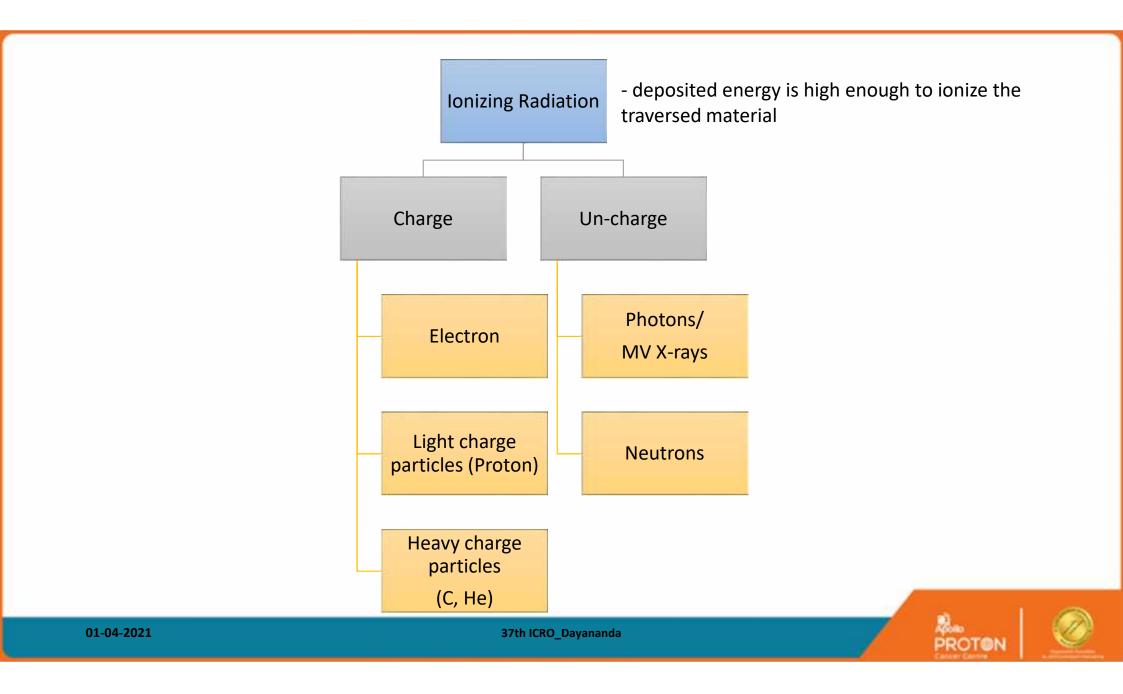


Particle beam Therapy

Dayananda S Shamurailatpam, PhD, Dip R P, MCMPI

Head Department of Medical Physics

Apollo Proton Cancer Center


drdayananda_s@apollohospitals.com

Learning objective

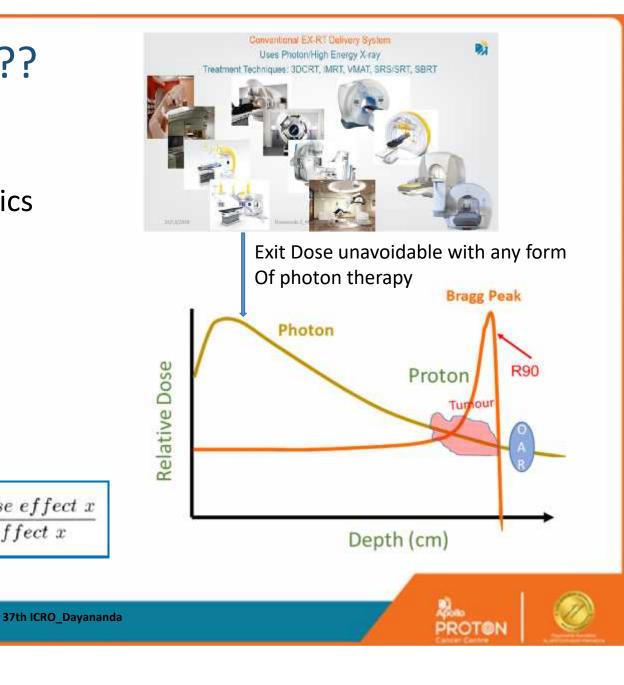
- Particle beam therapy ?
- Interaction of charge particle with matter
- Rational of particle beam therapy
- Carbon vs Proton
- Historical development of proton beam therapy
- How it work ?
- Accelerator technology (Cyclotron / Synchrotron)
- Passive Scattering and Pencil beam scanning
- Benefit of Proton beam therapy
- Clinical Indications

