

ICRO Teaching course: 1st August 2020

Proton therapy for Prostate cancer: Past and Future

Dr. Srinivas Chilukuri Senior consultant Radiation Oncology Apollo Proton Cancer Centre Kahneman & Tversky discovered "cognitive biases," showing that that humans systematically make choices that defy clear logic.

"Humans are born irrational and that has made us better decision makers"

Benefits

출/ Techcryption

C

Proton Therapy

Protons Stop RBE is Variable

Radiation for Prostate Cancer

Image guided IMRT

Crisp margins Modern algorithms G C Ρ 2004/2005 G C Ρ

Low risk of SV involvement ⁽¹⁾		Moderate risk of SV involvement ⁽¹⁾		74Gy Group	60Gy Group	57Gy Group	2Gy equivalent ⁺⁺⁺	Minimum iso-dose coverage
GTV1	Р	GTV1	Р					
CTV1	P+base of SV+5mm	CTV1	P+SV+5mm	P+SV+5mm 59.2 48.0		45.6	54Gy	76%
PTV1	CTV1 +5mm	PTV1	CTV1 +5mm					
GTV2	Р	GTV2	Р					
CTV2	P+5mm	CTV2	P \pm base of SV ⁺⁺ +5mm	71.0	57.6	54.7	70Gy	91%
PTV2	CTV2 +5mm/0mm*	PTV2	CTV2 + 5mm/0mm*					
GTV3	Р	GTV3	Р					
CTV3	P+0mm	CTV3	P+0mm	74.0	60.0	57.0	74Gy	95%
PTV3	CTV3 +5mm/0mm ⁺	PTV3	$CTV3 + 5mm/0mm^+$					

Dose

Proton therapy for Prostate cancer

Has been there since a long time

Passive scattering Proton therapy

- Relatively large margins
- No image guidance/Image guidance since 2010
- Primitive algorithms
- Prostate only

Review of evidence

Study	Data Source	N	Target/Dose/Image Guidance	Rectal Toxicity	Urinary Toxicity	Erectile Toxicity
Gray et al ⁶⁷	IMRT: PROSTQA [*] (2003-2006)	IMRT: 153	NR	↓ with PBT (2-3 mo)	↓ with PBT (2-3 mo)	NR
	PBT: MGH (2004-2008)	PBT: 95	76.6-79.2 Gy (IMRT), 74-82 Gy (PBT) NR	≈ (12 mo)	↑ with PBT (12 mo) ≈ (24 mo)	
Hoppe et al ⁶⁸	IMRT: PROSTQA [*] (2003-2006)	IMRT: 204	Prostate <u>+</u> SV	↓ with PBT (6 mo)	≈ (6, 12, 24 mo)	≈ (6, 12, 24 mo)
	PBT: Univ. of FL (2006- 2010)	PBT: 1243	75.6-79.2 Gy (IMRT), 78-82 Gy (PBT) Daily	pprox (12, 24 mo)		
Fang et al ⁶⁹	Univ. of PA (2010-2012)	IMRT: 94 [†] PBT: 94	Prostate + SV 79.2 Gy Daily	≈ (≤3 or >3 mo)	≈ (≤3 or >3 mo)	≈ (≤3 or >3 mo)

Protons for Prostate Cancer

All Patients MD Anderson Cancer Centre 05/2006 – 04/2013 4521 new Patients

Use or abuse?

What is missing?

