SURFACE MOULD

BRACHYTHERAPY

Dr. GUNASEELAN K. HEAD OF THE DEPARTMENT RADIATION ONCOLOGY RCC, JIPMER

Emil H. Grubbé

- Claimed to be the first to treat cancer with radiation (X-rays)
- Treated a Breast cancer patient with X-rays in Chicago in January, 1896 only 2 months after discovery of X-rays by Wilhelm Conrad Roentgen.

Many investigators then began testing the therapeutic potential of X-rays in several benign and malignant conditions.

By 1899, several physicians had successfully treated different types of malignancies particularly skin malignancies with X-rays.

Marie and Pierre Curie discovered Radium in 1898.

Was subsequently tested for radio'therapy'.

Henri-Alexandre Danlos

Successfully treated Lupus (skin) using Radium in 1901.

Radium was soon seen used to treat disorders where X-ray treatment was not feasible because it could be applied in a multitude of ways in which X-rays could not.

In the Early 1900s, Radium BRACHYTHERAPY was tested in malignancy.

Provided the advantage of more specific application to tissues as compared to X-rays.

Small tubes of radium strapped to the skin to treat malignancy

Radium applicator strapped to the skin

Mould, Richard Francis (1993). A century of x-rays and radioactivity in medicine

The Ist Brachytherapy applications were Surface moulds & plaques.

In these early applications, Radium was uniformly distributed in the applicator.

- It was later realized that this resulted in a non-homogeneous dose distribution.

Various forms of Radium Surface Moulds

Paterson & Parker later showed that:

"To achieve a homogeneous radiation dose distribution, a non-uniform distribution of Radium content is required"

They laid the Manchester Rules

But,

- The construction and use of brachytherapy surface moulds was associated with Radiation Hazard.
- Linear accelerators were introduced and high-energy electron beams became available, that began to be extensively used for skin and superficial treatment.
- This made surface mould brachytherapy become less popular.

However,

- With the development of after-loading techniques and in particular HDR remote after-loading, the issues associated with personnel radiation protection were overcome.
- HDR brachytherapy units became more widely used and this led to a *revived interest in surface moulds*.
- Radiation safety hazards associated with LDR moulds are no longer present and the treatment could be delivered safely over a short time as an outpatient procedure.

RADIATION MODALITIES FOR SKIN & SUPERFICIAL TUMOURS

kV X-Rays

- Useful for smaller tumours
- Short Focus to Skin Distance (FSD) → High output & large influence of Inverse square law → Rapid dose fall-off.
- Electron contamination
- Calibration made difficult by the rapid dose gradient & Electron contamination
- Dosimetric issues with curved treatment areas

RADIATION MODALITIES FOR SKIN & SUPERFICIAL TUMOURS

High Energy Electrons

- Increasingly used.
- Skin sparing.
- Gives significant dose at depth (even with lower energies).
- Therefore, beneficial for deeper tumours.
- Can not account for curvature in treatment area.
- Dosimetric planning uncertainities.

RADIATION MODALITIES FOR SKIN & SUPERFICIAL TUMOURS

Mould Brachytherapy

- Can position source to precisely cover treatment area
- Conformal dose distribution
- Small effective penumbra
- Relative dose at depth can be controlled by adjusting height of source dwells above skin surface.
- Due to close source to skin distance, depth dose profile falls off quickly sparing tissue at depth.
- Can account for surface curvature

WHAT IS MOULD BRACHYTHERAPY ?

- A technique of delivering brachytherapy by an *applicator* that is usually *custom* made and designed to provide a more *constant* & *reproducible* frame for *source positioning*.
- Can be used for flat surfaces as well as irregular shapes.
- Can be constructed from variety of material such as: into which catheters are embedded
- They fit to the external patient surface & the catheters must remain in the exact position
- Intended to be as close as possible to tumour surface so as to provide adequate dose coverage of tumour and increase distance to normal surrounding structures.

Specialized polymers
Acrylic resin
Wax
Thermoplastic material

WHAT MAKES SURFACE MOULD BRACHY ATTRACTIVE ?

