Linear Accelerator Technology with overview of real time and near real time image guidance

Dr.Sai Subramanian PhD Chief Medical Physicist Yashoda group of Hospitals Hyderabad

Outline

Need for Image guidance
Tumour motion
Near Realtime Imaging
Real time Imaging
Summary

Radiotherapy demands optimized plans

Patient-specific treatment plan Dose to target and organs-at risk quantified

Very carefully planned, but is this what we deliver?

Planned Dose

High dose GTV defined from mMRI + PSMA PET

Colvill IJROBP 2015

Delivered Dose

Clinical benefit of Image guidance

Clinical benefit of Image guidance

Daily image guidance improves outcomes versus weekly IGRT

470 pts randomized between daily and weekly IGRT

Biochemical progression-free interval significantly longer HR=0.45

Late grade ≥ 1 rectal toxicity significantly lower HR=0.71

Daily IGRT significantly improves local control and reduces rectal toxicity

Tumour motion

Lung

Study	n	Normal breathing (mm)	Deep breathing (mm)
Seppenwoolde et al. Upper/lower lobe	20	2±2 / 12±6	-
Ekberg et al.	20	3.9 (0-12)	-
Palthow et al. Upper/middle/lower	20	4.3±2.4 / 7.2±1.8 / 9.5±4.9	4±2 / 17±12 / 24±17

Deep breathing (mm)

55 (30-80)

37±8 (21-57)

	Livei	
Study	n	Normal breathing
		(mm)
Weiss et al.	12	11±3

14

25 (10-40)

10±8 (5-17)

17

51

50

8

9

Harauz et al.

Suramo et al.

Davies et al.

Balter et al.

Study	n	Normal breathing Deep breathin	
		(mm)	(mm)
Suramo et al.	50	20 (10-30)	43 (20-80)
Bryan et al.	36	18	
Bhasin et al.	22		1-34

Study	n	Normal breathing (mm)	Deep breathing (mm)
Suramo et al.	100	19 (10-40)	41 (20-70)
Davies et al.	8	11±4 (5-16)	
Balter et al.	18	18	

Other Intrafraction motion

livescience.com

Sihono et al. IJROBP, 2018

Task group 76 recommends to use motion management techniques for motion >5 mm

Imaging is the key to better radiotherapy

- Cone-beam CT is used for patient setup, primarily based on bony anatomy
- Truly optimized treatments should use:
 Soft-tissue based patient positioning
 Adaptive radiotherapy
 Dose accumulation

Need high-quality CBCT images

Near Realtime Image guidance

3D CBCT
4D CBCT
MRI
Fluorocopy
Infrared imaging
Surface imaging

CBCT reconstruction basics

Pre-processing steps

• Scatter correction, normalization, beam hardening (spectral) correction

Analytic reconstruction

- Filtered back-projection
- Exact solution for noiseless, central axial slice
- Noise creates streaks, incomplete data causes cone-beam artifacts

CBCT reconstruction basics

Pre-processing steps

• Scatter correction, normalization, beam hardening (spectral) correction

Analytic reconstruction

- Filtered back-projection
- Exact solution for noiseless, central axial slice
- Noise creates streaks, incomplete data causes cone-beam artifacts

Acuros – To correct scatter in KVCBCT

Acuros – may be extended to RTCBCT to account MV beam scatter

Average image Shows ITV Location information

Low soft tissue contrast All sorts of artifacts : scatter motion noise

Do not use FB CT as Reference CT

(d) kV-CBCT as a primary and FBCT or AIP as secondary

Potential systematic uncertainties in IGRT when FBCT reference images are used for pancreatic tumors. JACMP, Amoush et al. 2015

Patient Number, Fraction Numbers	PTV100 Using FBCT as a Reference IGRT	PTV100 Using AIP as a Reference IGRT	Difference (%)
1, (1,3)	85.0	97.2	12.6
2, (3)	87.3	96.3	9.4
3, (2-5)	93.9	97.4	3.5
4, (1-5)	93.2	98.1	4.9
5, (1-5)	91.9	96.0	4.3
6, (4-5)	90.5	95.1	4.9

YASHODA HOSPITAL

Amoush et al JACMP 2015

Dual Energy CBCT

Improved soft tissue contrast
Reduction of high Z artifact
Improved patient positioning based on soft tissue information rather than bone
Improved deformable registration due to

improved soft tissue contrast

4D CBCT

4D CBCT

In 4DCBCT, projection images are sorted to different groups according to the breathing phases.