- 1. Data for comparison of modern IMRT with modern Proton therapy
- 2. Data for pelvic nodal irradiation

Contemporary Proton Therapy

- Rectal ballons
- PBS systemssmaller spot sizes

Proton Therapy

Cone beam CT IGRT Monte Carlo algorithms

yer

Spot by spot, line by line, layer by layer

Prostate Cancer-Contemporary

Registry Data: Percent of Treatment Sites

Univ of Washington: 16%

CrossMark

Five-year outcomes from a prospective trial of image-guided accelerated hypofractionated proton therapy for prostate cancer

Randal H. Henderson, Curtis Bryant, Bradford S. Hoppe, R. Charles Nichols, William M. Mendenhall, Stella Flampouri, Zhong Su, Zuofeng Li, Christopher G. Morris and Nancy P. Mendenhall

University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA

Genitourinary Cancers

Five-Year Biochemical Results, Toxicity, and Patient-Reported Quality of Life After Delivery of Dose-Escalated Image Guided Proton Therapy for Prostate Cancer

MULTI-INSTITUTIONAL PHASE II STUDY OF PROTON BEAM THERAPY FOR ORGAN-CONFINED PROSTATE CANCER FOCUSING ON THE INCIDENCE OF LATE RECTAL TOXICITIES

Keiji Nihei, M.D., Ph.D., * Takashi Ogino, M.D., Ph.D., * Masakatsu Onozawa, M.D., *

Potential Benefits

High Risk Prostate Cancer

Pelvic nodes and prostate Radiation

Oligometastatic Prostate Cancer

Prostate and metastatic/nodal sites

Low and Intermediate Risk prostate cancer

Reduction in late GU toxicity Reduction in late GI toxicity Reduction in acute small bowel toxicity

Younger patients Pts with poor baseline IPSS scores Reduction in sexual dysfunction Reduction in second cancer risk

High Risk Prostate Cancer

Acute GI toxicity when treating pelvic nodes

Pivotal Study

RCT between Prostate only vs. WPRT

Dearnaley, et al. IJROBP Oct 2019

High Risk Prostate Cancer

GI toxicity when treating pelvic nodes

Median follow-up: 37 months (35-38 mo)

	Prostate Only	Prostate + Pelvis
Week 6 grade 2+ Lower GI toxicity	7%	26%
Week 18 grade 2+ Lower GI toxicity	3.3%	4.6%
2 years grade 2+ GI toxicity	17%	24%

RTOG Physician reported toxicity

SMALL/LARGE INTESTINE	None	Mild diarrhea Mild cramping Bowel movement 5 times daily Slight rectal discharge or bleeding	Moderate diarrhea and colic Bowel movement >5 times daily Excessive rectal mucus or intermittent bleeding	Obstruction or bleeding requiring surgery	Necrosis/ Perforation Fistula
--------------------------	------	---	--	--	-------------------------------------

Tenesmus- Ineffectual or painful straining ?

Impact of DVH parameters: GI

Anna Wilkins, et al. IJROBP 2020

Possible Impact on GI toxicity

Dosimetric Impact	Likely Clinical Impact
reduction in high doses	Less or similar probability of rectal bleeding
reduction in intermediate doses	Reduction in tenesmus and rectal urgency

Rectal Dosimetry Penumbra Differences

	Dose fall off is 2 times more rapid in high dose region					
	Dose fall off is 4 times more rapid in the intermediate to low dose region.					
UIII	Dose fall off per mm					
	95%-80% IDL		80%-20% IDL			
	Protons IMRT		Protons	IMRT		
Posterior direction	4.1%	2.0%	6.2%	1.5%		
Superior direction	4.1%	7.5%	6.2%	5.8%		

High dose region

	IMRT plans	
	Rectum V70	
MSKCC	14%	V70 accented
MGH	14.5%	surrogate for
MADCC	15.5%	toxicity
UF	14%	ισχιτιτ
Protons UF	8%	
Protons APCC	8%	

Zelefsky et al Radiotherapy and oncology 2000; 55:241-249

Trofimov et al IJROBP 2007; 69:pp. 444-453,

Zhang et al IJROBP 2007; 67: 620-629

Vargas et al IJROBP 2008; 70: pp. 744-751

Low to Intermediate Doses

V30-V60Gy

Tenesmus Rectal urgency

Fig. 3. Combined rectal dose–volume curves for proton therapy and intensity-modulated radiotherapy (IMRT) (n = 20 plans); error box shows 95% standard error.