01-04-2021

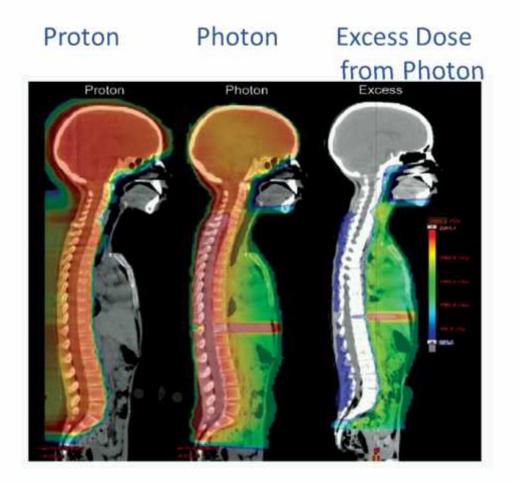
Particle / hadron / ion beam therapy

- Specific type of EXRT
- Use high energy neutron, proton, other heavy +ve ions
- Most commonly used particle in Hadron therapy
 - Proton
 - Carbon
 - Helium

Interaction of charge particle with matter

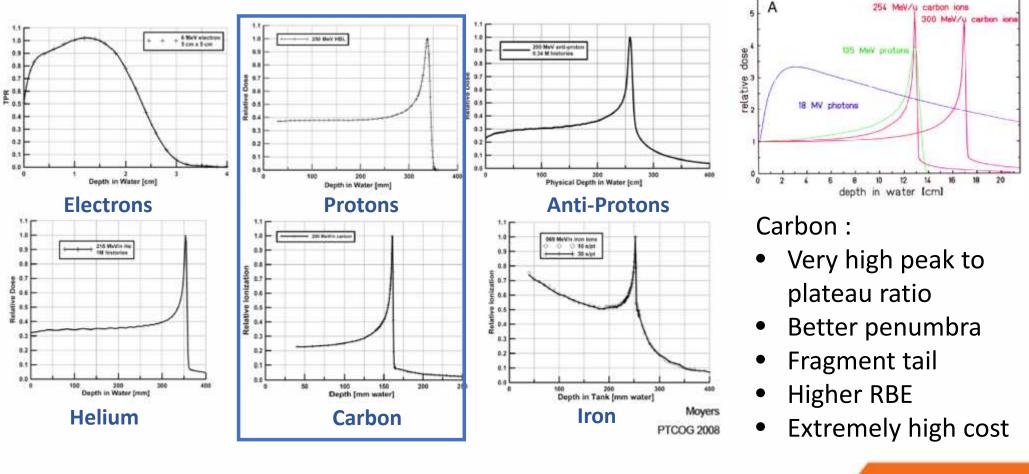


Why particle therapy ??


- Physical depth dose characteristics
 - Finite range (e.g R90)
 - No exit dose
- Radiobiology (RBE)
 - Proton = 1.1 (0.7 1.5)
 - Carbon = 2-5

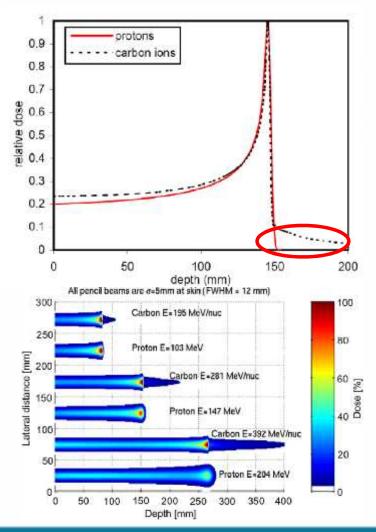
01-04-2021

 $RBE = \frac{Dose \ of \ 150 \ V \ X - rays \ required \ to \ cause \ effect \ x}{Dose \ of \ radiation \ required \ to \ cause \ effect \ x}$


Dosimetric benefit of particle therapy

01-04-2021

Depth dose characteristics of charge particles

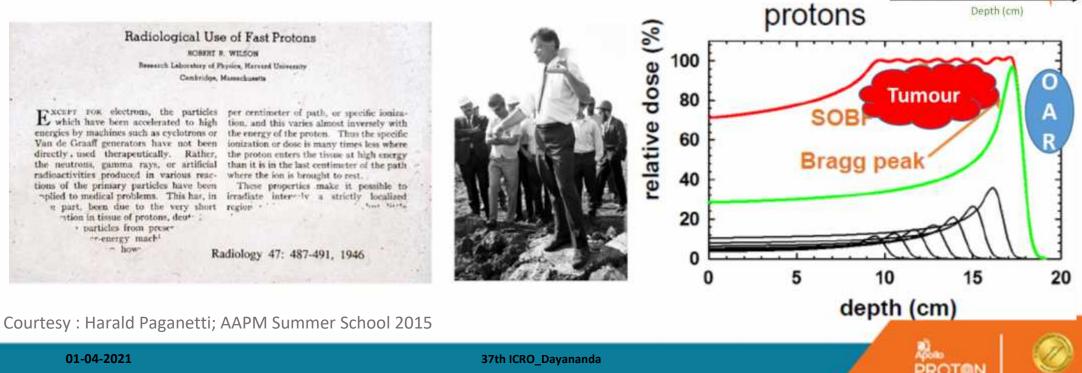


37th ICRO_Dayananda

01-04-2021

Fragment tail of Carbon

- Fragment tail beyond Bragg peak of carbon ion
- Tails are of low physical dose & relatively high RBE
- Extend up to 15 cm
- BED from fragmental tail not negligible
- Limited use of carbon in paediatric patient


