MANAGEMENT OF RECTAL MALIGNANCIES SHORT VS LONG COURSE RADIOTHERAPY EVIDENCES

Dr Preety Jain M.D, DNB Associate Professor, Govt Cancer Hospital M G M Medical College, Indore

Points of discussion

Evolution of locally advanced carcinoma of rectum

- Surgery
- Surgery plus RT
- Surgery plus RT/CRT
- Preop/vs postop RT
- Metaanalysis

NEED OF ADJUVANT TREATMENT

- 1:Improved survival
- 2: Local control
- 3: QOL (sphincter preservation

	Stage	T, N, M	5-year Survival (%)
	0	TIS, T1, N0, MO	□90
	I	T2, N0, M0	80-85
PROGNOSIS	Ш	T 3-4, NO, MO	70-75
)	III	T2, N1-3, M0	70-75
° p	III	T3, N1-3, M0	50-65
		T4, N1-2, M0	25-45
	IV	M1	<3

PREOPERATIVE SETTING

	Table 2. Anatomic Stage/Prognostic Gro						
	Stage	т	N	M			
	0	Tis	N0	MO			
	1	T1	N0	MO			
		T2	NO	MO			
	IIA	Т3	N0	M0			
	IIB	T4a	N0	MO			
es	IIC	T4b	N0	MO			
	IIIA	T1-T2	N1/N1c	MO			
		T1	N2a	MO			
	IIIB	T3-T4a	N1/N1c	MO			
		T2-T3	N2a	MO			
		T1-T2	N2b	MO			
	IIIC	T4a	N2a	MO			
		T3-T4a	N2b	MO			
		T4b	N1-N2	M0			
	IVA	Any T	Any N	M1a			
	IVB	Any T	Any N	M1b			

Preop CT RT for Stage II – III disease Stage II (T3 and T4 disease) & □ Stage III that is (any T with Nodal positivity)

SURGERY ALONE

UPTO 50 % LOCAL FAILURE IN LOCALLY ADVANCED RECTAL CARCINOMAS Local Failure of Rectal Cancer Surgery Alone (Local Failure Rate Percentage/Number of Patients in Cohort)

	Gunderson and Sosin ¹²⁰	Rich et al. ¹²²	Minsky et al. ²²¹	Martling et al. ¹²⁸	Mendenhall et al. ¹¹⁷	Pilipshen et al. ¹¹⁹	Bonadeo et al. ²⁴¹
ınalysis	Reoperation (Crude)	Clinical Exam + Surgery (Crude)	First Failure —Clinical Exam + Surgery (5·y Actuarial)	Total Local Recurrence	Total Local Recurrence —5-y Follow- up Clinical	First Failure —Clinical	Total Local Recurrence —Clinical ^a
1 N0		8%/39	11%/11	9%/78	0%/6	0%/5	3%/103
2 N0			3%/36		38%/16	14%/128	
3 N0	67%/6	24%/42	23%/60	34%/80	40%/30	30%/111	496/181
4 N0		53%/15	11%/9				
1-2 N+	24%/17	50%/4	14%/11	37%/93	71%/17	22%/49	24%/133
3 N+	83%/40	47%/34	25%/31		65%/17	49%/89	
4 N+		67%/6	22%/10				
otal	64%/75	30%/142	15%/168	27%/251	46%/90		

'Local recurrence highly dependent on site in rectum—18% overall for tumors ≤7 cm from anal verge.

RT PLUS

SURGERY IS

BETTER

THE LANCET Oncology

EVETTRACK ARTICLES | VOLUME L2, 38VE 6, RDTD 582, JUNE 01, 2011

😨 Parmase

Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial

Willem ven Cijn, MD - Prol Comie /M Manijnen, MD - Iris D Nagtegsel, MD - Ehne Meerzhoek-Klein Kremenbarg, MSc Prot Hein Putter, PhD + Prot Theo Wiggers, MD + et al. [Xhow all authors]

Published: Nay 18, 2011 - DOI: https://doi.org/10.1010/S1470-2046(11)70087-3

THE DUTCH TME STUDY

- >50% reduction in recurrence risk for the radiotherapy group
- For negative circumferential margin, local recurrence 3% after radiotherapy versus 9% after surgery alone ,distant recurrence 19% versus 24
- Cancer-specific death at 10 years was 17% for the irradiated group versus 22% for surgery alone
- OS rates, were equivalent

Log n

Local Control and Survival with and without Radiotherapy—Preoperatively, Postoperatively, and with or without Chemotherapy

