D E F G • • • ? • ? ? ? • • • ? • ? ? ? ? • • • ? • ? ? ? ? • • • ? • • • ? ?
Hayashi 2020 zzuddeen 2020 Janssens 2012 Zaghloul 2014 Fotal (95% CI) Heterogeneity: Chi ² : Fest for overall effec Risk of blas legend (A) Random sequer (B) Allocation conce (C) Blinding of outco (E) Incomplete outco (E) Incomplete outco	-0.539 -0.1335 0.2231 0.0953 = 2.04, df = 3 (P = 0.5 t Z = 0.25 (P = 0.81) t z = 0.25 (P = 0.81)	SE 0.4835 0.504 0.2747 0.2659 6); P = 0% tion bias) s) d (performant tection bias)	Total 9 17 27 35 88	Total 15 18 27 36	12.0% 11.1% 37.2% 39.7%	Image: Normal System N	N. Fixed, 95% Cl	A B C D E F G 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7

No difference in outcomes with hypofractionated RT

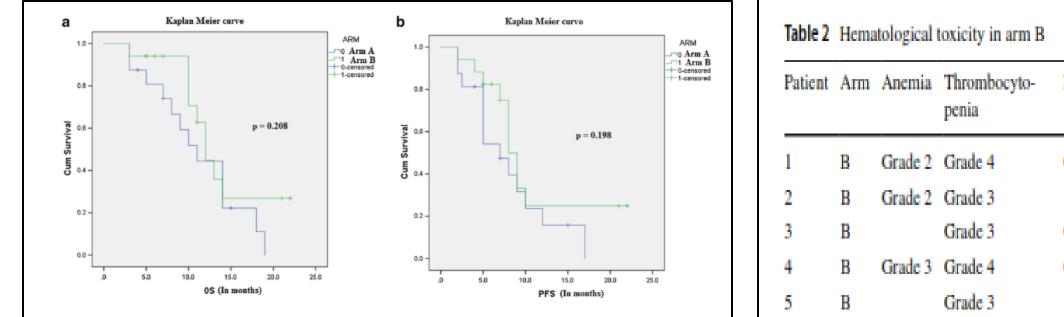
Altered fractionation RT no better than standard fractionation RT

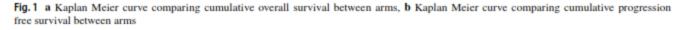
Does adding systemic therapy to RT help?

Chemotherapy – Targeted Therapy – Immunotherapy --- Vaccine

Single and combination regimens

- PCV regimen
- Etoposide, Vincristine, Cyclosporin A
- Temozolomide (TMZ)
- Platins Carboplatin, Cisplatin
- Topotecan
- Interferon
- Tamoxifen


Neoadjuvant, concurrent, and/or adjuvant to RT


Journal of Neuro-Oncology (2020) 146:91-95 https://doi.org/10.1007/s11060-019-03340-7

CLINICAL STUDY

Hypofractionated radiotherapy with temozolomide in diffuse intrinsic pontine gliomas: a randomized controlled trial

Yousra Izzuddeen¹ · Subhash Gupta¹ · K. P. Haresh¹ · Dayanand Sharma¹ · Prashanth Giridhar² · Gour Kishore Rath¹

Patient	Arm	Anemia	Thrombocyto- penia	Leukopenia	Neutropenia
1	В	Grade 2	Grade 4	Grade 4	Grade 4
2	В	Grade 2	Grade 3		
3	В		Grade 3	Grade1	Grade 1
4	В	Grade 3	Grade 4	Grade 3	Grade 4
5	В		Grade 3		

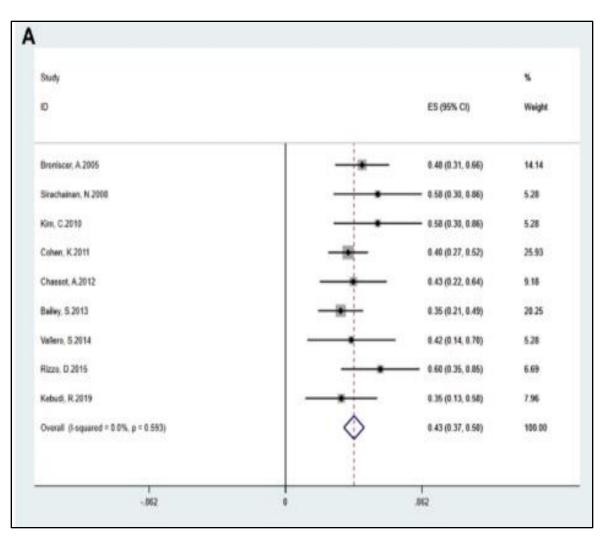
Check for updates

Conclusion The above study shows that hypofractionated radiotherapy with concurrent and adjuvant temozolomide does not improve OS and has higher hematological toxicity. Conventional radiotherapy remains the standard of care.

PROSPECTIVE EVALUATION OF RADIOTHERAPY WITH CONCURRENT AND ADJUVANT TEMOZOLOMIDE IN CHILDREN WITH NEWLY DIAGNOSED DIFFUSE INTRINSIC PONTINE GLIOMA

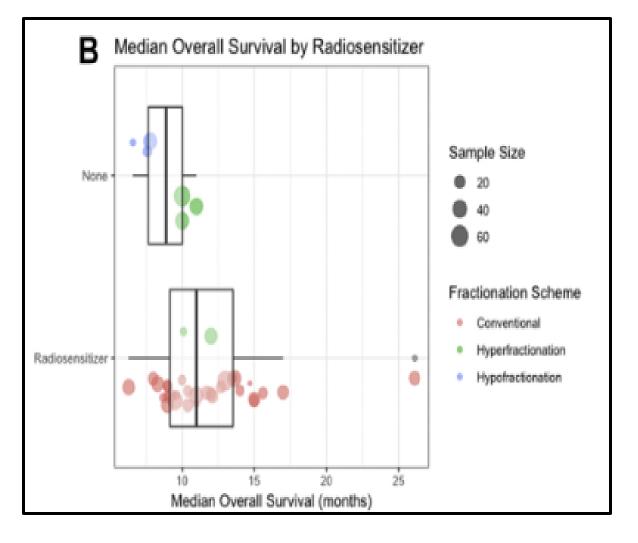
IJROBP2010

RAKESH JALALI, M.D.,* NIRMAL RAUT, M.D.,* BRIJESH ARORA, D.M.,[†] TEJPAL GUPTA, M.D.,* DEBNARAYAN DUTTA, M.D.,* ANUSHEEL MUNSHI, M.D.,* RAJIV SARIN, F.R.C.R.,* AND PURNA KURKURE, M.D.[†]


Methods and Materials: Pediatric patients with newly diagnosed DIPGs were prospectively treated with focal RT to a dose of 54 Gy in 30 fractions along with concurrent daily TMZ (75 mg/m², Days 1-42). Four weeks after completing the initial RT-TMZ schedule, adjuvant TMZ (200 mg/m², Days 1-5) was given every 28 days to a maximum of 12 cycles. Response was evaluated clinically and radiologically with magnetic resonance imaging and positron emission tomography scans.