Vargas et al IJROBP 2008; 70: pp. 744–751

Bladder toxicity when treating Pelvic nodes

Impact of intermediate doses

V30-V50 contributing to toxicity as >V50 there was very little difference

Impact of Proton therapy on Bladder dosimetry

Proton Therapy

Tomotherapy

Bladder Dosimetry

Proton therapy-GU toxicity outcomes

Tactors associated with fate grade 5+ genitournary toxicity on multivariate analyses						
Factors	No	Yes				
Prostate volume $\geq 60 \text{ cm}^3$	38/1097 (3.5%)	23/188 (12.2%)				
α-blockers	37/1044 (3.5%)	24/245 (9.8%)				
Pretreatment TURP*	Grade3+ GU- 44/1193 (3.7%)	17/96 (17.7%)				

34/989 (3.4%)

able 5	Factors associate	ed with late grade 3	+ genitourinary	v toxicity on	multivariate a	analyses
--------	-------------------	----------------------	-----------------	---------------	----------------	----------

2.9%

Table 4	Factors associated with late grade 3+ genitourinary
toxicity or	multivariate analyses

Absolute bladder

 $V30 > 19.2 \text{ cm}^3$

	Total with grade	5-year estimates of
No. of risk	3+ toxicity/no. of	freedom from grade
factors	patients	3+ toxicity
0	14/720 (1.9%)	1.9%
1	13/355 (3.7%)	3.6%
2	26/174 (14.9%)	11.3%
3 or 4	8/40 (20.0%)	17.8%

Factors tested in this multivariate analysis included prostate volume, anticoagulation, pretreatment cytoreductive prostate procedures, pretreatment treatment with α -blockers, International Prostate Symptom Score, and 8 dose-volume histogram (DVH) parameters.

1257 pts

Prostate volume> 40cc

27/298 (9.1%)

- 2. Alfa blockers
- 3. Pre-treatment TURP
- V30 Bladder >19.2cc
- Anti-coagulation
- 6. Poor IPSS score
- Diabetes

Bryant C, et al, IJROBP 2015

P-value

< .0001

<.0001

.0002

.0002

Urinary functional outcomes and toxicity five years after proton therapy for low- and intermediate-risk prostate cancer: Results of two prospective trials

Decrease in post-treatment IPSS						
Baseline IPSS	N	No. of patients with ≥5-point decrease at any point after treatment (%)	No. of patients with \geq 5-point decrease at last follow-up (%)	No. of patients with ≥5-point decrease in IPSS no longer present at last follow-up (%)		
< 15 15–25 Total	89** 33 122	35 (39.3%) 29 (87.9%) 64 (52.5%)	20 (22.5%) 18 (54.5%) 38 (31.1%)	15 (16.9%) 11 (33.3%) 26 (21.3%)		

- Pts with pretreat IPSS of <15 had stable urinary function five years after PT,
- Pts with 15 25 showed substantial improvement (decline) in median IPSS.

PT leads to a minimal toxicity in low/intermediate risk, including those with significant pretreatment GU dysfunction (IPSS 15 – 25).

Small Bowel

Proton Therapy

Tomotherapy

Sanda et al, N Engl J Med. 2008 Mar 20;358(12):1250-61.

Sexual Scores

Long-term outcomes following proton therapy for prostate cancer in young men with a focus on sexual health

Clement K. Ho^a, Curtis M. Bryant^a, Nancy P. Mendenhall^a, Randal H. Henderson^a, William M. Mendenhall^a,

Figure 1. Results of the patient-reported expanded prostate cancer index composite (EPIC) questionnaire in men 60 years old and younger over time. This data shows the baseline 0-, 0.5-, 1-, 2-, 3-, 4-, 5- and \geq 5-year data (A) sexual summary score, (B) incidence of potency, (C) urinary incontinence score, (D) percentage of men pad-free on a daily basis, (E) urinary irritative score and (F) bowel summary score.