Historical development

Bragg Peak

Proto

Photon

- Initial proposal by Robert Wilson in 1946
- Spread out Bragg Peak (SOBP) using range modulating wheel
 - Proton energies \longrightarrow Depth of the tumours
 - Number of proton energies --> tumour extent in beam direction

Historical development

CANCER RESEARCH

VOLUME 18

FEBRUARY 1958

NUMBER 2

Pituitary Irradiation with High-Energy Proton Beams A Preliminary Report*

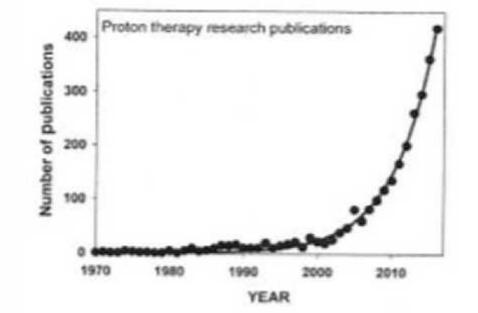
C. A. TOBIAS, J. H. LAWRENCE, J. L. BORN, R. K. MCCOMBS, J. E. ROBERTS, H. O. ANGER, B. V. A. LOW-BEER,[†] AND C. B. HUGGINS[‡]

(Donner Laboratory of Biophysics and Medical Physics, Donner Pavilion, and the Radiation Laboratory, University of California, Berkeley, Calif.)

HYPOPHYSEAL PROTON IRRADIATION

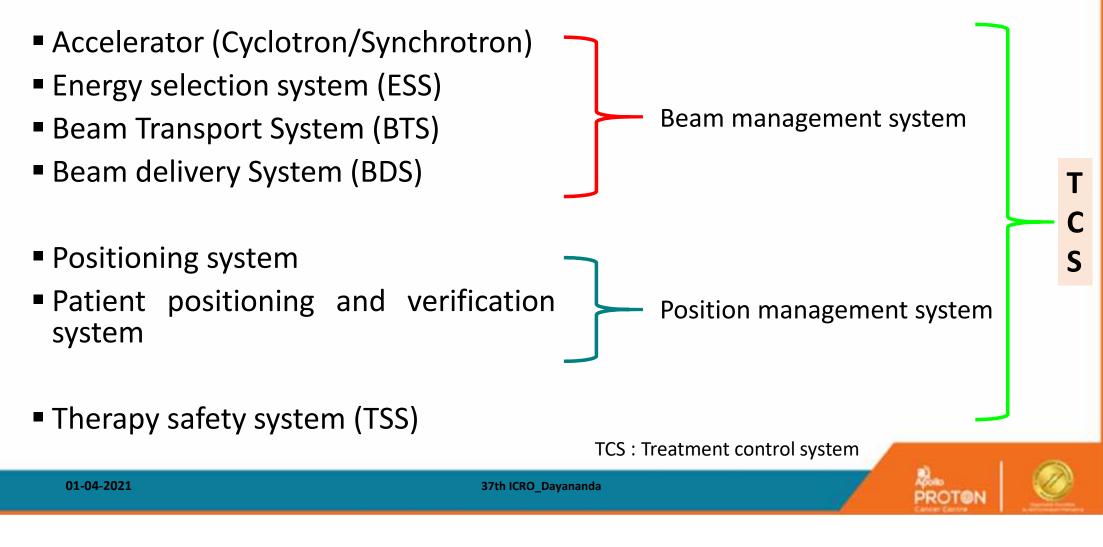
An account is given below of the initial use of high-speed protons in human therapeutic investigations. The rationale for pituitary irradiation, the technic employed, and the initial physiological changes after proton irradiation of the pituitary gland are given in detail. exophthalmos (4, 7). Roentgen irradiation has also been attempted for cancer in the human being, particularly by Murphy and Schwippert for prostatic carcinoma (38) and by Kelly *et al.* for mammary carcinoma (17). However, in three patients with mammary carcinoma, even 10,000 r to the region of the hypophysis was not sufficient to cause no-

- First patient treated at LBL in 1954
- Metastatic breast cancer treated for pituitary gland for hormone suppression.
- The bony landmarks made targeting of the beam feasible.
- The plateau of the depth dose curve of 340 MeV Proton
- Cross-firing technique