Results: Between March 2005 and November 2006, 20 children (mean age, 8.3 years) were accrued. Eighteen patients have died from disease progression, one patient is alive with progressive disease, and one patient is alive with stable disease. Median overall survival and progression-free survival were 9.15 months and 6.9 months, respectively. Grade III/IV toxicity during the concurrent RT-TMZ phase included thrombocytopenia in 3 patients, leucopenia in 2, and vomiting in 7. Transient Grade II skin toxicity developed in the irradiated fields in 18 patients. During the adjuvant TMZ phase, Grade III/IV leucopenia developed in 2 patients and Grade IV thrombocytopenia in 1 patient. Patients with magnetic resonance imaging diagnosis of a high-grade tumor had worse survival than those with a low-grade tumor (p = 0.001). Patients with neurologic improvement after RT-TMZ had significantly better survival than those who did not (p = 0.048).

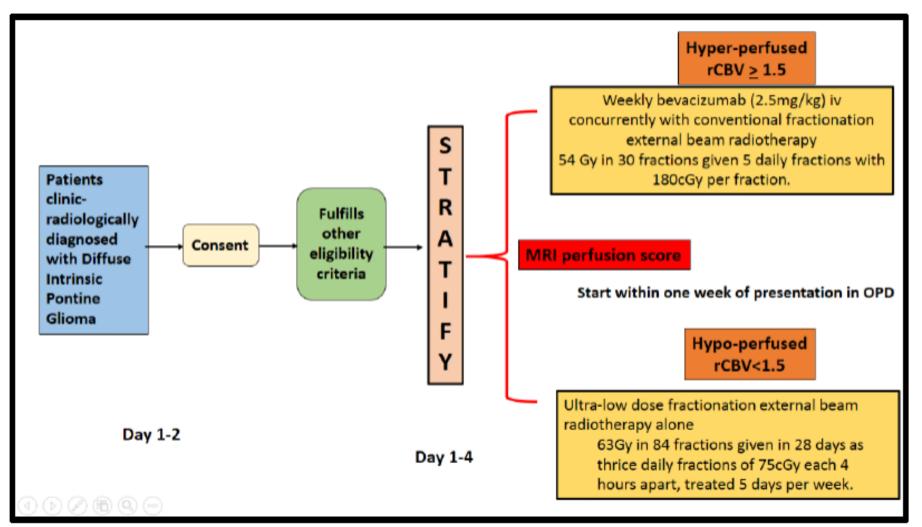
Conclusions: TMZ with RT has not yielded any improvement in the outcome of DIPG compared with RT alone. Further clinical trials should explore novel treatment modalities. © 2010 Elsevier Inc.


Impact of RT + TMZ in DIPG: No survival benefit

							Radio	otherapy			
Study	Location	Period	Size (n)	Male (n, %)	Follow-Up (month)	Study Quality	Dose (Gy)	Fractions (n)	OS/PFS	TMZ	Other Drugs
Broniscer et al., 2005 ¹⁴	USA	1999-2002	33	18, 55%	NR	6	1.8	30	OS/PFS	Y	N
Sirachainan et al., 2008 ¹⁵	Thailand	NR	12	3, 25%	14.6	6	1.8	30	OS/PFS	Y	Cis-retinoic acid
Chiang et al., 2010 ¹⁰	China	2004-2008	18	10, 56%	14.8	6	1.8	30	PFS	Y	N
Jalali et al., 2010 ⁶	India	2005-2006	20	15, 75%	NR	7	1.8	30	NR	Y	N
Kim et al., 2010 ¹⁶	Korean	2004-2008	12	NR	12	7	1.8	30	OS/PFS	Y	Thalidomide
Cohen et al., 2011 ⁸	USA	2004-2005	58	28, 48%	NR	5	1.8	30	OS/PFS	Y	N
Chassot et al., 2012 ¹⁷	France	2005-2009	21	NR	NR	5	1.8	30	OS/PFS	Y	N
Aguilera et al., 2013 ⁵	USA	2008-2009	2	1, 50%	42	6	1.8	30	NR	Y	Bevacizumab
Bailey et al., 2013 ¹⁰	UK	2008-2010	43	24, 56%	NR	5	1.8	30	OS	Y	N
Zaky et al., 2013 ¹⁸	USA	2007-2007	6	1, 17%	NR	5	1.8	30	NR	Y	Irinotecan
Vallero et al., 2014 ²⁰	Italy	1999-2013	24	11, 46%	NR	5	1.8	30	OS/PFS	Y	N
Muller et al., 2014 ⁹	Germany	2007-2012	2	0	9.1	6	35.2	5	NR	Y	N
Rizzo et al., 2015 ²¹	Italy	2007-2011	15	3, 20%	15	5	1.8	30	OS/PFS	Y	N
Kebudi et al., 2019 ²²	Turkey	2010-2017	17	NR	17	6	1.8	30	OS	Y	Nimotuzumab

Shi et al, WNS 2021

Agent	Total	Mean	Mean			Toxicities	
	Number of Patients	median OS (mo)	1-year OS (%)	median PFS (mo)	1-year PFS (%)	CTCAE 3	CTCAE 4
Alkylating agent ^{28,31,} 38,40,44,49,50,55,56,59,62,64,66	323	13.4	48.0	12.1	27.1	Nausea (5), neutropenia (2), leukopenia (2)	Leukopenia (2), thrombocytopenia (3), neutropenia (2)
						Lymphopenia (39), neutropenia (13), leukopenia (11), infection (4)	thrombocytopenia (16)
Topo-isomerase inhibitor 28,32,45,53,57,58,61,64-66	237	11.2	40.6	6.0	21.0	• • • • • • • • • • • • • • • • • • • •	Neutropenia (7), anemia (11), hematological side effects (3), thrombocytopenia (3)
						Neutropenia (33), thrombocytopenia nausea/vomiting (3), infection (7), lymphopenia (12), nausea (1)	
Anti-microtubular agent ^{28,31,}	171	12.8	40.0	13.5	23.0	Hypokalemia (1), constipation (1), seizures (2)	Neutropenia (1)
39,40,52,53,56,57,60						Anemia (9), neutropenia (14), nausea infection (7)	/vomiting (3),
Platinum agent ^{18,28,} 32,42,51,52,56,64,66	285	11.7	37.2	6.7	21.0	Neutropenia (2), leukopenia (1), thrombocytopenia (2)	Neutropenia (6), thrombocytopenia (3)
25.28.63						Thrombocytopenia (5)	
Anti-metabolic agent ^{25,28,63}	74	10.4	45.0	5.9	18.6	Lymphopenia (17), leukopenia (3), neutropenia (5), hepatotoxicity (2)	Lymphopenia (2), neutropenia (2)
EGFR inhibitor ^{27,39,48}	54	11.9	-	7.5	29.6	Anemia (2), neutropenia (6), lympho hepatotoxicity (5), hypokalemia (1)	penia (26),
Blood vessel growth inhibitor ^{46,47,54}	75	10.4	44.8	8.2	-	Hepatotoxicity (2), lymphopenia (14), neutropenia (2)	Thrombocytopenia (2), neutropenia (2), lymphopenia (11)
Other agents ^{69-74,102}	-	-	-	-	-	Anemia (5), neutropenia (5), thrombo Lymphopenia (14), hepatotoxicity (7), hypertension (5), vomiting (2), motor neuropathy (2), constipation (2), rash (2), skin desquamation (1)	ocytopenia (1) Pain syndrome (1), allergy (1), leukopenia (1), neutropenia (2), DVT/PE (1)