- No associated pain or discomfort
- No invasive surgical procedure involved
- Does not require anaesthesia
- No risk of tissue injury or infection
- No risk of transplanting tumour cells
- Doesn't restrict the patient to bed
- No post-procedure effects
- Good cosmesis
- Conformal dose distribution & Sparing of deeper tissues
- Surface curvature can be accounted fo
- Fewer treatment visits (compared to External RT)

IDEAL CASE FOR SURFACE MOULD ?

- Accessible site
- Superficial tumour
- Well defined margins.
- No regional or distant spread

Suitable sites for mould therapy include:-

- Skin
- Scalp
- Face
- Pinna
- Lip
- Buccal mucosa
- Hard palate
- Oral cavity
- Maxillary antrum
- External auditory canal
- Orbital cavity after exenteration.

WORKFLOW

PLANNING

- MANCHESTER SYSTEM
- IMAGE GUIDED PLANNING

Showed the amount of radium in milligram-hours (mg-h) required to give a dose of 1000R to the treatment area which is at a distance 'h' from the surface of the applicator, while achieving a + /-10% dose uniformity

Answered:

- I. How much radium will be required?
- 2. How radium must it be arranged? (to achieve a homogeneous dose +/- 10% across skin surface)

^{*a*}Filtration = 0.5 mm platinum. ^{*b*}Area is in centimeters squared.

Treating distance is in centimeters.

MANCHESTER SYSTEM

I. How much radium will be required?

Depends on the

- Area to be treated
- Treating distance
- Filtration

f filtration	other than	0.5	mm	Platinum	used

Platinum—Thickness	 	o · 8	I	1 • 5	2
Per cent correction—Add	 ••	5%	10%	20%	35%

Gold	 	 	As platinum.
Lead and Silver	 	 	As half their thickness in platinum.
Monel, Brass, etc.	 	 	As one-third their thickness in platinum.

ABLE /	4.12.1A	Milligran	n-Hours pe	r 1,000 R fe	or Different	Areas and	Various Tr	eating Dis	tances"	
Area ^b	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
0	30	119	268	476	744	1,071	1,458	1,904	2,412	2,976
1	68	171								
2	97	213	375	598	865	1,197	1,595	2,043	2,545	3,117
3	120	247								
4	141	278	462	698	970	1,305	1,713	2,168	2,665	3,243
5	161	306								
6	177	333	536	782	1,066	1,405	1,822	2,286	2,778	3,360
7	192	359								
8	206	384	599	855	1,155	1,500	1,924	2,395	2,883	3,472
9	221	408								
10	235	433	655	923	1,235	1,590	2,020	2,500	2,987	3,580
11	248	456								
12	261	480	710	990	1,312	1,673	2,112	2,603	3,087	3,682
13	274	502								
14	288	524	764	1,053	1,386	1,753	2,200	2,698	3,185	3,785
15	302	546			1.1				1000000	1997
16	315	566	814	1,113	1,460	1,830	2,283	2,790	3,280	3,883
17	328	585								
18	342	605	863	1,170	1.525	1,905	2.363	2.879	3.370	3.985
19	355	623								
20	368	641	910	1,225	1,588	1,979	2.445	2.965	3.461	4.080
22	393	674	960	1,280	1,650	2.049	2.522	3.047	3,550	4,174
24	417	707	1.008	1 335	1,712	2117	2,598	3.126	3,639	4 267
26	442	737	1.056	1 388	1.768	2 188	2,670	3,200	3724	4356
28	466	767	1.100	1.438	1.826	2.254	2742	3,275	3,804	4.446
30	490	795	1.142	1.487	1,880	2 320	2.817	3 348	3,883	4 534
32	513	823	1.185	1.537	1.936	2 380	2.888	3,420	3,966	4 620
34	537	854	1,226	1 587	1 992	2442	2,956	3,490	4.047	4 700
36	558	879	1 268	1,638	2048	2,502	3022	3 559	4125	4 783
38	581	909	1 308	1,685	2 100	2 562	3,088	3 6 2 7	4 198	4 863
40	603	934	1 346	1,732	2152	2,620	3,150	3,695	4 273	4 9 4 7
47	624	962	1 384	1,780	2 203	2,627	3,715	3,762	4 348	5 0 2 0
44	644	990	1,420	1.825	2,205	2,077	3 275	3,826	4 4 2 3	5,026
46	665	1015	1457	1.870	2 305	2,788	3 335	3,890	4 494	5174
48	685	1.043	1.490	1 915	2,363	2,843	3 395	3,050	4 565	5 250
50	705	1,072	1,522	1 958	2,007	2,045	3 4 5 5	4.018	4 633	5 3 2 7
57	725	1,072	1,554	2,004	2,402	2,057	3 5 1 3	4,080	4 702	5,400
54	744	1 125	1 588	2,004	2,450	3,003	3,569	4142	4,768	5 475
56	762	1 152	1.618	2,097	2,500	3,055	3,625	4 205	4,935	5 548
59	701	1,177	1,610	2,002	2,540	3,005	3,623	4.265	4 003	5,540
60	800	1206	1,687	2,190	2,557	3,160	3,075	4,207	4,900	5,620
67	818	1,230	1,712	2,100	2,040	3,100	2,755	4,520	5.037	5,760
64	010	1,250	1,740	2,222	2,052	3,212	3,790	4,309	5,057	5,700
66	855	1,200	1,740	2,202	2,730	3,202	3,040	4,447	5,105	5,000
68	873	1,205	1,709	2,302	2,702	3,360	3,900	4,505	5,171	5,900
70	0/3	1340	1,227	2,342	2,020	3,000	4,001	4,502	5,252	6,022
70	000	1,540	1,027	2,500	2,075	3,410	4,001	4,010	5,254	6,000
74	908	1,307	1,007	2,420	2,922	3,400	4,055	4,0/5	5,555	6,098
74	927	1,394	1,007	2,455	2,900	3,510	4,105	4,733	5,417	6,162