Study/Institution ^a (Ref.)	No. of Patients	Local Failure (%)	Disease-Free Survival (%)	Survival (5 y) (%)
NSABP RO-1 ¹³² Surg/Surg + RT (postoperative RT)	184/187	25/16	No difference	No difference
NSABP RO-2 ¹³³ Surg + chemo/Surg + chemo + RT (postoperative RT)	348/346	13/8		
GITSG ¹³⁰ Surg/Surg + RT/Surg + chemo + RT (postoperative RT)	58/50/46	25/20/10	44/50/65	26/33/45
Swedish ²²⁴ Surg/Surg + RT (preoperative RT)		27/11		48/58
Stockholm II ¹²³ Surg/Surg + RT (preoperative RT)		34/16 Stage II 37/21 Stage II		
MRC ¹³⁵ Surg/Surg + RT (postoperative RT)	235/234	34/21		38/41

COMBINED MODALITY TREATMENT VS RT PLUS SURGERY VS SURGERY ALONE

LOCOREGIONAL FAILURE IS DECREASED BY THE USE OF RADIATION THERAPY AND IS FURTHER DECREASED BY THE USE OF CONCURRENT 5-FU–BASED CHEMOTHERAPY CHEMOTHERAPY IN LOCALLY ADVANCED RECTAL CANCER

> 5FU INFUSIONAL VS 5FU BOLUS VS CAPACITABINE

 Initial trials - bolus 5-FU at a dose of 500 mg/m2/day for 3 days during weeks 1 and 5 of the radiation therapy

 North Central Cancer Treatment Group study- Continuous infusion 5-FU (only during radiation therapy) is better compared with bolus 5-FU in terms of local control

> 5FU INFUSIONAL VS 5FU BOLUS VS CAPACITABINE

- NSABP R-04 trial Neoadjuvant use of capecitabine was found to be comparable with continuous 5-FU infusion when combined with radiation therapy
- Recommendation Use capecitabine concurrently with radiation therapy, and use continuous infusion 5-FU or bolus 5-FU during radiation therapy only in patients unable or unwilling to take oral capecitabine

The New England Journal of Medicine

IMPROVED SURVIVAL WITH PREOPERATIVE RADIOTHERAPY IN RESECTABLE RECTAL CANCER

SWEDISH RECTAL CANCER TRIAL*

ABSTRACT

Background Adjuvant radiotherapy for rectal cancer has been extensively studied, but no trial has unequivocally demonstrated improved overall survival with radiotherapy, despite a reduction in the rate of local recurrence.

Methods Between March 1987 and February 1990, we randomly assigned 1168 patients younger than 80 years of age who had resectable rectal cancer to

motherapy alone, but not radiotherapy, improved survival.8

Preoperative irradiation is more "dose-effective" than postoperative radiotherapy¹⁴; that is, a higher dose is needed postoperatively to reduce rates of local recurrence to the same extent as preoperative radiation. Nevertheless, preoperative treatment has not been routinely recommended,¹⁵ mainly because it has not been routinely recommended,¹⁶ mainly because it

PRE OPERATIVE RT VS POST OPERATIVE RT

IMPROVING LOCAL CONTROL WITH THE USE OF RADIATION THERAPY (AND

PRESUMABLY WITH CONCURRENT CRT) IS BENEFICIAL AND THAT TRIMODALITY THERAPY, ESPECIALLY WHEN CRT IS USED PREOPERATIVELY, CAN IMPROVE SURVIVAL.

ADVANTAGES OF PRE OPERATIVE CHEMO RADIATION

- Down staging, hence increased resectability
- Decreased risk of dissemination during surgery.
- Radiation more effective in tumour cells with highly vascularity.
- Less serious bowel toxicity due to easy exclusion.
- Possibility of increasing sphincter preservation in borderline cases.
 - Decreased Local Recurrence.

DISADVANTAGES OF PRE-OPERATIVE RADIOTHERAPY

Overtreatment of early stage tumors (18 % in german study) Delay in surgery

Wound healing problem

Anorectal and sexual function is worse after preoperative Radiotherapy and TME compared with TME alone: Results from Some of the randomised studies

- Peeters K, J Clin Oncol 2015;25:6199
- Dahlberg M, Dis Colon Rectum 1998;41:543
- Stephens RJ,J Clin Oncol 2010;28:4233
- Marijnen CAM, J Clin Oncol 2005;23:1847
- Lundby L, Lancet 1997;350:564
- Lange MM, Br J Surg 2007;94:1278

	Trial	MRI mandated	EUS mandated	TME mandated	Good Quality TME	Median no of nodes resected
RANDOMISED TRIALS	Swedish Rectal	No	No	No	?No	Not stated
SC PRT (5# X 5GY)	Dutch TME	No	No	Yes	50%	7
6	Polish	No	No	?	?	9
12	CR07	No	No	No	50%	11
	TROG-0104	If US not possible	Yes	No	?	Not stated