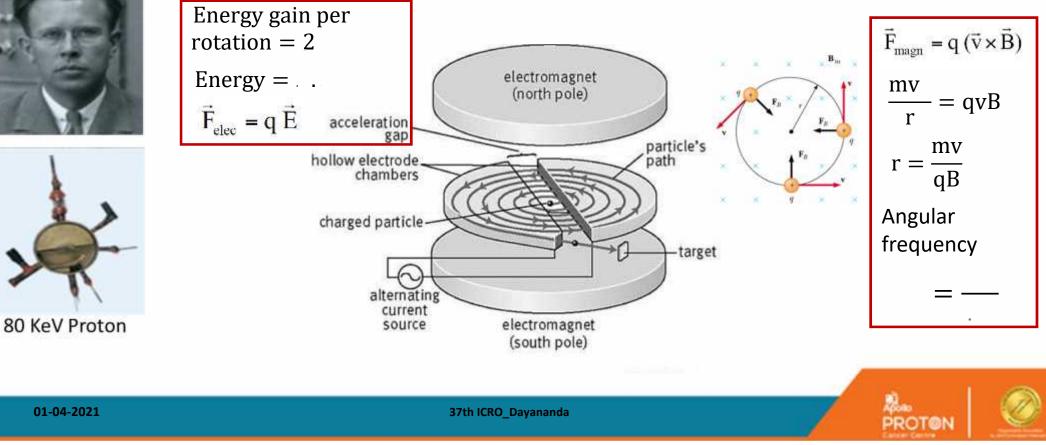
Progress in Proton Beam Therapy

- 1990 : First Hospital based PT facility at Loma Linda University Medical center
- Present status of PT facility
 - 109 in operation
 - 37 under construction
 - 29 in planning
- Exponential increase in peer-reviewed publication
- Technological development
- Cost effective solution (Single room)



<u>https://www.ptcog.ch/index.php/facilities-in-operation</u> Proton Therapy Physics (2nd Edition) by Prof Harald Paganetti

01-04-2021


How does it work ?? Proton Therapy System Architecture

Proton Accelerator : Cyclotron-1932

Fixed-energy cyclic particle accelerator

Cyclotron Type

Proton revolving frequency = $/2\Pi$.

Proton angular frequency = 2Π = qB/m=qB/ m_o

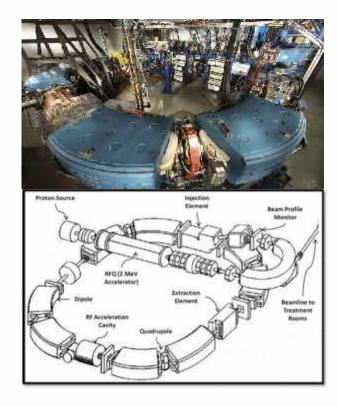
CLASSICAL: (original)

- Operate at fixed frequency (= qB/m) and ignore the mass increase
- Works to about 25 MeV for protons (=1.03)

SYNCHROCYCLOTRON: let the RF frequency ω decreases as the energy increases

- = $\sqrt{10}$ to match the increase in mass (m= m₀)
- Uses same decreasing field with radius as classical cyclotron

ISOCHRONOUS: raise the magnetic field with radius such that the relativistic mass increase is just cancelled


- Pick B= B₀ {this also means that B increases with radius}
- Then $= qB/m = qB_0/m_0$ is constant.
- Field increases with radius- magnet structure must be different
- 1.7-2.15 T in C230

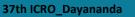
01-04-2021

Proton Accelerator : Synchrotrons

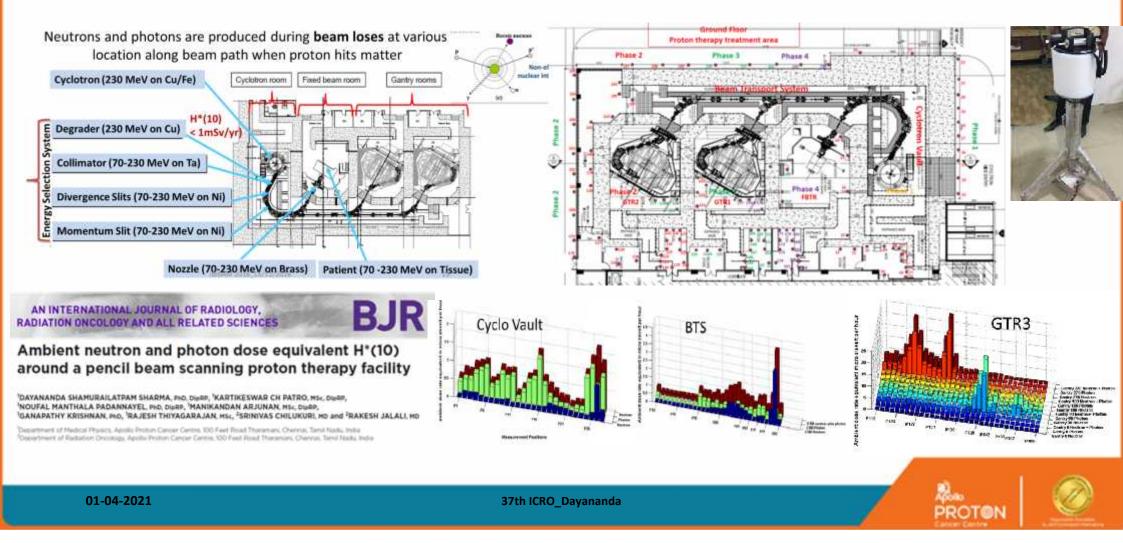
- Variable energy cyclic particle accelerator
- Suitable for both light (Proton) and heavy ions (Z>1, C12,He4, etc)
- 1st Synchrotron was Built by Fermilab and started operation in 1992 at LomaLinda University.
- Low energy proton (2-7MeV) are injected
- An alternating voltage adds energy to the proton on each rotation
- Magnetic field must be increase each cycle to keep the proton circulating on the same radius
- Commercial system
 - Hitachi
 - Mitsubishi