The number of projections at each phase is considerably smaller than 3D-CBCT from full projection dataset

Severe view aliasing artifacts will be present in the 4D-CBCT when it is reconstructed by analytical Feldkamp- Davis – Kress (FDK) algorithm

Location & motion information

Not easily reproducible

Fluoroscopy

Ionizing radiation 30 fps

Marker-based –2mm gold marker

Voltage	Pulse width	Location		Dose rate (10 ⁻³ Gy/min)
70 kV	$2\mathrm{ms}$	Entrance	1.76	
70 kV	$2\mathrm{ms}$	Isocenter	0.64	
70 kV	$2\mathrm{ms}$	Exit	0.104	
120 kV	4 ms	Entrance	10.8	
120 kV	4 ms	Isocenter	5.6	
120 kV	4 ms	Exit	0.8	

Triggered KV Imaging

- Varian TrueBeams (v2.7 MR3)
- 2D kV imaging
- Imaging trigger can be based on time, MU, gantry angle or RPM gating (start or end of gate)
- Matching based on fiducials or bony structures
 - Typically with a 2 mm margin
 - No matching done on soft tissue
- · Therapist monitors matching and interrupt treatment if
 - Matching is significantly off on a single image
 - Matching is about 1-2 mm off on a few successive images

IMR trigger settings for SBRT tx		
VMAT	Every 20-40 degrees	
IMRT	Non-FFF: every 200 MU 6FFF: every 300-500 MU	

Segmentation – A big time sink

- Deformable registration can carry the segmentation but the results can be inaccurate, particularly with aggressively accelerated images
- Manual contour editing is time consuming and major contributor of the slow adaptive procedures

Indirect Tumour monitoring

External/Internal surrogates – assumes perfect surrogate /Tumour motion correlation ABC System

Active Breathing Coordinator Spirometry

Wong et al., IJROBMP, 1999

Anzai belt

Respiratory motion External surrogate signal

Heinz et al., JACMP 2015

Philips bellows Pneumatic system

Glide-Hurst et al. JACMP 2013

Varian RPM Infrared Imaging

Image external fiducials (Infrared reflectors)

Never used as standalone modality always used in conjunction with other modalities (Internal anatomy)

Surface guided RT

Identify Varian (fka HumediQ)

AlignRT/GateRT VisionRT

Catalyst C-rad -

SHODA

- <u>Non-invasive</u> and <u>non-ionizing</u> imaging modality
- Compares the acquired image with a reference image
- External surrogate

Hokkaido system

-Real-time fluoro imaging of gold markers with gating

-Markers inserted into/near the tumour in 10 patients

-No complications or local relapses within a 6 month follow-up

- "A real-time tumour-tracking system can improve the accuracy of radiotherapy and reduce the volume of normal tissue irradiated"

–2014 applied technology to proton therapy

Shirato at al., IJROBP, 2000

Brainlab Exact trac

Brainlab Exact trac

- A pair of kV imaging units (sources "on" the floor and imagers mounted on the ceiling)
- kV images auto-matched to images created from planning CT
- Provides 6DOF shift
- At MSK
 - Manually trigger of kV imaging
 - No fixed number of triggers, approximately 1-2 times per arc/between gantry angles at therapists' discretion
 - Relative monitoring only (not used for setup)
 - No automatic beam-hold

Markerless Tracking Clinical Implementation: CyberKnife Xsight Lung

- Tumor >15 mm diameter
- In lung periphery
- X-ray images not completely obstructed by spine
- Spine subtraction x-ray processing
- Block matching search
- Internal/external correlation model

Xsight Lung Tracking System: A Fiducial-Less Method

for Respiratory Motion Tracking

Dongshan Fu, Robert Kahn, Bai Wang, Hongwu Wang, Zheping Mu, Jong Park, Gopinath Kuduvalli, and Calvin R. Maurer, Jr.

Synchrony Respiratory Tracking System

- •SynchronyTMvest & camera –external surrogate
- •Synchronization with internal surrogate by means of x-ray
 - Periodically updates the internal (fiducial)
 /external correlation model

Direct Tumour imaging

- Only when tumor visible on images
- Imaging needs to provide enough contrast for the treatment site
 - Lung MRI, CBCT, 4DCBCT, sometimes fluoro
 - Diaphragm fluoro, MRI, CBCT, 4DCBCT
 - Pancreas, liver, etc- usually not tumor contrast to directly visualize in fluoro, CBCT, 4DCBCT

Surrogate imaging

- Internal surrogate
 - Anatomical: diaphragm
 - Fiducials, stents, ...
- External
 - Patient body motion (chest, abdomen)
 - Verified with another imaging modality

Diaphragm as surrogate

10 Patients Correlation factor 0.95 Average prediction error of 0.8 mm and an error at a 95% confidence level of 2.1 mm.

Fiducials as surrogate

Effect of tumour marker distance

Treatment precision of image-guided liver SBRT using implanted fiducial markers depends on marker–tumour distance, Y Seppenwoolde et al. PMB 2011

Near Realtime Imaging

4D

CBCT

Fluoroscopy

Tumour motion varies day by day

Why Real time imaging verification?