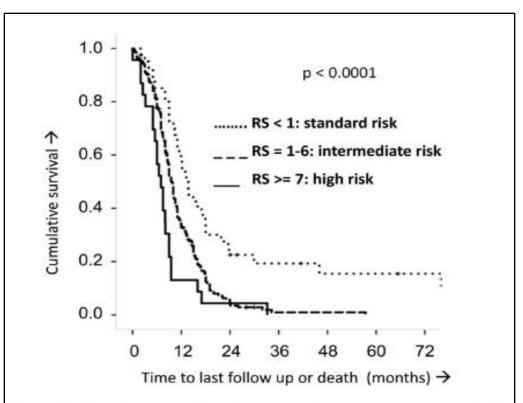


Gallitto et al, ARO 2019

No benefit of adding any radiosensitizing therapy to RT in DIPG

Thinking out of the BOX for improving outcomes

LoBULarDIPG study (NCT04250064): PI: Dr Rahul Krishnatry, TMC-Mumbai


Funding support: Anchit Ahuja Fund/Brain Tumor Foundation (BTF) of India

Prognosis of DIPG: DISMAL

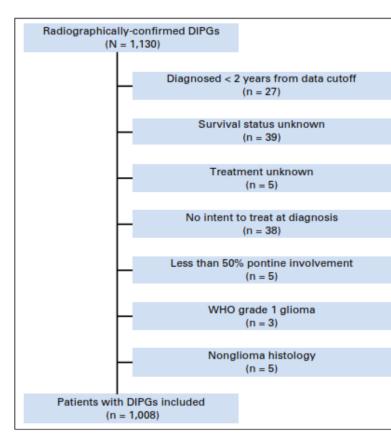
- Universally fatal with in 2 years
- Median OS 10-12 months
- Deviations generally with
 - Age <3-years or >10-years
 - Prolonged interval between onset of symptoms and diagnosis >6 months
 - Absence of <2/3 classical clinical or radiological triad
- Above ones are called "Atypical" (colloquially)

Prognostic scoring system for DIPG

Predictor	Hazard Ratio (95% CI)	Р	Coefficient After Shrinkage	Contribution to Risk Score
Age ≥3 y	1.95 (1.01-3.80)	.046	0.667	7
Symptom duration, mo	0.92 (0.86-0.97)	.003	-0.085	-1
Ring enhancement	1.41 (1.07-1.84)	.013	0.354	4
Chemotherapy:		.013		
Oral chemotherapy	0.66 (0.49-0.88)	.048	-0.398	-4
Intensive chemotherapy	0.63 (0.40-0.99)	.047	-0.418	-4

Fig. 2. Kaplan–Meier estimates of the DIPG risk score (RS). Based on the risk score, 3 categories were identified: a standard risk arm (RS <1), an intermediate risk arm (RS 1–6), and a high-risk arm (RS \geq 7). The increasing risk arms correlated with decreasing OS time (log-rank *P* < .0001 and generalized Wilcoxon *P* < .0001).

Jansen et al, Neuro-Oncol 2014


JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Check for updates

Clinical, Radiologic, Pathologic, and Molecular Characteristics of Long-Term Survivors of Diffuse Intrinsic Pontine Glioma (DIPG): A Collaborative Report From the International and European Society for Pediatric Oncology DIPG Registries

Lindsey M. Hoffman, Sophie E.M. Veldhuijzen van Zanten, Niclas Colditz, Joshua Baugh, Brooklyn Chaney,

Variable	Odds Ratio (95% CI)	Р
Clinical		
Age, years		.02
< 3	2.82 (1.06 to 10.28)	
3-10	1.0	
> 10	2.24 (1.27 to 3.96)	
Symptom duration, weeks		< .00
< 6	1.0	
6-12	1.49 (0.76 to 2.92)	
12-24	2.43 (1.04 to 5.75)	
> 24	5.7 (2.77 to 14.54)	
Cranial nerve palsy		.08
Yes	0.57	
No	1.0	
Systemic therapy at diagnosis		.01
Yes	3 (1.46 to 7.3)	
No	1.0	
Category of systemic therapy		.14
Cytotoxic chemotherapy	1.0	
Targeted chemotherapy	1.03 (0.51 to 2.09)	
Both	1.84 (0.99 to 3.41)	
Systemic therapy type		
Cytotoxic	1.59 (0.73 to 3.45)	.24
EGFR inhibitor	2.32 (1.1 to 4.82)	.03
HDAC inhibitor	1.49 (0.62 to 3.6)	.38
mTOR inhibitor	0.98 (0.11 to 8.66)	.98
Bevacizumab	2.67 (1.09 to 6.55)	.03
Other targeted agent	0.71 (0.22 to 2.28)	.56

- 1 A - - 1 - - 1

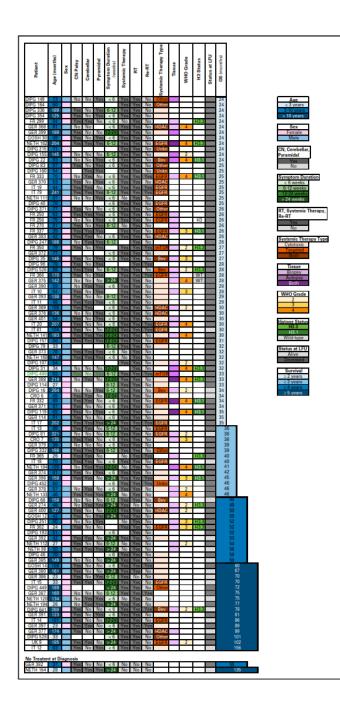
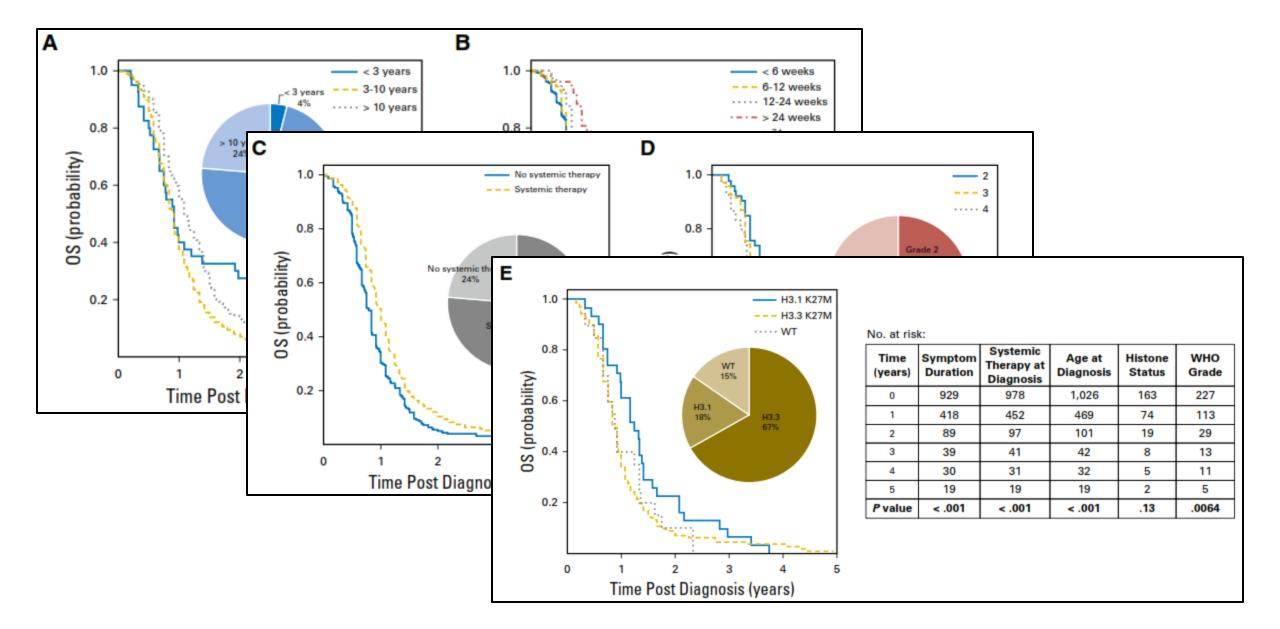
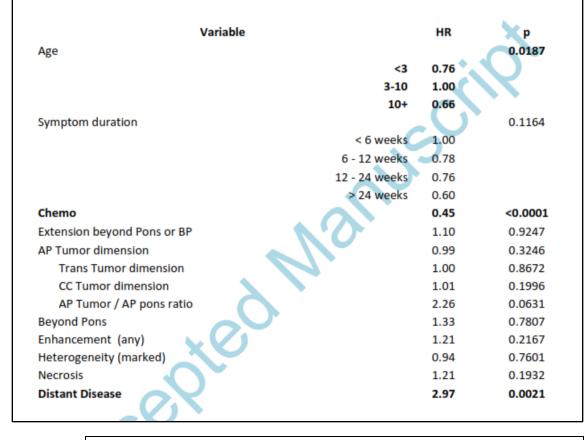