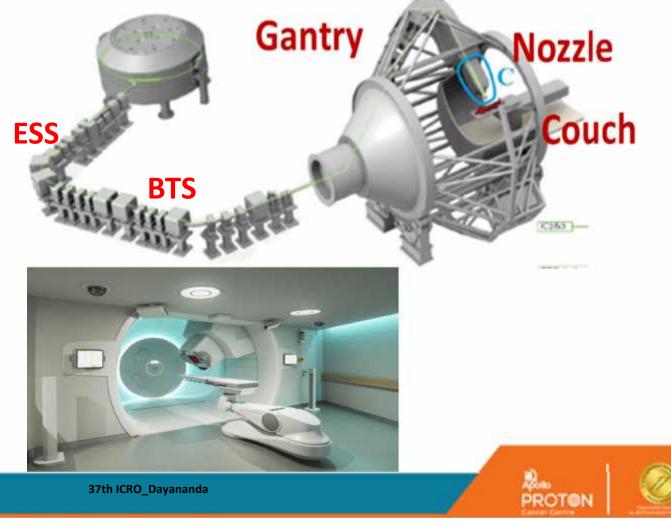
01-04-2021

Parameter	Synchrotron	Isochronous Cyclotron	Synchrocyclotron
Mechanical Size (Dia in meter)	6 - 8 + Injection system	3.0 –4. 5 m	2.5 – 1.8
Time structure beam intensity	Spill structure	Continuous	Pulsed
Fast energy scanning	Wait for next spill During extraction	Degrader	Degrader
Activation	No problem	Degrader need shielding	Degrader need shielding
Beam intensity	Limited in magnitude & range	"Any" Adjustable within <1ms	"Any" but low on average. Adjustable within a few mS
Intensity stability	10-20%	2 - 5%	20%
Scattering	Suitable	Suitable	Suitable
Spot Scanning	Suitable	Suitable	Long time needed
Beam gating	Suitable	Suitable	Suitable
Fast continuous scanning	Difficult due to pulse structure	Suitable	Not possible due to pulse structure

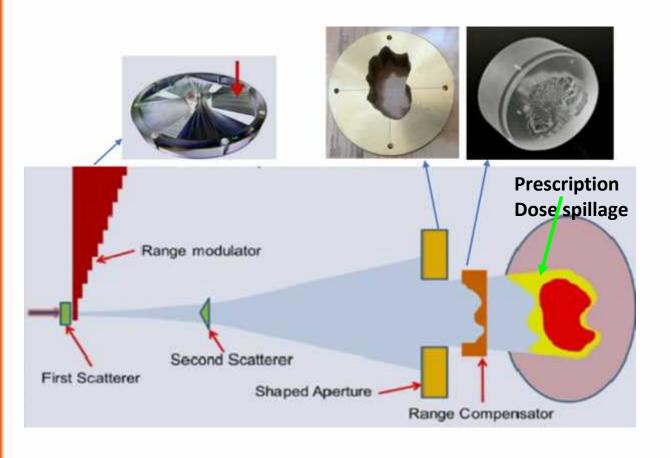

01-04-2021

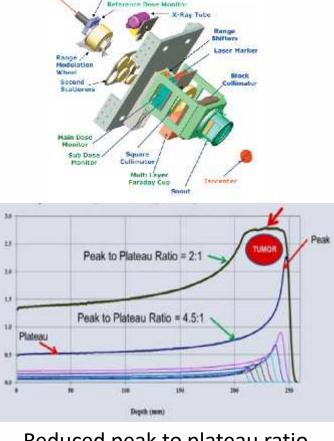
2. Energy Selection System


- Beam Degrader :
 - Degrade the beam energy to requested value up to 70 MeV
 - Scatter beam transversely & generate a spread of beam energies
- Collimate beam transverse phase space and to limit the beam energy spread
- Much of the beam is lost in ESS at lower energy