Continuous Monitoring and Intrafraction Target Position Correction During Treatment Improves Target Coverage for Patients Undergoing SBRT Prostate Therapy

D. Michael Lovelock, PhD,* Alessandra P. Messineo, BS,* Brett W. Cox, MD,[†] Marisa A. Kollmeier, MD,* and Michael J. Zelefsky, MD*

Results: After the initial setup, 1.7 interventions per fraction were required, with a concomitant increase in time for dose delivery of approximately 65 seconds. Small systematic drifts in prostate position in the posterior and inferior directions were observed in the study patients. Without CMI, intrafractional motion would have resulted in approximately 10% of patients having a delivered dose that did not meet our clinical coverage requirement, that is, a PTV D95 of >90%. The posterior PTV margin required for 95% of the dose to be delivered with the target positioned within the PTV was computed as a function of time. The margin necessary was found to increase by 2 mm every 5 minutes, starting from the time of the imaging procedure.

Why Real time imaging verification?

- Patient Intra fraction motion body motion , Breathing change.
- Uncertainties in localizing moving targets such a Lung & Liver tumours.
- Critical for Hypofractionated treatments
 - Tight PTV margins
 - Long Treatment Time
 - High Fractional dose

Potentials for Real time Imaging

Reduce treatment errors & PTV Margin

- Pre treatment Imaging verification
- During treatment imaging verification
- Gated treatments
- Target Tracking

Technology for real time imaging

Real-time image guidance in coventional Linear accelerator

Practical Challenges in SBRT

Practical Challenge : Tumor movement during respiration and also more importantly a method to verify tumour motion during delivery of lung/liver SBRT

Proposed Solution : MDIBH lung SBRT is one of the novel emerging technique to freeze the tumor movement during delivery of the modulated beams.

Proposed Hypothesis :With availability of HDR FFF beams combined with the capability of RTCBCT – MDIBH Lung SBRT is very much possible without compromising the quality of treatment.

Need for RTCBCT during RapidArc delivery

- The combination of VMAT technique using high dose rate FFF beams along with the computer controlled deep inspiration breath hold technique provides opportunity to further reduce treatment margins in lung SBRT over free breathing (FB) approaches.
- The aim of this study was to investigate the potential benefits of VMAT based DIBH SBRT over FB SBRT. This was performed by conducting a dosimetric comparison of VMAT technique with IMRT technique using both DIBH & FB approaches.

FFF beam combined with RA for FB lung SBRT

FFF beam combined with RA for DIBH lung SBRT

DVH comparison of RA (FB)& RA (BH)

Real-time CBCT acquisition (RTCBCT)

- In-house methodology was developed to capture real-time CBCT during VMAT delivery
- As RTCBCT acquisition during VMAT delivery contain high energy MV beam scatter components reaching kV detector during acquisition, beam hardening calibration (reduce the cupping artifacts due to polychromatic x-ray beam), normalization scan calibration (takes into account for radiation scatter & beam hardening) and Hounsfield unit calibration needs recalibration in the presence of MV scatter.
- In order to simulate MV scatter from VMAT delivery, a 1cm sweeping MLC VMAT single arc plan was created for 3 different field sizes viz 5x5, 10x10 and 20x20 cm².

Real time CBCT during RapidArc

Discussion – RTCBCT during VMAT delivery

Head and neck case: er correction With MV beam scatter correction

Discussion – RTCBCT during VMAT delivery

RTCBCT – Pelvic bone visualization

RTCBCT during lung MDIBH SBRT Delivery

Dynamic MRI

Direct Imaging MRLinac

Direct Imaging MRLinac

Elekta MRLinac

Viewray MRLinac

MR Cine Acquisition

2 D Pulse sequences usually on coronal and sagital imagesHz frequencyCan be used in real time for gating

Best information of soft tissue – Thorax & Abdomen motion No extra imaging dose Pre as well as during treatment

	Free Breathing		Extended exhale		Irregular breathing		Forced breathing	
	ē (mm)	e ₉₅ (mm)	ē (mm)	e ₉₅ (mm)	ē (mm)	$e_{95}(mm)$	ē (mm)	e ₉₅ (mm)
ANN	0.6	1.3	1.7	4.6	2.4	6.4	1.4	4.4
Template Matching	0.4	0.9	0.9	1.3	0.5	0.9	0.6	1.1

MRI-guided tumor tracking in lung cancer radiotherapy, LI Cervino, J Du, SB Jiang, PMB 2011

With real-time internal anatomy targeting planned dose is closer to delivered dose

Future of Realtime adaptation

Thank You