Fig 1. Flowchart of patients excluded from this study. DIPG, diffuse intrinsic pontine glioma.


Prognostic factors for long-term survivors (>2-years)

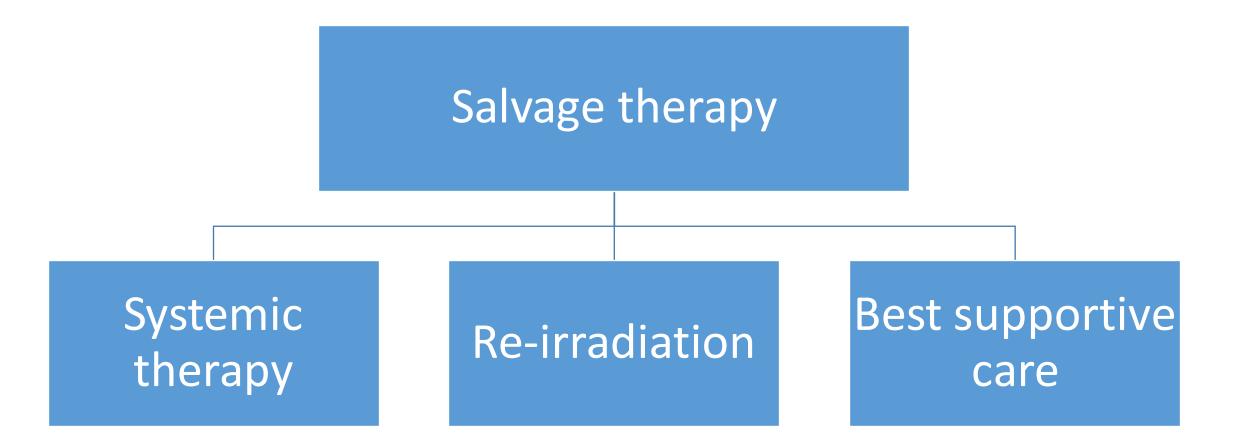
MRI and clinical predictors of survival

Table 4. Univariable analysis of Imaging features and overall survival (significant findings)		
Univariate	HR	р
Clinical		
Age (continuous)	1.00	0.033
Age		0.001
Symptom duration		0.018
Chemotherapy	0.46	<0.001
Midbrain extension	1.36	0.008
Extension Beyond Pons and BP	1.64	0.002
Extension Beyond Pons	2.15	0.001
AP Tumor dimension	1.02	0.023
Trans Tumor dimension	1.01	0.031
AP X Trans Tumor dimension	1.00	0.029
CC Tumor dimension	1.01	0.009
AP Tumor / AP pons ratio	2.29	0.005
AP X TR Tumor > AP X TR Pons	1.30	0.012
Enhancement (any)	1.36	0.010
Ring Enhancement vs. Non-enhancing	1.45	0.007
Patchy Enhancement vs. Non-enhancing	1.44	0.005
Patchy and Ring Enhancement vs. Non-enhancing	1.93	0.001
Diffusion restriction (any)	1.46	0.003
Hemorrhage (any)	1.22	0.098
Hemorrhage (GRE/SWI)	1.43	0.028
Necrosis (any)	1.47	0.0006
Necrosis + Ring Enhancement	1.40	0.005
Necrosis with no Ring Enhancement	1.48	0.034
Distant Disease	2.95	0.0005
Distant Disease (spine available)	2.64	0.0031

Table 5. Multivariable analysis of clinical and imaging features and OS. Diffusion status removed for missing >10%, AP x Trans and AP x CC for high correlation with AP, midbrain extension since it is included in the definition of extension beyond Pons or BP, extension beyond pons and brachium pontis due to correlation with extension beyond pons, enhancement subtypes due to correlation with enhancement, and hemorrhage with SWI or GRE sequences due to missing >10%).

Leach et al, IDIPG Registry, Neuro-Oncol 2020

Recurrence/Progression: Rule


- Inevitable
- Median PFS 6-8 months
- Median survival –10-12 months

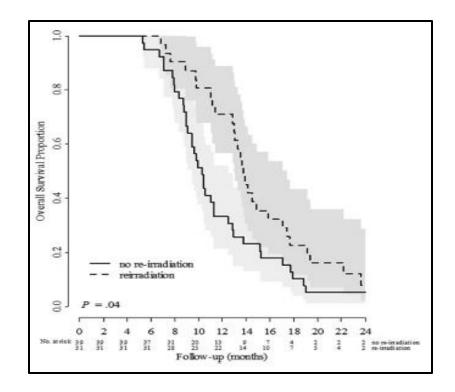
Gallitto et al, ARO, 2019

- Progression local recurrence with or without dissemination
 - Disseminated disease: 15-20%
- Cause of death rapid local progression

Wagner et al, BJC, 2006

Options at recurrence/progression

Re-irradiation


- Benefit compared to other options shown consistently
- Aims
 - Effective palliation
 - Steroid independence
- Multiple studies (majorly retrospective)
 - Pan-European, Pan-American studies, some single-institution studies
- No randomized data available

Case selection for Re-irradiation

Survival benefit for patients with diffuse intrinsic pontine glioma (DIPG) undergoing re-irradiation at first progression: A matched-cohort analysis on behalf of the SIOP-E-HGG/DIPG working group*

Geert O. Janssens^{a,*}, Lorenza Gandola^b, Stephanie Bolle^c,

- Longer PFS: Typically <u>></u>6 months
- Good response to index course of RT
- Reasonable performance score LPS >40

A Phase I/II Trial of Reirradiation for Diffuse Intrinsic Pontine Glioma

Mark J. Amsbaugh, MD, Anita Mahajan, MD, Peter F. Thall, PhD, Mary Frances McAleer, MD PhD, Arnold C. Paulino, MD, David Grosshans, MD PhD, Soumen Khatua, MD, Leena Ketonen, MD PhD, Hiral Fontanilla, MD, Susan L. McGovern, MD PhD

- Only prospective study of Re-RT in DIPG
- To identify optimal dose for Re-RT in DIPG
- 12 patients completed Re-RT in 3 dose levels
 - 24Gy/12# (6 patients),
 - 26.4Gy/12# (4 patients)
 - 30.8Gy/14# (2 patients)