	Trial	MRI mandated	EUS mandated	TME	Good Quality TME	Median no of nodes resected
ANDOMISED TRIALS	German (Sauer 2004)	No	Yes	?	No data	Collected bu not stated
PRE-OP LONG	EORTC 22921	No	No	38%	No data	7 after CRT
COURSE CRT	FFCD 9203	No	No	No data	No data	Not stated
	NSABP R03	No	?	No	No data	Not stated
20	Polish	No	No	?	No data	8
17	TROG-0104	some	Yes	?	No data	Not stated

111

R

PRE-OPERATIVE RADIOTHERAPY TRIALS

- Pre-operative Long Course CRT
- 50 Gy at 1.8 to 2 Gy per fraction over 5 to 5.5 weeks

- Pre operative Short Course
- 5# X 5Gy over 1 week
- (Stockholm Trials/ Swedish Rectal

Europe

USA

PRE OPERATIVE SHORT COURSE VS LONG COURSE TRIALS

MRC CR07 NCIC C016 TRIAL

Sebag-Montefiore D, et al., Lancet 2009; 373(9666):811-20

POLISH TRIAL – BUJKO K, ET AL., RADIOTHERAPY AND ONCOLOGY 2004

cT3/T4, resectable, not involving levators, palpable on DRE, <75 yrs

Planned operation recorded

Bujko K, et al., Radiother Oncol. 2004; 72:15–24

Ngan SY, et al., J Clin Oncol. 2012 Nov 1;30(31): 3827-33

RESULTS OF PREOPERATIVE SHORT COURSE VS LONG COURSE TRIALS

SHORT COURSE RADIATION VERSUS CHEMORADIATION NO DIFFERENCE IN LOCAL CONTROL

Polish Trial (Bujko 2006)¹ 14.4% vs 18.6% P = 0.17

TROG-01 Trial (Ngan 2012)²

1.Bujko K, et al., Br J Surg 2006;93(10):1215–1223; Copyright © 2006 British Journal of Surgery Society Ltd. Published by John Wiley & Sons Ltd;

2.Ngan SY, et al., J Clin Oncol. 2012 Nov 1;30(31):3827-33. Reprinted with permission. © (2012) American Society of Clinical

SHORT COURSE RADIATION VERSUS CHEMORADIATION EQUIVALENCE IN OVERALL SURVIVAL

Bujko K, et al., Br J Surg 2006;93(10):1215–1223; Copyright © 2006 British Journal of Surgery Society Ltd. Published by John Wiley & Sons Ltd;
 Ngan SY, et al., J Clin Oncol. 2012 Nov 1;30(31):3827-33. Reprinted with permission. © (2012) American Society of Clinical

SEVERE LATE TOXICITY SCPRT VERSUS CRT

Ó

	SCPRT	CRT
Polish Study		
Severe late toxicity – G3/ G4	10%	7%
TROG 01.04		
Severe late toxicity – G3/ G4	9%	13%

CIRCUMFERENTIAL RESECTION MARGINS

P= 0.017 Bujko K et Al - Radioth Oncol - 2004

CIRCUMFERENTIAL RESECTION MARGINS

Nagtegaal | et Al - JCO - 2008

THEREFORE: TAILORED TREATMENT

- "Small" T3 short-term RT and TME
- "Large" T3/T4 long-term CRT and TME

PRE OPERATIVE SHORT COURSE VS LONG COURSE QUALITY OF LIFE TRIALS

PRE OPERATIVE SHORT COURSE VS LONG COURSE QUALITY OF LIFE TRIALS

Both SC-PRT (Short course) and CRT (long Course) have shown to reduce local recurrence rates without improving overall survival.

 So Health-related quality of life (HRQL) of the patient after these different treatment schedules may provides an insight for selecting the better one.

 SC-PRT uses a higher dose per fraction in a short overall treatment time, there may be a risk for more late radiation-related toxicity compared with CRT.

O

Original Study

Long-Term Health-Related Quality of Life in Patients With Rectal Cancer After Preoperative Short-Course and Long-Course (Chemo) Radiotherapy

Lisette M. Wiltink,¹ Remi A. Nout,¹ Jochem R.N. van der Voort van Zyp,^{1,2} Heleen M. Ceha,³ Marta Fiocco,^{4,5} Elma Meershoek-Klein Kranenbarg,⁶ Andreas W.K.S. Marinelli,⁷ Cornelis J.H. van de Velde,⁶ Corrie A.M. Marijnen¹

Abstract

Long-term health-related quality of life is compared between patients with rectal cancer preoperatively treated with long-course chemo radiotherapy (CRT) or with short-course radiotherapy. Apart from less satisfaction with urinary function reported by patients who had CRT, no clinically relevant differences in health-related quality of life and patient-reported symptoms between patients who had CRT and short-course radiotherapy were found at 5 years after rectal cancer treatment.