PATERSON, R., and PARKER, H. M., British Journal of Radiology, vii, 1934, p. 592

^{*a*}Filtration = 0.5 mm platinum. ^{*b*}Area is in centimeters squared.

Treating distance is in centimeters

MANCHESTER SYSTEM

I. How much radium will be required?

Depends on the

- Area to be treated
- Treating distance
- Filtration

Example:

To treat a 10cm² area at a distance of 0.5cm to a dose of 1000R, 235 mg-hrs of Radium is required (0.5mm Platinum)

TABLE /	A.12.1A	Milligram-Hours per 1,000 R for Different Areas and Various Treating Distances"										
Area ^b	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0		
0	30	110	768	476	744	1.071	1.458	1 904	2412	2.976		
1	68	171	200	470	,	1,051	1,450	1,504	2,412	2,570		
2	97	213	375	598	865	1,197	1.595	2.043	2.545	3,117		
3	120	247	212	220	000					2,		
4	141	278	462	698	970	1.305	1,713	2.168	2.665	3,243		
5	161	306								-1		
6	177	333	536	782	1,066	1,405	1,822	2,286	2,778	3,360		
7	192	359										
8	206	384	599	855	1,155	1,500	1,924	2,395	2,883	3,472		
9	221	408					1. K. M. L. K.					
10	235	433	655	923	1,235	1,590	2,020	2,500	2,987	3,580		
11	248	456										
12	261	480	710	990	1,312	1,673	2,112	2,603	3,087	3,682		
13	274	502								0.50005		
14	288	524	764	1,053	1,386	1,753	2,200	2,698	3,185	3,785		
15	302	546										
16	315	566	814	1,113	1,460	1,830	2,283	2,790	3,280	3,883		
17	328	585										
18	342	605	863	1,170	1,525	1,905	2,363	2,879	3,370	3,985		
19	355	623										
20	368	641	910	1,225	1,588	1,979	2,445	2,965	3,461	4,080		
22	393	674	960	1,280	1,650	2,049	2,522	3,047	3,550	4,174		
24	417	707	1,008	1,335	1,712	2,117	2,598	3,126	3,639	4,267		
26	442	737	1,056	1,388	1,768	2,188	2,670	3,200	3,724	4,356		
28	466	767	1,100	1,438	1,826	2,254	2,742	3,275	3,804	4,446		
30	490	795	1,142	1,487	1,880	2,320	2,817	3,348	3,883	4,534		
32	513	823	1,185	1,537	1,936	2,380	2,888	3,420	3,966	4,620		
34	537	854	1,226	1,587	1,992	2,442	2,956	3,490	4,047	4,700		
36	558	879	1,268	1,638	2,048	2,502	3,022	3,559	4,125	4,783		
38	581	909	1,308	1,685	2,100	2,562	3,088	3,627	4,198	4,863		
40	603	934	1,346	1,732	2,152	2,620	3,150	3,695	4,273	4,942		
42	624	962	1,384	1,780	2,203	2,677	3,215	3,762	4,348	5,020		
44	644	990	1,420	1,825	2,255	2,733	3,275	3,826	4,423	5,096		
46	665	1,015	1,457	1,870	2,305	2,788	3,335	3,890	4,494	5,174		