	Toxicity Severity Level				
	Mild	Moderate	High	Severe	
Efficacy Response	(D1, D2, D3)	(D1, D2, D3)	(D1, D2, D3)	(D1, D2, D3)	
0 of 3 good indicators	(0,0,0)	(0,1,0)	(0,0,0)	(0,0,0)	
1 of 3 good indicators	(0,1,0)	(0,0,0)	(0,0,0)	(0,0,0)	
2 of 3 good indicators	(4,1,0)	(1,0,0)	(0,0,0)	(0,0,0)	
3 of 3 good indicators	(1,1,0)	(0,0,0)	(0,0,1)	(0,0,0)	
D1 = 24.0 Gy / 12 fx, D2 =	26.4 Gy / 12 fx, D	3 = 30.8 Gy / 14 f	x		
*Patient 9 does not have a	an efficacy respons	se .			
			$\overline{}$		

24Gy in 12 fractions was the recommended dose-fractionation based on utility analysis

Dose at Re-irradiation

Reference	n	First radiation therapy dose	Re-irradiation dose	Clinical response	Median survival from progression or re-irradiation	Absolute median survival gain with re-irradiation
[30]	31	n/a	19.8-30 Gy	77% (crude)	n/a*	3.4 months
[34]	16	n/a	21.6-36 Gy	81% (crude)	6.5 months	4.1 months
[35]	14	n/a	n/a	n/a	7 months	3.5 months
[36]	11	54 Gy	19.8 Gy	91% (crude)	6 months	2.7 months (n.s.)
[37]	5	54-55.8 Gy	18-20 Gy	80% (crude)	5 months	n/a

Trend of increase in median survival with increase in Re-RT dose

Tsang et al, Clinical Oncology, 2018

Systematic review and meta-analysis of re-irradiation in DIPG

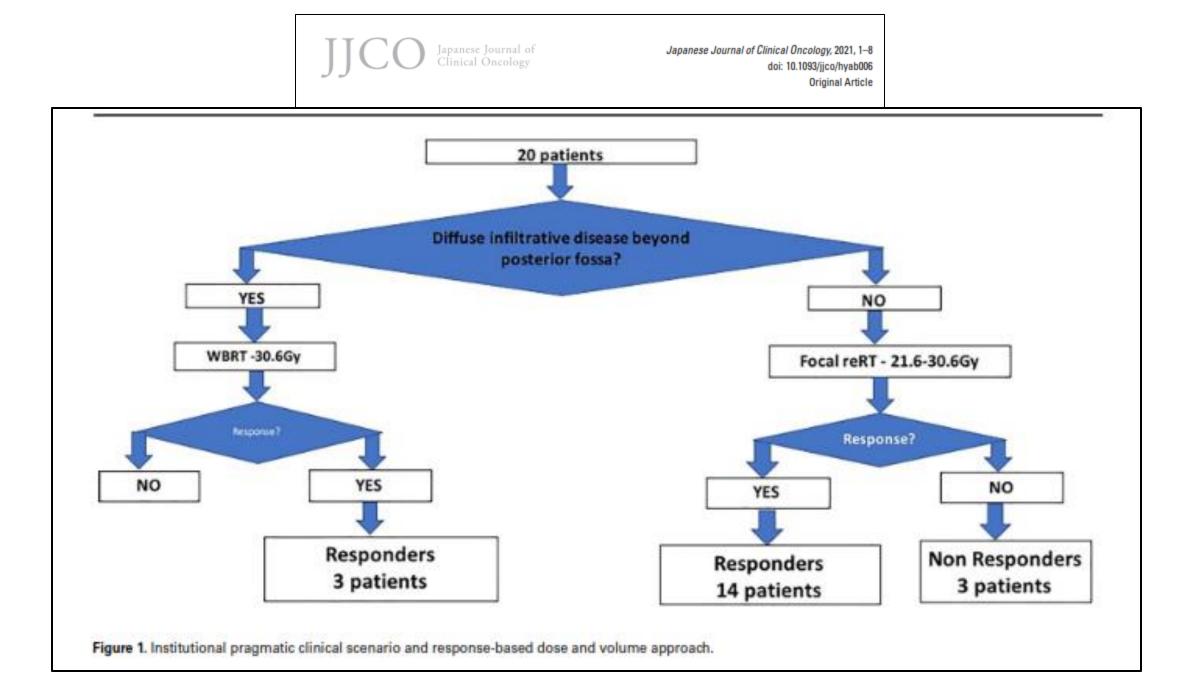
			reRT regimen					
Study	Cohort size (n)	Median time from initial RT to reRT (months)	Dose (Gy)	Fractions (n)	Additional systemic therapy at reRT	reRT complications (grade 3+)	Radiation necrosis (n)	Median OS from initial diagnosis (months)
Amsbaugh et al. 2019	12	123	24-30.8	10-12	N	1 x hypoxia	NR	19.5
Kline et al. 2018	12	11.8	24	10-12	Y	N	NR	20.8
Lassaletta etal. 2018	16	13	21.6-30.6	10-17	Y	1 x pontine necrosis	2	19.3
Freese et al. 2017	3	14	20	10	N	N	NR	17.3
Janssens et al. 2017	31	NR	18-30	10-11	Y	N	0	13.7
Massimino et al. 2014	11	NR	19.8	11	Y	N	NR	16
Fontanilla et al. 2012	5	12.5	18-20	10	Y	N	0	NR

Re-RT in DIPG: Outcomes (N=90)

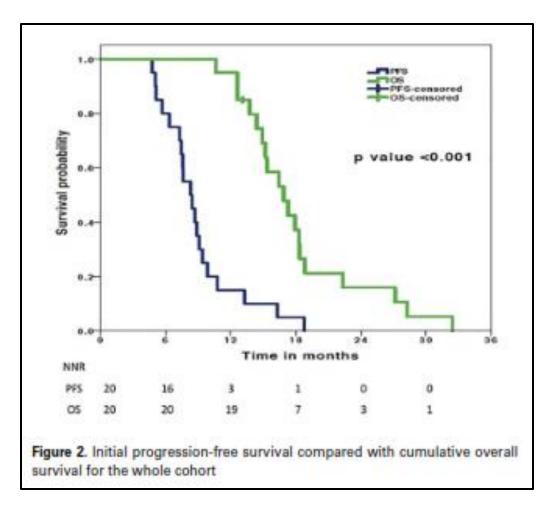
➤Clinical improvement – 87%

Radiological response – 69% (40 patients)

➢ Steroid weaning − 76% (42 patients)