Builden d. Builden and the dealer with the second state of the sec

LISETTE M. WILTINK ET AL

 The aim of this study was to compare patient-reported symptoms and HRQL of patients treated with CRT to patients treated with SC-PRT for rectal cancer with a long follow-up time
C

STUDY DESIGN LISETTE M. WILTINK ET AL

2003 to 2010

STUDY GROUP

Patients with Locally advanced rectal cancer received long course chemoradiation in Leiden University Medical Center Total radiation dose of 50 to 50.4 Gy in daily fractions of 1.8 to 2.0 Gy delivered by a 4-field Five to 8 weeks after the last radiation treatment, patients underwent surgery according to the TME principles

REFERENCE GROUP

Patients treated with SC-PRT in the Dutch TME trial with clinically resectable adenocarcinoma without evidence of distant metastases.

25 Gy in 5 fractions delivered with a 3 or 4field Technique

Within 10 days of the start of radiotherapy, patients underwent surgery according to the TME principles From 2011

> HRQL questionnaires were sent to patients who were disease-free Questionnaires includes The EORTC QLQ-C30 is a general cancer HRQLquestionnaire composed of 30 items, and

An additional questionnaire on bowel and urinary function

^{Statistic} al Analysis

Reference data of the TME trial were matched for age and gender with the CRT group.

Linear regression and logistic regression models were used to compare the HRQL and symptoms between the groups that received CRT and SC-PRT. RESULTS OF LISETTE M. WILTINK ET AL

SCORES OF EORTC QLQ-C30

GENERAL CANCER HRQL

able 3	Scores of	F EORTC	0L0-C30

	Mean Scores CRT	Mean Scores SC-PRT	Pa
Global health status	79.6	78.9	.90
Functional scales			
Physical functioning	84.5	82.6	.56
Role functioning	82.5	83.3	.73
Emotional functioning	86.9	86.3	.85
Cognitive functioning	84.0	84.1	.90
Social functioning	84.6	87.7	.27
Symptom items			
Fatigue	23.8	22.5	.59
Nausea and vomiting	5.9	1.3	<.01
Pain symptoms	11.2	11.1	.92
Dysphoea	11.8	11.6	.89
Insomnia	15.4	18.5	.42
Appetite loss	8.5	4.6	.12
Constipation	8.6	10.8	.51
Diarrhea	5.8	10.6	.09
Financial difficulties	9.5	6.8	.27

A higher score for functioning reflects better functioning, whereas a higher score for symptoms represents a higher level of symptoms and decreased health-related quality of life. Abbreviations: CRT = Preoperative long-course (chemo) radiotherapy; EORTC = European Organisation for Research and Treatment of Cancer; SC-PRT = preoperative short-course

RESULTS LISETTE M. WILTINK ET AL

BOWEL AND URINARY

	Mean Scores CRT	Mean Scores SC-PRT	P
Bowel function			
Fecal incontinence	42.2	34.6	.34
Fecal incontinence at night	22.9	13.4	.15
Ability to delay bowel emptying	65.6	66.5	.86
Anal blood loss	6.3	4.8	.78
Anal mucus loss	22.9	11.2	.07
Peristomal skin irritation	18.2	16.8	.54
Stoma smell	16.4	21.1	.27
Stoma bleeding	11.5	14.1	.47
Stoma leakage	10.6	12.0	.70
Painful stoma	7.0	6.3	.65
Noisy stoma	26.6	25	.65
Blood loss from stump	8.0	7.1	.60
Mucus loss from stump	14.6	17.9	.40
mpact of bowel sysfunction on			
Work or	22.5	15.5	.03

	Table 2 Contin	nued		
		Mean Scores CRT	Mean Scores SC-PRT	P
RESULISLISE	Work or household activities	22.5	15.5	.03
ΤΡΕ Μ.	Activities outside the house like shopping	24.8	22.2	.41
WILTINK ET	Social activities like theater or cinema visiting	23.8	24.8	.89
	Urinary function			
AL	Urinary frequency during the day	6.3	6.3	.77
	Frequency urinary incontinence	57.1	54.2	.86
	Use of pads for uninary incontinence	41.2	29.3	.18
5	Urine retention after miction	24.2	18.0	.08
BOWEL AND URINARY	Need to urinate again within 2 hours	26.2	25.9	.85
FUNCTION	Stream hesitation	23.1	18.9	.24
2	Difficulty postponing miction	28.2	24.7	.35
1/2	Weak urinary stream	31.2	26.2	.16
10	Satisfaction			
I/Y	Bowel function ^a	83.1	76.3	.11
0	Urinary function ^a	71.2	81.2	<.01

RESULTS OF LISETTE M. WILTINK ET AL Patients who received CRT and SC-PRT reported no clinically relevant differences in long-term HRQL and late symptoms after a median follow-up period of 58 months, apart from less satisfaction with urinary function reported by those who received CRT.