Ambient neutron and photon dose around PT facility


3. Beam Transport System



01-04-2021

4. Beam delivery System : Passive scattering

ufile Mantan

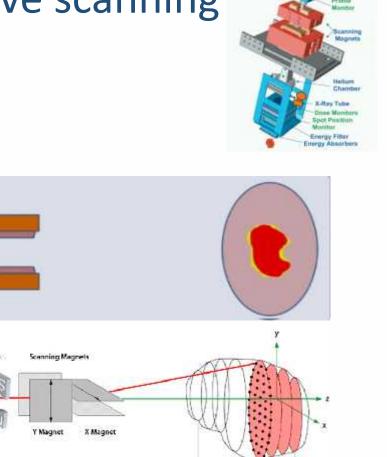

01-04-2021

37th ICRO_Dayananda

PROTON

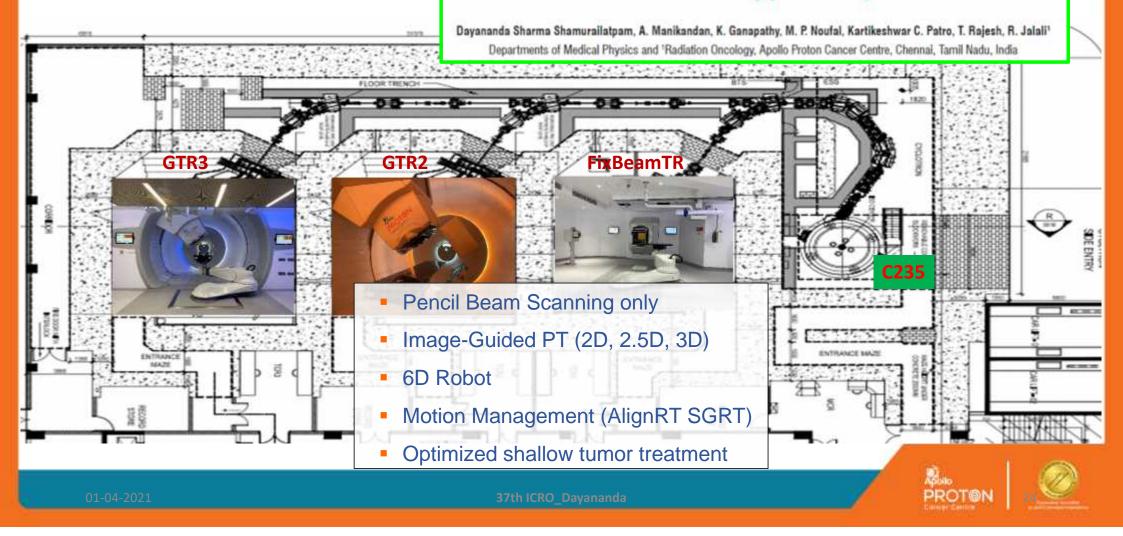
Proton beam therapy with passive scattering techniques

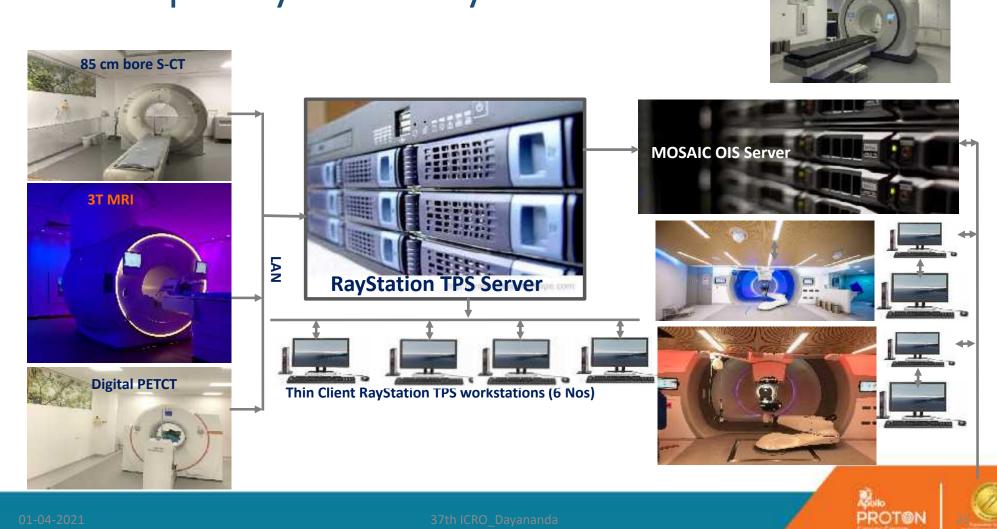
- Seating/sleeping position
- Planar radiograph for target localization
- Limited Clinical site
- Logistic issues
- Manpower
- Neutron contamination



Beam delivery system : Active scanning

- Reduced
 - Proximal, entrance, integral dose
 - preparation time
 - in-room therapist time
 - Easy Adaptive therapy
 - Neutron contamination
- Increase conformity
- Disadvantages
 - Sensitivity to patient motion (interplay effect)
 - Slower irradiation
 - Poorer target conformity at lower energies due to increase penumbra


Lant Laye


Minmum Energ

First Laws

Contemporary PT

Characterization and Performance Evaluation of the First-Proton Therapy Facility in India

Contemporary PT facility at APCC

RadiXact HT

Benefit PBT

- Dosimetric benefit
 - Reduction of OAR doses
 - Reduction of Integral dose
- Impact
 - Reduction of toxicity profile
 - Possibility of dose escalation
 - Reduction or avoidance of radiation induced carcinogenesis
- Clinical outcome