Median PFS (from time of reRT) – 4.2 months

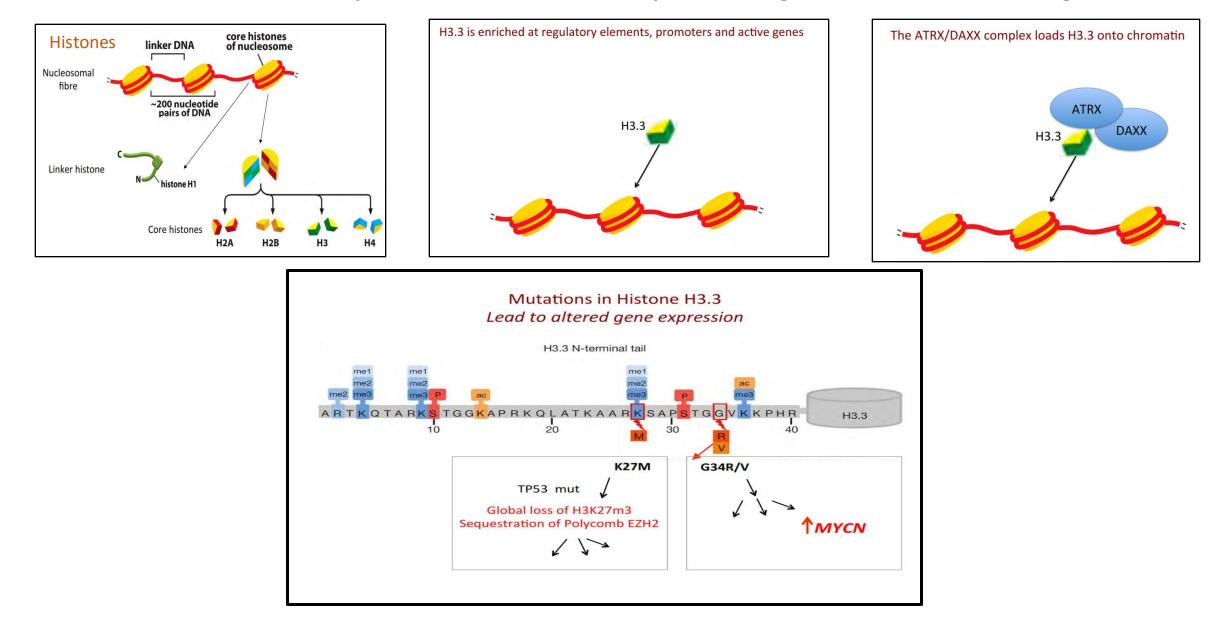
Median OS (from time of reRT) – 6.2 months


➢ Median OS (from diagnosis) − 18 months

a		Clinical improvement	ıt
	Study	EB (06)	%. 4.Cl) Weight
	Amsbaugh et al. 2019		82, 0.98) 12.80
	Kline et al. 2018	± 1.00 (0.)	76, 1.00) 13.85
	Lassaletta et al. 2018		57, 0.93) 17.97
	Freese et al. 2017		21, 0.94) 4.03
	Janssens et al. 2017	- 0.77 (QJ	80, 0.89) 32.27
	Massimino et al. 2014		82, 0.98) 12.80
	Fontanilla et al. 2012		38, 0.96) 6.28
	Overall	🔷 0.87 (0.1	78, 0.95) 100.00
		3 113	
b		Radiologic improveme	nt
			۰.
	Study	ES (05%, C)) Weight
	Kline et al. 2018		0.81) 31.25
	Lassaletta et al. 2018		0.94) 26.25
	Massimino et al. 2014	<u> </u>	0.85) 28.75
	Fontanilla et al. 2012		0.96) 13.75
	Overall	0.69 (0.52.0	0.84) 100.00
	Overall	0.69 (0.52, 0	0.84) 100.00
	Overall	0.69 (0.52 (0.54) 100.00
	Overall), 522.0) 683.0 (1.11) 1.11)	1.54) 100.00

Lu et al, CNS 2019

Age-median (IQR)	7.5 years (6-13.2)
Male: Female	12:8
LPS at diagnosis-median (IQR)	70 (50-77.5)
Clinical diagnostic criteria	
Two	75% (15 pts)
Three	25% (5 pts)
Radiological criteria	100%
Initial treatment details	
RT dose	54 Gy (19 patients), 60 Gy (one patient)
Concurrent therapy	20% (4 pts)
Adjuvant chemotherapy	40% (8pts)
Median PFS (IQR)	8.4 months (6.6-9.7)
LPS at reRT-median (IQR)	50 (50-60)
reRT details	
Median dose (IQR)	41.4 Gy (33.8-43.2)
Technique-3DCRT: IMRT	17:3
Adjuvant therapy	10% (2 pts)
Salvage therapy	
Pre reRT	15% (3 pts)
Post reRT	5% (1 pt)
Median RT interval (IQR)	8.9 months (7.3-9.9)


Conclusions: Higher doses of re-irradiation based on a clinical-response-based approach show improvement in survival and steroid dependence rates with acceptable toxicity. Steroid independent status at 1-month post-re-irradiation predicts better outcomes. Prospective studies may validate this with quality of life data.

Molecular Biology of DIPG

Abnormality classification	Pathway	Main driver	References
1-Epigenetic Aberrations	H3 mutation	H3K27M mutation G3R/V mutation	[45] [39]
	Polycomb Repressive Complex (PRC)	PRC1 downregulation	[47]
2-Gene Aberrations			
I-Cellular Proliferation	ACVR1	ACVR1 somatic mutation	[48-50,52]
pathway aberrations	Receptor Tyrosine Kinase Pathways	PDGFA amplification and PDGFR alpha overexpression EGFR mutation and amplification	[54] [55,60]
	MYC-N abnormalities	MYC-N amplification	[2,38,63]
II-Cell Cycle Regulation Pathways aberrations	The P53 pathway	TP53 mutation PPMID mutation	[38,64-65]
	The RB pathway	Cdk2A and CDK2B Deletions Cdk4, cdk6 and cyclin D1 amplification	[60,69,70]
	The Aurora Kinase signaling pathway	AURB overexpression	[74]
	The WEE1 kinase pathway	WEE1 overexpression	[76-78]
	Poly (ADP-ribose) polymerase (PARP)-1 overexpression	PARP1 overexpression	[80]
3-Immune Check Abnormalities	B7-H3 as a part of B7-CD28 family	B7-H3 overexpression	[83]

Rashed et al, CMR 2019

Alterations in histones predominant driver in pediatric glioblastoma including DIPG

Pathogenesis of DIPG via Histone Alterations

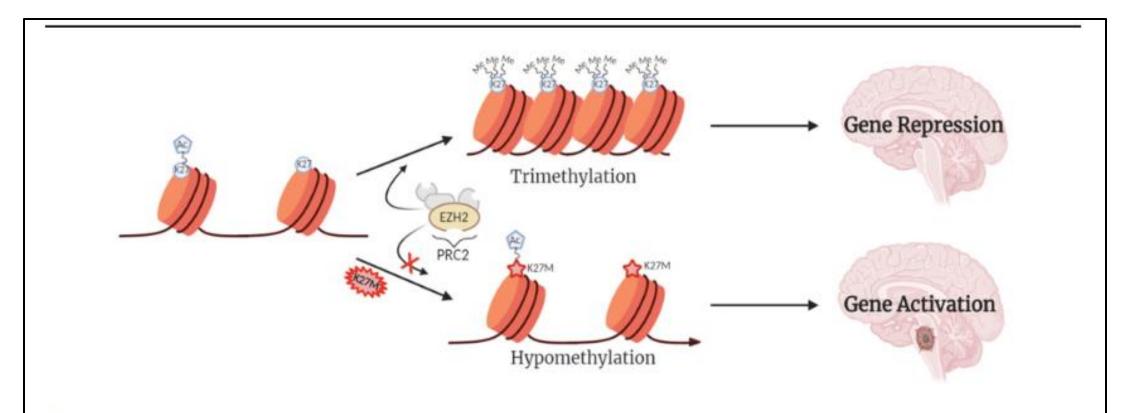
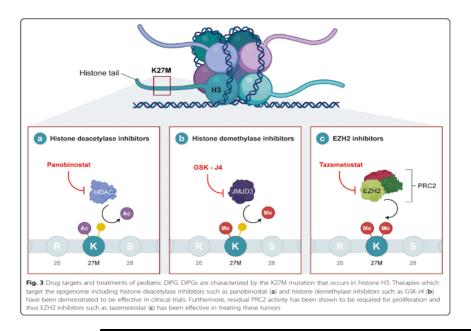
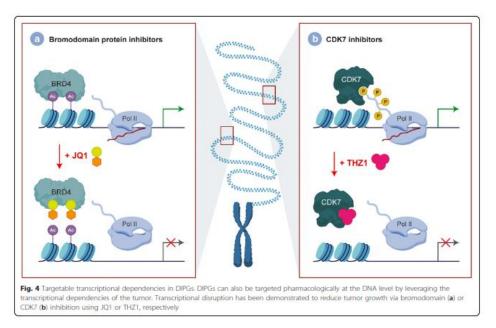
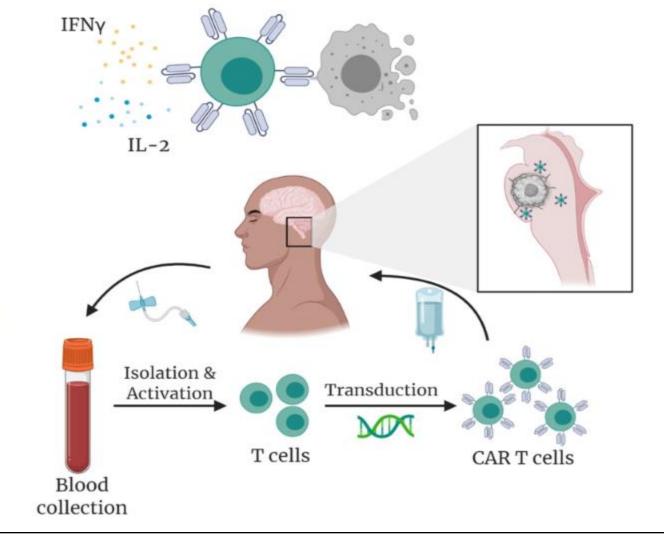