 These results indicate that both approaches have a comparable impact on long-term HRQL, and a preference for either of them can therefore not be based on long-term HRQL.

TIMING OF SX AFTER RT

WHAT IS THE OPTIMAL INTERVAL TO SURGERY?

 After SCPRT (5x5Gy)

AFTER SCPRT

No downstaging

- SCPRT normally recommended to be followed by surgery within 1-7 days
- An "ideal" SCPRT schedule, delivers 5 X 5 Gy from Monday to Friday with
 surgery the following Monday or Tuesday i.e. an interval of less than 10 days

STOCKHOLM III TRIAL

But Short-course RT induces tumourdownstaging if surgery is performed after an interval of 4-8 weeks

Pettersson D, et al., Br J Surg 2015; 102(8):972-8

RAPIDO TRIAL N = 885 PATIENTS

Primary endpoint 3 year DFS

Nilsson PJ, et al., BMC Cancer. 2013; 13:279

WHAT IS THE OPTIMAL INTERVAL TO SURGERY?

After SCPRT (5x5Gy)

 After long course CRT

HYPOTHESIS

- Longer intervals up 15 weeks
- Associated with an increased chance of a pCR (Sloothak, Kalady)

Cumulative complete pathological response (pCR) rate

But no increase in negative

HYPOTHESIS

Effect of adding mFOLFOX6 after neoadjuvant chemoradiation in locally advanced rectal cancer: a multicentre, phase 2 trial

Julio Garcia-Aguilar, Oliver S Chow, David D Smith, Jorge E Maroet, Peter A Cataldo, Madhulika G Varma, Anjali S Kumar, Samuel Oommen, Theodore Goutsoftides, Steven R Hunt, Michael J Stamos, Charles A Terment, Daniel O Herzig, Alessandro Fichera, Blase N Polite, David W Dietz, Sujata Patil, Kazin Avila, for the Timing of Rectal Cancer Response to Chemovadiation Consortium

Summary

Background Patients with locally advanced rectal cancer who achieve a pathological complete response to neoadjuvant the chemoradiation have an improved prognosis. The need for surgery in these patients has been questioned, but the proportion of patients achieving a pathological complete response is small. We aimed to assess whether adding cycles of mFOLFOX6 between chemoradiation and surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients achieving a pathological surgery increased the proportion of patients ac

Methods We did a phase 2, non-randomised trial consisting of four sequential study groups of patients with stage II–III locally advanced rectal cancer at 17 institutions in the USA and Canada. All patients received chemoradiation (fluorouracil 225 mg/m² per day by continuous infusion throughout radiotherapy, and 45 ·0 Gy in 25 fractions, 5 days per week for 5 weeks, followed by a minimum boost of 5-4 Gy). Patients in group 1 had total mesorectal excision 6–8 weeks after chemoradiation. Patients in groups 2–4 received two, four, or six cycles of mFOLFOX6, respectively, between chemoradiation and total mesorectal excision. Each cycle of mFOLFOX6 consisted of racemic leucovorin 200 mg/m² or 400 mg/m², according to the discretion of the treating investigator, oxaliplatin 85 mg/m² in a 2-h infusion, bolus fluorouracil 400 mg/m² on day 1, and a 46-h infusion of fluorouracil 2400 mg/m². The primary endpoint was the proportion of patients who achieved a pathological complete response, analysed by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00335816.

Lancet Oncol 2015; 16: 957-66

Published Online July 15, 2015 http://do.doi.org/10.1016/ \$1470-2045(15)00004-2

See Comment page 880

Department of Surgery (Prof.) Ganda-Agullar MD, O Schow MD, K Anfa NSc) and Division of Biostatistics (SParil PhD), Wemorial Sloan Kettering Gancer Center, New York, NY, USA; Division of Biostatistics, City of Hope, Duarte, CA, USA (Prof.D D Smith PhD); Department of Surgery, University of South Florida, Tampo, FL, USA

TUMOUR RESPONSE – PCR

pCR	11 (18%)	17 (25%)	20 (30%)	25 (38%)
Post CRT Chemo	None	2 cycles FOLFOX	4 cycles FOLFOX	6 cycles FOLFOX
Interval to surgery	8 weeks	11 weeks	15 weeks	19 weeks
N0/N+	75%/25%	75%/25%	?	?