48	685	1,043	1,490	1,915	2,354	2,843	3,395	3,954	4,565	5,250		
50	705	1,072	1,522	1,958	2,402	2,897	3,455	4,018	4,633	5,327		
52	725	1,098	1,554	2,004	2,450	2,950	3,513	4,080	4,702	5,400		
54	/44	1,125	1,588	2,047	2,500	3,003	3,569	4,142	4,768	5,4/5		
56	/62	1,152	1,618	2,092	2,548	3,055	3,625	4,205	4,835	5,548		
58	/81	1,177	1,650	2,137	2,597	3,106	3,6/8	4,267	4,903	5,620		
60	008	1,206	1,682	2,180	2,646	3,160	3,735	4,328	4,970	5,690		
02	010	1,230	1,/12	2,222	2,092	3,212	3,790	4,389	5,057	5,700		
64	83/	1,260	1,740	2,262	2,/30	3,202	3,845	4,447	5,105	5,830		
60	855	1,285	1,709	2,302	2,782	3,310	3,900	4,505	5,1/1	5,900		
70	0/3	1,315	1,798	2,342	2,020	3,300	3,950	4,302	5,252	6.022		
70	000	1,340	1,027	2,500	2,075	3,460	4,001	4,010	5,294	6,000		
74	908	1,307	1,657	2,420	2,922	3,400	4,055	4,0/5	5,335	6,098		
76	945	1 4 21	1,007	2,400	3,013	3,510	4158	4,733	5.480	6 225		

2. How Radium must be arranged?

Why is it important?

Diagram illustrating the extreme importance of correct arrangement. Intensity produced at 1 cm. by two different radium distributions over the same area.

Distance (h) refers to the distance separating the plane on which the radium is mounted, and the plane at which the dose is assessed (*i.e.*, the treated area).

- 2. How Radium must be arranged?
 - After determining the amount of Radium to be used, that amount is to be arranged in the following ways.
 - Use <u>CIRCLES</u> arrangement wherever possible
 - If diameter < 3x distance</p>

- \rightarrow Single circle sufficient
- If diameter >3x and <6x distance</p>
- If diameter > 6x distance

- \rightarrow 5% radium at the centre; remaining 95% in the circle
- → 3% radium at the centre; use 2 concentric circles (inner circle = $\frac{1}{2}$ dia of outer) Diameter divided by "distance" ... 6 $7\frac{1}{2}$ 10 Per cent Radium outer circle ... 80% 75% 70%Radium in inner circle ... 17% 22% 27%

• Use other arrangements if required \rightarrow Separate rules exist for Square / Rectangle / Irregular fields.

- 2. How Radium must be arranged?
 - CIRCLES arrangement
 - If diameter < 3x distance</p>

If diameter >3x and <6x distance</p>

If diameter > 6x distance

Various arrangements

FIG. 2. Diagram illustrating the "Rules for Distribution," depicting typical arrangements to produce homogeneity at 1 cm.