Fig. 1 Overview of H3K27 and its Epigenetic Modification. In normal neurological development, genes that regualte stem cell differentiation are silenced by the polycomb repressor complex 2 (PRC2). To repress these genes, the EZH2 subunit catalyzes the PCR2-mediated H3K27 trimethylation by binding to histone H3 tail, a common site for post-translational modification. However, in the H3K27M, the lysine substitute inhibits EZH2 binding which prevents PCR2dependent methylation and results in aborrant gene activation

Newer Therapeutic Avenues in DIPG


Table 2 Potential targetable secondary mutations in pediatric DIPG. Summary table which outlines key secondary genes that are altered in DIPGs and their subsequent result which increases tumorigenesis. We suggest that these secondary mutations can be complimentarily targeted in order to effectively treat DIPGs

Gene	Alteration	Impact	Result
ACVR1	Missense	Loss of function	Arrests glial cell differentiation and drives tumourigenesis
PDGFRA	Amplification	Gain of function	Upregulation of PI3K/AKT/mTOR pathway, increased proliferation
CDK4/6	Amplification	Gain of function	Upregulation of the cell cycle, increased proliferation
PTEN	Deletion	Loss of function	Loss of inhibition of PI3K/AKT/mTOR signaling network, increased proliferation
PPM1D-p53	Truncation	Loss of function	Impairs DNA repair mechanisms, evasion of apoptosis

Srikanthan et al CNJ 2021

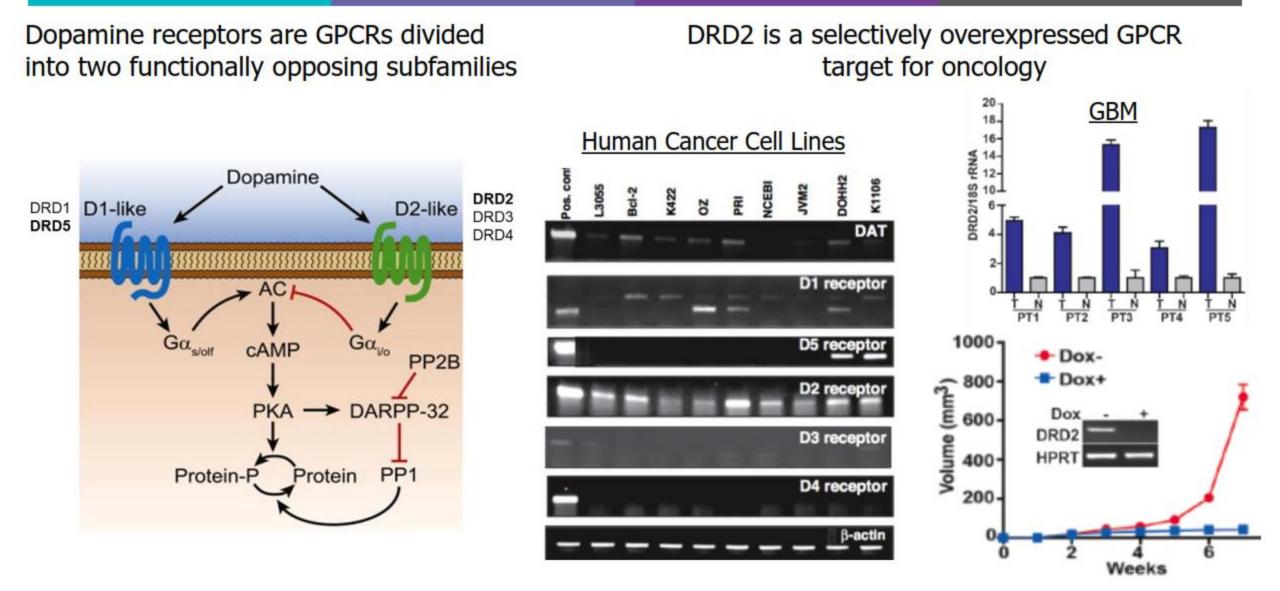
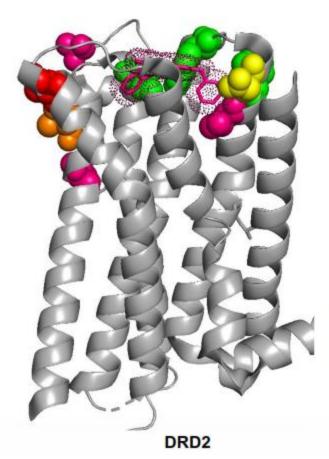
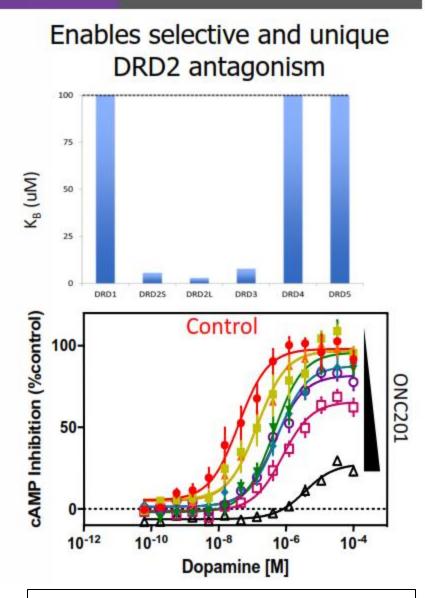

Chimeric Antigen Receptor (CAR)- T cells targeting DIPG

Fig. 2 Generation of CAR T cells targeting BSGs. The develoopment of CAR T cell therapy begins with the collection of a patient's peripheral blood mononuclear cells. The cells are enriched for a T cell susbset, such as a CD3⁺ population, and subseqently expanded and activated ex vivo using costimulatory ligands such as CD28. Activated T cells are then genetically modified by electroporation or viral vectors, such as lentiviral or retroviral vectors, to deliver the CAR gene. Then, the CAR T cells are actived against the specific tumor target and expanded ex vivo using costimulatory ligands before administration to the patient