Second cancer risk

Biology of proton therapy

Dense concentration of DNA damage vs. Sparsely distributed DNA damage

Greater complexity of damage - requires different mechanisms for DNA repair

Protons may result in greater down regulation of certain genes that could impact metastases

X-ray

Proton

Girdhani, et al. Radiation Research 2013, Amundsen et al IJPT 2018

Indirect Comparison

Modern Approaches/optimal dose	5 yr FFBP Low Risk	5yr FFBP Intermediate risk
Conventional # Photon series	92-98% (MSKCC)	85-86%
Conventional # Proton series	99% (UFPTI)	95%
Hypo Photon	96% (Chhip)	84%
Hypo Proton	98% (UFPTI)	93%

Is extreme hypofractionation an option?

. .

. . .

2 4 1

	Events				
	Time of Grade 2 Adverse Events	38 Gy RBE in 5 Fractions (Arm I)	79.2 Gy RBE in 44 Fractions (Arm II)	Р	
	Urinary tract Before radiotherapy	7/46 (15.2)	5/27 (18.5)	0.76	
Acute GU Toxicities	(n/N [%]) During treatment (n/N [%]) After treatment (n/N [%])	9/46 (19.6)	7/27 (25.9)	0.77	
	3 mo 6 mo 1 y	4/40 (10.0) 7/40 (17.5) 7/31 (22.6)	$\begin{array}{c} 0 \ (0) \\ 0 \ (0) \\ 2/17 \ (11.8) \\ 5/16 \ (21.2) \end{array}$	0.29 0.04 0.46	
	2 y Overall (n/N [%]) Gastrointestinal tract	2/16 (12.5) 17/46 (37.0)	5/16 (31.3) 11/27 (40.7)	0.39	
	Before radiotherapy (n/N [%])	0 (0)	0 (0)	>0.99	
Acute GI Toxicities	During treatment (n/N [%]) After treatment (n/N [%])	2/49 (4.1)	0 (0)	0.53	
	3 mo 6 mo 1 y 2 y	1/40 (2.5) 3/40 (7.5) 1/31 (3.2) 1/16 (6.3)	0 (0) 1/26 (3.8) 3/17 (17.6) 1/17 (5.9)	0.99 0.99 0.12 0.77	
	Overall (n/N [%])	6/46 (13.0)	3/27 (11.1)	0.99	

TADLE 2 11

Postop setting for salvage

Table 2. Acute and late maximum GU and GI CTCAE v 4.0 toxicities for post-prostatectomy PT.

Toxicity Grade	GU		GI		
	Acute ^a	Late ^b	Acute ^a	Late ^b	
0	14 (14.0)	14 (17.7)	66 (66.0)	58 (73.4)	
1	71 (71.0)	49 (62.0)	34 (34.0)	21 (26.6)	
2	15 (15.0)	16 (20.3)	-	-	

 ${}^{a}N = 100$ during PT and up 3 months after completion. ${}^{b}N = 79$ patients with minimum 3 months follow up. There were no grade \geq 3 toxicities.

APCC Experience

1. Standardized Protocol- Hypofractionated Treatment

Low Risk/Low Intermediate Risk

High Risk/Very high risk

Oligometastatic

Rectal Balloon <u>+</u> fiducials Margin recipe Surface guidance Target Delineation Image guidance and verification Treatment duration and intensity

Prospectively collecting- IPSS scores, QOL-PR25, EPIC bowel, bladder and sexual scores

Road Ahead

- 2. Extremely hypofractionated IMPT- 5#, 40Gy in 5#
- Thinnest possible fiducials/no fiducials
- low risk prostate cancer
- Single arm prospective study
- With non inferiority endpoint of bPFS with non-inferiority threshold of +/-5% and +/-9% at 2yrs and 5 yrs.
- Sample size: 65 pts, 20/year

Reality vs. Assumption

COMPPARE Study: RCT of 3000 pts, Protons vs. photons, EPIC scores as primary endpoint

PARTIQOL study: RCT of 400 pts of low and intermediate risk prostate cancer, EPIC bowel scores as primary end point