Garcia-Aguilar J, et al., The Lancet Oncology 2015; 16(8): 957-966

TOXICITY/COMPLIANCE

Post CRT Chemo	None	2 cycles FOLFOX	4 cycles FOLFOX	6 cycles FOLFOX
Interval to surgery	8 weeks	11 weeks	15 weeks	19 weeks
Treatment interruptions		7%	35%	40%
Dose reductions		2%	13%	

Garcia-Aguilar J, et al., The Lancet Oncology 2015; 16(8): 957-966

TOXICITY/COMPLIANCE

Post CRT Chemo	None	2 cycles FOLFOX	4 cycles FOLFOX	6 cycles FOLFOX
Interval to surgery	8 weeks	11 weeks	15 weeks	19 weeks
Pelvic Fibrosis (1-10)	2.4	3.4	4.4	3.9 p=0.0001
Technical difficulty (1-10)	4.6	4.9	5.1	4.8 (p=0.8)

Garcia-Aguilar J, et al., The Lancet Oncology 2015; 16(8): 957-966

Preoperative Radiotherapy for Resectable Rectal Cancer

Article in JAMA The Journal of the American Medical Association - August 2000

DOI: 10.1001/jama.284.8.1008 · Source: PubMed

Figure 3. Local Recurrence

Ann Surg Oncol (2013) 20:4169–4182 DOI 10.1245/s10434-013-3198-9

Annals of SURGICALONCOLOGY OFFICIAL JOURNAL OF THE SOCIETY OF SUBGICAL ONCOLOGY

ORIGINAL ARTICLE - COLORECTAL CANCER

Neoadjuvant Radiotherapy for Rectal Cancer: Meta-analysis of Randomized Controlled Trials

Nuh N. Rahbari, MD¹, Heike Elbers, MD¹, Vasileios Askoxylakis, MD², Edith Motschall³, Ulrich Bork, MD⁴, Markus W. Büchler, MD¹, Jürgen Weitz, MD⁴, and Moritz Koch, MD⁴

¹Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; ²Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany; ³Institute of Medical Biometry and Medical Informatics, University of Freiburg, Freiburg, Germany; ⁴Department of Gastrointestinal, Thoracic and Vascular Surgery, University of Dresden, Dresden, Germany

Meta analysis of Perioperative mortality

a	Neoadjuvant 1	therapy	No neoadjuvant	therapy		Odds Ratio	Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Rand	om, 95% CI	
Dahl	6	155	3	145	4.2%	1.91 [0.47, 7.77]			
Coldberg	21	228	10	239	9.9%	2.32 [1.07, 5.05]			
GTCCG/EORTC	2	216	2	221	2.3%	1.02 [0.14, 7.33]			
Illenyi	6	97	5	110	5.3%	1.38 [0.41, 4.69]			
MRC 1	20	277	13	275	10.8%	1.57 [0.76, 3.22]		-	
MRC 2	5	139	10	140	6.2%	0.49 [0.16, 1.46]		-	
Peteren	3	47	2	46	2.6%	1.50 [0.24, 9.42]			
Reis Neto	1	34	1	34	1.2%	1.00 [0.06, 16.67]	· · · · · · · · · · · · · · · · · · ·		
SRCT	22	573	15	574	11.7%	1.49 [0.76, 2.90]		-	
Stockholm I	35	424	7	425	9.2%	5.37 [2.36, 12.24]			
Stockholm II	6	272	3	285	4.2%	2.12 [0.52, 8.56]			
TME Trial	28	897	24	908	14.0%	1.19 [0.68, 2.06]	_	-	
Toronto	0	60	1	65	0.9%	0.36 [0.01, 8.89]			
VASAG I	42	347	35	353	15.7%	1.25 [0.78, 2.01]	-	-	
VASOG II	1	180	5	181	2.0%	0.20 [0.02, 1.70]			
Total (95% CI)		3946		4001	100.0%	1.48 [1.08, 2.03]		•	
Total events	198		136					8	
Heterogeneity: Tau ²	= 0.11; Chi ² = 20	0.54, df =	$14 (P = 0.11); I^2 =$	32%			<u>⊢ +</u>	+	
Test for overall effect	t: $Z = 2.44$ (P = 0	0.01)					0.01 0.1	1 10	100
							Neoadjuvant therapy	No neoadjuvant	therapy

b	Neoadjuvant t	herapy	No neoadjuvant	therapy		Odds Ratio		(Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, I	Random, 9	5% CI	
SRCT	241	573	190	574	19.1%	1.47 [1.15, 1.87]					
Stockholm I	112	424	81	425	15.7%	1.52 [1.10, 2.11]					
Stockholm II	111	272	79	285	14.6%	1.80 [1.26, 2.56]				-	
TME Trial	336	897	297	908	21.0%	1.23 [1.02, 1.50]					
Toronto	0	60	1	65	0.4%	0.36 [0.01, 8.89]	• • •		_		
VASAG I	184	347	187	353	16.8%	1.00 [0.74, 1.35]			+		
VASOG II	63	180	77	181	12.3%	0.73 [0.48, 1.11]			-		
Total (95% CI)		2753		2791	100.0%	1.25 [1.02, 1.54]			•		
Total events	1047		912								
Heterogeneity: Tau ²	= 0.04; Chi ² = 16	5.04, df =	$6 (P = 0.01); I^2 = 1$	63%				+			
Test for overall effect	z = 2.16 (P = 0)	.03)					0.05	0.2	1	5	20
							Neoad	juvant the	rapy No n	eoadjuva	nt therapy