EXAMPLE:

Treat this lesion of 3.5 cm diameter by 1cm mould With 1 mm filtration to a dose of 6000 R in 20 days (16 hrs per day)

- We'll treat 5 cm area (for margin) with circles
- Area of treatment = $\pi d^2/4 \sim 20 \text{ cm}^2$
- Distance (h) = 1 cm
- Total Treatment time = $20 \times 16 = 320$ hrs

^{*a*}Filtration = 0.5 mm platinum. ^{*b*}Area is in centimeters squared.

ing distance is in centimeters

MANCHESTER SYSTEM

EXAMPLE:

Treat this lesion of 3.5 cm diameter by 1 cm mould With 1 mm filtration to a dose of 6000 R in 20 days

(16 hrs per day)

- We'll treat 5 cm area (for margin) with circles
- Area of treatment = $\pi d^2/4 \sim 20 \text{ cm}^2$
- Distance (h) = I cm
- Total Treatment time = 20x16 = 320 hrs

RADIUM REQUIREMENT

- Radium required for 1000R = 641 mg-hrs
- Radium required for 6000R = 641x6 ~ 3,850 mg-hrs + 10% (fil)~ 4200 mg-hrs

ى

• Total Radium required = <u>**I3 mg**</u> (given for 320 hrs)

_								Contractory - Contract		Milligram-Hours per 1,000 R for Different Areas and Various Treating Distances"										
Are	a ^b 0.5°	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.										
0	30	119	268	476	744	1,071	1,458	1,904	2,412	2,9										
1	68	171																		
2	97	213	375	598	865	1,197	1,595	2,043	2,545	3,1										
3	120	247																		
4	141	278	462	698	970	1,305	1,713	2,168	2,665	3,2										
5	161	306																		
6	177	333	536	782	1,066	1,405	1,822	2,286	2.778	3.3										
7	192	359																		
8	206	384	599	855	1.155	1.500	1.924	2.395	2.883	3.4										
9	221	408			1.000															
10	235	433	655	973	1 235	1.590	2 020	2 500	2 987	3										
11	248	456	000	525	1,225	1,550	2,020	2,500	2,507	-1										
12	261	480	710	000	1312	1673	2112	2 603	3.097	3										
12	201	400	/ 10	550	1,512	1,075	2,112	2,005	3,007	2,										
13	2/4	502	764	1.052	1 204	1 752	2.200	3 609	2 105	2										
14	288	524	/04	1,053	1,380	1,/03	2,200	2,698	3,185	3,										
15	302	540	014		1.460	1.070	2 202	2 700	2 200	2										
10	315	200	814	1,113	1,460	1,830	2,283	2,790	3,280	3,										
17	328	585				12.010				1										
18	342	605	863	1,170	1,525	1,905	2,363	2,879	3,370	3										
19	355	623																		
20	368	641	910	1,225	1,588	1,979	2,445	2,965	3,461	4										
22	393	674	960	1,280	1,650	2,049	2,522	3,047	3,550	4										
24	417	707	1,008	1,335	1,712	2,117	2,598	3,126	3,639	4										
26	442	737	1,056	1,388	1,768	2,188	2,670	3,200	3,724	4										
28	466	767	1,100	1,438	1,826	2,254	2,742	3,275	3,804	4										
30	490	795	1,142	1,487	1,880	2,320	2,817	3,348	3,883	4										
32	513	823	1,185	1,537	1,936	2,380	2,888	3,420	3,966	4										
34	537	854	1,226	1,587	1,992	2,442	2,956	3,490	4,047	4										
36	558	879	1,268	1,638	2,048	2,502	3,022	3,559	4,125	4										
38	581	909	1,308	1,685	2,100	2,562	3,088	3,627	4,198	4										
40	603	934	1,346	1,732	2,152	2,620	3,150	3,695	4,273	4										
42	624	962	1,384	1,780	2,203	2,677	3,215	3,762	4,348	5										
44	644	990	1,420	1,825	2,255	2,733	3,275	3,826	4,423	5										
46	665	1,015	1,457	1,870	2,305	2,788	3,335	3,890	4,494	5										
48	685	1,043	1,490	1,915	2,354	2,843	3,395	3,954	4,565	5										
50	705	1,072	1,522	1,958	2,402	2,897	3,455	4,018	4,633	5										
52	725	1,098	1,554	2,004	2,450	2,950	3,513	4,080	4,702	5										
54	744	1,125	1,588	2,047	2,500	3,003	3,569	4,142	4,768	5										
56	762	1,152	1,618	2,092	2,548	3,055	3,625	4,205	4,835	5										
58	781	1,177	1,650	2,137	2,597	3,106	3,678	4,267	4,903	5										
60	800	1,206	1,682	2,180	2,646	3,160	3,735	4,328	4,970	5										
62	818	1,230	1,712	2.222	2,692	3,212	3,790	4.389	5.037	5										
64	837	1,260	1,740	2.262	2,736	3.262	3.845	4,447	5,105	5										
66	855	1,285	1.769	2.302	2,782	3.310	3.900	4,505	5,171	5										
68	873	1.313	1,798	2.342	2.828	3.360	3,950	4.562	5,232	5										
70	890	1.340	1.827	2,380	2.875	3,410	4.001	4.618	5,294	6										
72	908	1367	1.857	2,420	2 977	3,460	4.053	4.675	5 355	6										
72	900	1 394	1,857	2,420	2,922	3,400	4105	4,0733	5 417	6										
10		the second se	1.0.0.10	6,733	6.200	3,510	4,100	7,1 22	20110	0										