Dosimetric benefit of Proton Therapy

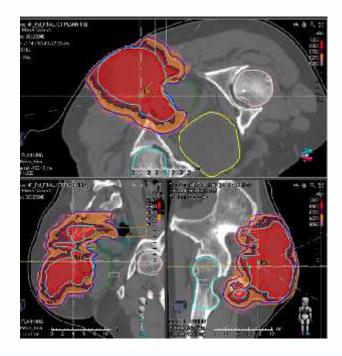
- Reduction of Dose to OARs
- In CSI, mandible, parotid gland, thyroid gland, lung, kidney, heart, ovary, uterine, and other nontarget intracranial structures (St Clair 2004 IJROBP, Lee 2005 IJROBP, Howell 2012 IJROBP)
- Models predict lower risk of second cancer, lower rate of pneumonitis, cardiac failure, xerostomia, blindness, hypothyroidism, and ototoxicity (Mirabell 2002 IJROBP, Newhauser 2009 PMB, Thaddei 2010 PMB, Brodin 2011, Acta Oncol, Zhang 2013 PMB).

Robustly optimized hybrid intensity-modulated proton therapy for craniospinal irradiation

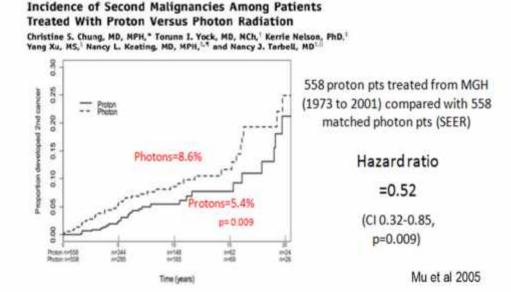
	D _{99%}	1.65	
	D _{uss}	98.11± 2.41	
	D _{SSN}	99.14±	
	D ₁₅	104.0±	
	Structu	res	D
	RT len	5 /	1
	LT lens	()	5
Manthala	RT eye	2	
Padannayil	LT eye	_	
Noufal, Shamurailatpam	Brainste		
Davananda	RT opti		
Sharma,	nerve	- III	
Ganapathy	LT opti	-	
Krishnan,	nerve		
Mayur Sawant, Utpal Gaikwad ¹ ,	Chiasn	1	
Rakesh Jalali ¹	RT Kidn	ey	
Departments of	LT Kidne	ay i	
Medical Physics and Radiation Oncology,	Thyroid	d i	
Apollo Proton Cancer	Oesopha	gus	
Centre, Chennai, Tamil Nadu, India	Heart		
Website: www.cancerjournal.net	RT lung	g :	
DOI: 10.4103/jort_JCRT_740_20	LT lung		

	Paramet	PTV	PTV	CTV	CTV	cribrifor	
\mathbf{M}	er	Brain	Spine	Brain	Spine	m plate	
Y	D _{99%}	97.31± 1.65			99±0.45 99.51		
	D ₉₈₅₆	98.11± 2.41	96.95± 1.49	99.88± 0.50	99.43± 0.5	99.00 ± 0.85	
	D _{95N}	99.14± 1.61	97.67± 2.69	100.37± 0.53	100.01 ± 0.53	100.04 ± 0.57	
1	D _{1N}	104.0± 1.84	105.2 ± 0.68	104.93 ± 1.37	105.35 ± 0.69	105.07± 1.31	
1	Structur	res D) _{50%} (Gy R	BE)	D _{1%} (G	y RBE)	
	RT lens	1	3.72±0.9	12	6.17:	1.06	
	LT lens		3.47±0.9	15	5.92	1.04	
1	RT eye	2.	10.04±2.77		24.07±5.98		
**	LT eye		10.14±3.11		24.39±5.78		
atpam	Brainste	m	32.13±4.75		32.92±4.96		
a	-		30.22±4.14		33.70±4.94		
LT optic		-	32.03±2.	88	35.31±2.55		
vant, cwad ¹ ,	Chiasm	Chiasm		33.17±5.17		34.03±5.31	
lali ¹	RT Kidne	ey l	1.52±1.7	'8	20.83±10.93		
of	LT Kidne	ey -	1.78±1.60		20.84±10.56		
ues and	Cancer Oesophagus		22.7±6.3	15	34.95±1.00 27.79±16.2 14.45±12.75		
a Cancer			24.7±16.	54			
nai, India			0.02±0.0	2			
ncerjournal.net	RT lung	3	0.67±0.49		27.94±7.74		
JCRT_740_20	LT lung		1.14±1.3	17	21.45	11.68	
			1				

37th ICRO_Dayananda


PROTON

Dosimetric benefit of Proton Therapy


arms (subtamation)

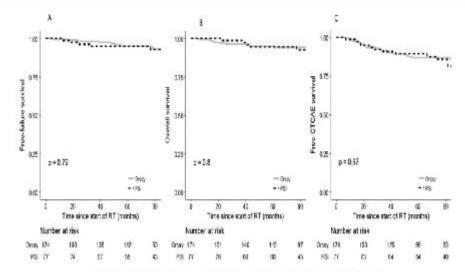
Late Effect

Dose escalation: Sacral chordoma (Radio-resistant)

- Reduction of Second Cancer
- Expected to improve further with Pencil beam scattering Technique

37th ICRO_Dayananda

PROTON



Clinical benefit of proton therapy

- Datas emerging
- PSI & Orsay clinical outcome data for Chondrosarcoma : 1996 to 2015,
- 251 patients (mean age, 42.0 ± 16.2 years)
- protons with (n = 135; 53.8%) or without photons (n = 116; 46.2%).
- Median delivered dose was 70.2 Gy_{RBE}.
- Median follow-up of 88.0 months
- 7-year Failure Free Survival was 93.1%.
- 7-year OS was 93.6%.
- 7-year Toxicity Free Survival was 84.2%.