Subgroup analysis of studies with radiation dose of >5Gy/fr

Allstudies

.3 Meta-analyses on a overall survival and b local recurrence-free survival in studies comparing neoadjuvant therapy to surgery alone

Preoperative chemoradiation versus radiation alone for stage II and III resectable rectal cancer (Review)

De Caluwé L, Van Nieuwenhove Y, Ceelen WP

Cochrane Database of Systematic Reviews 2013, Issue 2. Art. No.: CD006041. DOI: 10.1002/14651858.CD006041.pub3.

	CRI	r	RT			Odds Ratio	Odds F	tatio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed	, 95% CI
Bosset 2006	22	253	43	252	35.2%	0.46 [0.27, 0.80]		
Boulis-Wassif 1984	19	126	18	121	14.0%	1.02 [0.51, 2.04]		
Gerard 2006	30	375	61	367	50.8%	0.44 [0.27, 0.69]		
Total (95% CI)		754		740	100.0%	0.53 [0.39, 0.72]	•	
Total events	71		122					
Heterogeneity: Chi*=	4.24, df=	2 (P =	0.12); I*=	53%				1 1 10
Test for overall effect	Z=4.030	P < 0.0	001)				0.1 0.2 0.5 1	2 5 10

Figure 1. Forest plot of comparison: I radiotherapy vs radiochemotherapy, outcome: 1.10 Local Recurrence at Sy.

Local Recurrence at 5 yrs

Figure 2. Forest plot of comparison: I radiotherapy vs radiochemotherapy, outcome: 1.12 HR'LR.

Study or Subgroup	Weight	Hazard Ratio Exp[(O-E) / V], Fixed, 95% CI	Hazaro Exp[(O-E) / V].	l Ratio Fixed, 95% Cl
Bosset 2006	34.1%	0.69 [0.41, 1.15]		-
Bujko 2006	18.7%	0.65 [0.33, 1.30]		-
Gerard 2006	47.1%	0.74 [0.48, 1.15]		-
Total (95% CI)	100.0%	0.71 [0.52, 0.95]	•	
Total events				
Heterogeneity: Chi ² =	0.12, df=	2 (P = 0.94); I ² = 0%	bar de	
Test for overall effect	Z= 2.28	P = 0.02	0.01 0.1	10 100

Figure 3.	Forest plot of comparison:	I radiotherapy vs radiochemotherapy	outcome: I.	Overall Survival at
		5y.		

	CRI	r	RT			Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl
Boulis-Wassif 1984	68	126	50	121	10.6%	1.66 [1.01, 2.75]	1984	
Gerard 2006	122	375	118	367	36.4%	1.02 [0.75, 1.38]	2006	
Bosset 2006	173	506	178	505	53.0%	0.95 [0.74, 1.24]	2006	
Total (95% CI)		1007		993	100.0%	1.05 [0.88, 1.27]		+
Total events	363		346					
Heterogeneity: Chi2 = 3	3.78, df =	2 (P =	0.15); I ² =	: 47%				
Test for overall effect 2	Z = 0.55 (P = 0.5	8)					0.10.2 0.5 1 2 5 10

Figure 5. Forest plot of comparison: I radiotherapy vs radiochemotherapy, outcome: I.3 Disease free survival at 5 y.

	CRI	r .	RT			Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year	M-H, Fixed, 95% Cl	
Gerard 2006	152	375	163	367	43.1%	0.85 [0.64, 1.14]	2006		
Bosset 2006	222	506	230	505	56.9%	0.93 [0.73, 1.20]	2006		5-ys DFS
Total (95% CI)		881		872	100.0%	0.90 [0.74, 1.09]		•	5
Total events	374		393						
Heterogeneity: Chi#	0.22, df=	1 (P =	0.64); [*:	0%					
Test for overall effect	Z=1.10	(P = 0.2	27)					0.10.2 0.5 1 2 5 10	

	CRT		RT			Odds Ratio	Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	EV.	M-H, Random, 95% Cl	
Bosset 2006	67	483	37	495	38.4%	1.99 [1.31, 3.04]			
Bujko 2006	29	157	5	155	28.0%	6.80 [2.56, 18.07]		I	
Gerard 2006	55	375	10	367	33.6%	6.14 [3.08, 12.24]			→
Total (95% CI)		1015		1017	100.0%	4.10 [1.68, 10.00]			
Total events	151		52						
Heterogeneity: Tau ^z :	= 0.49; Ch	i ² = 10.	57, df = 2	(P = 0)	005); I ^z =	81%	61.00		
Test for overall effect	Z = 3.10	(P = 0.0)	002)				0.1 0.2	0.5 1	2 5 10

Figure 7. Forest plot of comparison: I radiotherapy vs radiochemotherapy, outcome: I.6 Grade III - IV toxicity.