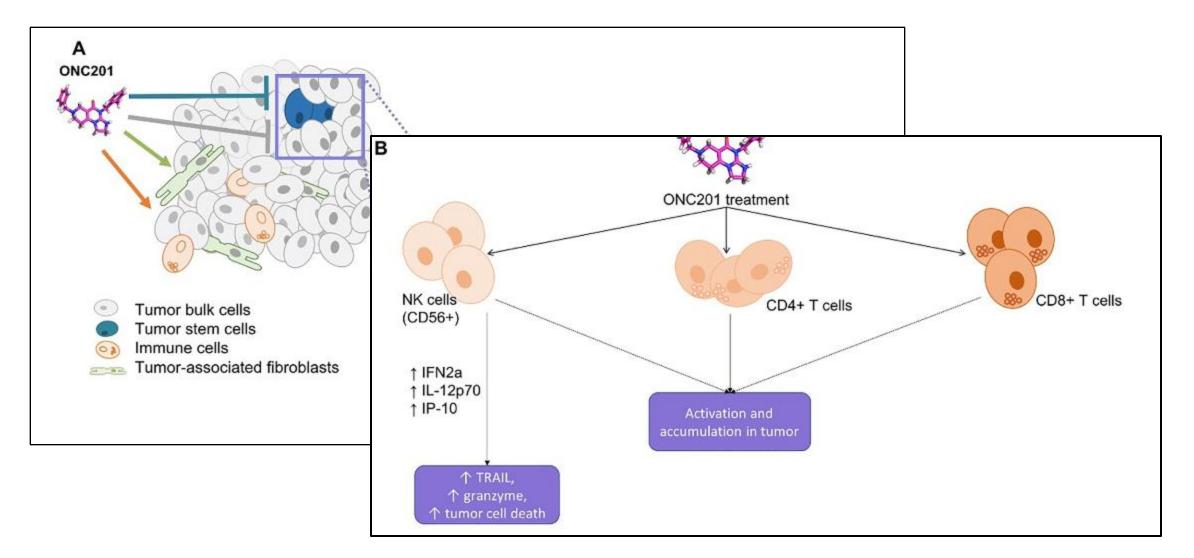

Wummer et al, JNO2021

Dopamine Receptor D2 Promotes Tumor Growth in High Grade Glioma



ONC201: First Clinical Bitopic DRD2 Antagonist

ONC201 selectivity antagonizes DRD2 via orthosteric and allosteric residues



Prabhu et al, Neoplasia 2020

ONC201: is this the magic bullet?

Prabhu et al, Neoplasia 2020

Phase I Pediatric DIPG and H3 K27M-mutant Glioma Trial: Endpoints

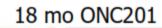
Open-label, multi-arm, multi-center, Phase I dose escalation and dose expansion trial (NCT03416530) in pediatric H3 K27M-mutant glioma and/or DIPG

Primary Endpoint:

Determine RP2D of ONC201 (single agent and + RT)

Secondary Endpoints:


- Safety/tolerability
- PK, PD, CSF Tumor DNA
- PFS, ORR, Duration of Response, Overall Survival
- Cranial nerve palsy scoring
- Clinical benefit/symptom scores


Exploratory Endpoints:

- Association of outcomes w/ tumor markers
- Association of outcomes w/ circulating markers
- Correlation between H3 K27M in tumor and CSF

List of Clinical Trial Sites

New York University	Children's Healthcare of Atlanta /
MD Anderson Cancer Center	Emory University School of Medicine
Miami Cancer Institute	University of California, San Francisco
University of Michigan	Cincinnati Children's Hospital

Cranial palsy score developed based on first DIPG patient treated 6 weeks post-RT treated on compassionate use

Allen et al, SNO 2019

Phase I Pediatric DIPG and H3 K27M+ Glioma Trial: Arms and Accrual

Arm A	Arm B	Arm C	Arm D	Arm E
Post-radiation H3 K27M+ Glioma	Newly Diagnosed DIPG	DIPG Tumor Biopsy	Post-radiation H3 K27M+ Glioma CSF	Post-radiation H3 K27M+ Glioma OraSweet Formulation
ONC201	ONC201 + RT	ONC201 -/+ RT	ONC201	ONC201
Enrollment	7 13 7	2 10	5 7	23
Level 2 n=6 n=12	n=6 → n=12	n=12	n=12	n=6 n=12
Level 1 n=3	n=3			n=3
Level -1	n=3			n=3

Allen et al, SNO 2019

Table 1 Summary of our current knowledge of pediatric DIPG. Summary table which details key clinical, pathological, and genetic features of pediatric diffuse intrinsic pontine glioma. *LGG*: low-grade glioma; *PNET*: primitive neuroectodermal tumor

0	Location	Pons - diffuse		
-Mm	Prognosis	Median overall survival (OS) 8-12 months		
ADE	Median Age of Diagnosis	6-7 years		
%	Prevalence	10-20% of all pediatric brain tumors, 80% of all pediatric brainstem tumors		
Ê.	Clinical Presentation	 >50% 'classic triad' 1. Cranial nerve palsies (facial asymmetry and diplopia) 2. Long tract signs (hyperreflexia, upgoing Babinski) 3. Cerebellar signs (ataxia, dysmetria) Cranial nerve VI and VII dysfunction Obstructive hydrochephalus (<10% at diagnosis, common at end-stage) 		
¢.	Diagnostic Tools	Clinical presentation MRI (common) - T1-hypointensity with ill-defined margins - T2-hyperintensity - tumor core centered in pons (often >50% axial diameter, engulfing basilar artery) Stereotactic biopsy and histological review, molecular testing		
V	Differential Diagnoses	Non-malignant brainstem entities (rare): LGG, PNET, vascular malformations, encephalitic parenchymal lesions, cysts, demyelinating disorders		
-TO	Symptom Onset	Rapid, symptoms typically present ≤1 month before medical attention		

Q	Histology	Common: high-grade astrocytic, increased mitotic activity, microvascular proliferation and/or necrosis Rare: lower-grade histology, overall bland cytology
Y	Immunohistochemistry	GFAP, ATRX, p53, neurofilament, ki-87 immunostains Targeted antibodies for H3K27M, IDH1R132H
111	Molecular Testing	Next generation sequencing, DNA microarrays (confirm presence/absence of H3 mutation/isoform)
୍କ	Molecular Subgroups	H3K27M, MYCN and silent
M	Mutations	 Histone 3 (H3) - 80% - significantly worse outcomes vs. H3 wild-type H3K27M - isoforms H3.1 (<i>H/ST1H3B</i>) - reduced metastasis, better median overall survival H3.3 (<i>H3F3A</i>) ACVR1 - 30% - co-segregates with H3.1, facilitates early tumor progression TP53 - 22-40% - often coincident with PDGFRA amplification PDGFRA amplification - 33%, RTY-RAS-PI3K-Akt signaling pathway, co-segregates with H3.3 PIK3R1 and PIK3CA - PI3K pathway oncogenes MYC and MYCN aberrations - transcriptional regulators, enhance overall gene expression
*	Current Treatment	Standard fractionated radiation alone, to a dose of 54-59 Gy
Δ	Treatment Roadblocks	Monotherapy and combination chemotherapy - no substantial benefit Location - does not allow for meaningful surgical resection Lack of effective drug delivery across intact blood brain barrier (BBB)
۲	Ongoing Trials	Histone deacetylase (HDAC) and demethylase inhibitors Transcriptional regulators Immunotherapy - recruitment/introduction of immune cells to tumor Drug delivery enhancement

SERVICE EDUCATION RESEARCH