Long term outcome of skull-base chondrosarcoma patients treated with highdose proton therapy with or without conventional radiation therapy

D. Weber, G. Noal, L. Fauvreh et al. Paul Scherrer Institute, Switzerland PSI and Insitute Curie, Orsay, France

g. 1. Failure-free: [A] overall- (B) and toxicity-free [C] survival for ChSi patients treated with P1.

Recommended indications for CPT

Country	Document	Group 1 (medically necessary)	Group 2 (potential indications)
USA	ASTRO ^a Model Policy	Eye tumors	All other solid tumors, including. Head and neck cancers
		 Chordoma and chondrosarcoma 	 Thoracic malignancies
		Spine tumors ^b	 Abdominal cancers
		 Hepatocellular carcinoma^c 	 Pelvic cancers
		 Pediatric tumors^d 	
		 Patients with genetic syndromes^e 	
UK	Clinical indications for	 Skull-base and spinal chordoma 	
	treatment overseas by	 Skull-base chondrosarcoma 	
	protons	 Spine and paraspinal soft-tissue sarcomas^f 	
		 Pediatric tumors 	
Italy	AIRO ^g indications	 Skull base and spine chordomas and chondro 	sarcomash
	for government reîmbursement	 Adenoid cystic carcinoma of the salivary glar 	nds ^h
		 Mucosal malignant melanoma^h 	
		 Ocular melanoma 	
		 Osteosarcomas^h 	
		 Pediatric tumors 	

Recommended indications for CPT

Country	Document	Group 1 (medically necessary)	Group 2 (potential indications)	
Denmark	Aarhus University, Indications for the Danish National Center for Particle Therapy	 Chordoma and chondrosarcoma Ependymoma Primitive neuroectodermal tumors Pituitary adenoma Acoustic neuroma Acterovenous malformations Germinoma Eye tumors Lymphomas Selected sarcomas Nasopharyngeal cancer recurrence Pediatric tumors 		
The Netherlands	Health Council of the Netherlands on Proton Therapy ⁱ	 Skull base and spine chordomas and chondrosarcomas Meningioma Pediatric tumors 	 Re-irradiations Paranasal sinus tumors Nasopharyngeal carcinoma Retroperitoneal sarcoma 	
Canada	AHS ^j Proton Therapy Referral Committee Report	 Chordomas and chondrosarcomas Ocular melanomas^k Pediatric tumors 	 Benign tumors of the CNS Paranasal sinus and nasal cavity tumors 	

Ongoing phase-III randomized clinical trials

Brief title	Sponsor	Start date	Condition	Arm 1	Arm 2
IMPT ^a versus IMRT ^b for head and neck cancers	MDACC ^e , USA	August 2013	Oropharyngeal cancer	Protons ^d	X-rays ^d
Proton therapy versus IMRT ^b for prostate cancer	MGH ^e , USA	July 2012	Low or intermediate risk prostate cancer	Protons	X-rays
Proton beam therapy versus IMRT ^b trial for esophageal cancer	MDACC [*] , USA	April 2012	Esophageal cancer	Protons ^d	X-rays ^d
Comparing photon therapy to proton therapy to treat patients with lung cancer	RTOG ^I , USA	February 2014	Stage II-III NSCLC ^g	Protons ^d	X-rays ^d
Pragmatic randomized trial of proton versus photon therapy for breast cancer	PTCORI ^h , USA	2015	Post-mastectomy stage II or III breast cancer	Protons	X-rays
Trial of proton versus carbon ion radiation therapy in patients with chondrosarcoma	Heidelberg University, Germany	August 2010	Low and inter-mediate grade chondrosarcoma of the skull base	Protons	C-ions
Randomised trial of proton versus carbon ion radiation therapy in patients with chordoma	Heidelberg University, Germany	July 2010	Chordoma of the skull base	Protons	C-ions
First French prospective randomised study of the medical and financial potential of carbon ion therapy	Lyon University Hospitals	2016	Adenoid cystic carcinoma and sarcomas	C-ions	IMRT
Prospective trial comparing carbon ions to IMRT ^b in pancreatic cancer	NCI ⁱ , USA	2016	Locally advanced pancreatic adenocarcinoma	C-ions ^d	X-rays ^d

01-04-2021

Acknowledgement

Thank You

01-04-2021