Platinum—Thick Per cent correcti	on—2	 1dd	•••	•••	0.8 5%	I 10%	1 ·5 20%	2 35%		
Gold					As platir	num.				
Lead and Silver	••		• •		As half their thickness in platinu					
Monel, Brass, etc.	••		• •		As one-third their thickness in plat					

EXAMPLE:

Treat this lesion of 3.5 cm diameter by 1cm mould With 1 mm filtration to a dose of 6000 R in 20 days (16 hrs per day)

- We'll treat 5 cm area (for margin) with circles
- Area of treatment = $\pi d^2/4 \sim 20 \text{ cm}^2$
- Distance (h) = 1 cm
- Total Treatment time = 20x16 = 320 hrs

RADIUM ARRANGEMENT

- Diameter is 5X distance i.e. >3x and <6x distance.
- Therefore, 5% radium at the centre \rightarrow 0.05 x 12 = 0.65 ~ <u>I mg at centre</u>
- Remaining 95% in the circle ~ <u>I2 mg in the circle</u> (use 6 '2mg' tubes)

How to choose thickness of applicator or 'h':

- Determined by the treatment depth required
- Governed by the Inverse Square Law
- If greater depths are to be treated, source are kept at a greater height

	Area of mould, in cm ²									
Distance, h, to surface, in mm	3	7	10	20	30					
5	1.4	1.5	1.6	1.9	1.4					
10	2.2	2.3	2.4	2.8	3.1					
15	2.6	2.9	3.1	3.7	4.3					
20	3.3	3.5	3.7	4.2	4.8					

IMAGE GUIDED PLANNING

Imaging, and target and organ at risk definition

Imaging methodology, purpose of imaging, organ at risk volume and target volume definitions

Treatment planning

Applicator reconstruction Plan optimization and evaluation Final dose prescription Dose reporting

Plan verification and approval

Plan transfer to afterloader

Verification of transferred treatment parameters

Pre-delivery quality control

For example, connection of transfer tubes and applicator position

Treatment delivery

In vivo dose measurements (desirable) Dose recording

Ideal for superficial tumours (<5mm)

A distance from the source to the skin of 5mm is recommended to obtain homogeneity on the surface of the skin, & avoid an overdosage

Dose is prescribed to 3–5mm under the skin surface.

Recommended BT schedules for surface moulds:

- 3Gy per fraction, 17–18 fractions, 3 times a week, total dose 51–54Gy.
- 4Gy per fraction, 10–12 fractions, 3 times a week, total dose 40–48Gy.
- 5Gy per fraction, 10–12 fractions, twice a week, total dose 50–60Gy.
- 5Gy per fraction, 8 fractions, twice a day, daily, total dose 40Gy.
- Higher doses per fraction, once a week

IAEA Human Health 12 - The Transition from 2-D Brachytherapy to 3-D High Dose Rate Brachytherapy GUINOT JL et al. GEC-ESTRO ACROP recommendations in skin brachytherapy. Radiother Oncol (2018)

THANK YOU