Toxicity

Figure 8.	Forest plot of comparison: I radiotherapy vs radiochemotherapy, outcome: 1.7 Sphincter
	preservation.

		CRI	CRT		RT		Odds Ratio	Odds Ratio		
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Ra	ndom, 95%	CI
	Bosset 2006	263	473	249	475	45.0%	1.14 [0.88, 1.47]			
	Boulis-Wassif 1984	13	124	6	121	2.9%	2.24 [0.82, 6.11]			
	Bujko 2006	87	157	87	155	14.7%	0.97 [0.62, 1.52]		<u> </u>	
Sphincter	Gerard 2006	188	357	185	357	34.1%	1.03 [0.77, 1.39]		-	
spinneter	Latkauskas 2011	32	46	26	37	3.3%	0.97 [0.38, 2.49]			
preservation	Total (95% CI)		1157		1145	100.0%	1.09 [0.92, 1.30]		+	
	Total events	583		553						
	Heterogeneity: Tau ² = Test for overall effect:	0.00; Chi Z = 1.00 (² = 2.54 P = 0.3	l, df = 4 (F 2)	P = 0.64	i); I ^z = 0%	•	0.1 0.2 0.5	1 2	5 10

	CRI	r i	RT			Odds Ratio	Odds Ratio	
Study or Subgroup	Events Total		Events Total		Weight M-H, Random, 95% CI		M-H, Random, 95	5% CI
Bosset 2006	111	487	112	483	46.2%	0.98 [0.73, 1.32]		
Bujko 2006	31	152	39	153	14.3%	0.75 [0.44, 1.28]		
Gerard 2006	75	359	97	360	34.7%	0.72 [0.51, 1.01]		
Latkauskas 2011	12	46	15	37	4.8%	0.52 [0.20, 1.31]		
Total (95% CI)		1044		1033	100.0%	0.82 [0.67, 1.00]	•	
Total events	229		263					
Heterogeneity: Tau ² =	= 0.00; Ch	i ² = 2.9	8, df = 3 (P = 0.4	0); $I^2 = 0.9$	6		
Test for overall effect	Z=1.92	(P = 0.0)	05)				0.1 0.2 0.5 1 2	5 10

Figure 10. Forest plot of comparison: I radiotherapy vs radiochemotherapy, outcome: 1.5 Postop morbidity.

Ρ	ost	op	m	or	bi	di	ty
							~

Figure 11.	Forest plot of comparison: I radiotherapy vs radiochemotherapy, outcome: 1.9 Anastomotic
	leak.

	CRI	Г	RT			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Events Total		Events Total		M-H, Random, 95% CI	M-H, Random, 95% Cl
Bosset 2006	2	267	0	255	3.2%	4.81 [0.23, 100.71]	
Bujko 2006	8	87	9	86	29.5%	0.87 [0.32, 2.36]	
Gerard 2006	14	188	14	185	50.0%	0.98 [0.45, 2.12]	
Latkauskas 2011	7	46	4	37	17.2%	1.48 [0.40, 5.50]	
Total (95% CI)		588		563	100.0%	1.07 [0.62, 1.84]	-
Total events	31		27				
Heterogeneity: Tau ² :	= 0.00; Ch	i ² = 1.4	0, df = 3 (P = 0.7	1); $I^2 = 0.9$	6	
Test for overall effect	Z = 0.24	(P = 0.8)	31)				0.1 0.2 0.5 1 2 5 10

Anastomotic leak

	CRT RT					Odds Ratio	Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl		
Bosset 2006	12	487	6	483	33.7%	2.01 [0.75, 5.40]			
Boulis-Wassif 1984	11	124	6	121	31.2%	1.87 [0.67, 5.22]			
Bujko 2006	1	152	2	153	5.7%	0.50 [0.04, 5.57]	• • • • • • • • • • • • • • • • • • • •		
Gerard 2006	7	359	7	360	29.4%	1.00 [0.35, 2.89]	•		
Latkauskas 2011	0	46	0	37		Not estimable			
Total (95% CI)		1168		1154	100.0%	1.48 [0.83, 2.63]			
Total events	31		21						
Heterogeneity: Tau ² =	0.00; Chi	= 1.86	6, df = 3 (6)	P = 0.60	0); $I^2 = 0.9$				
Test for overall effect .	Z = 1.34 (P = 0.1	8)				0.1 0.2 0.5 1 2 5 10		

Figure 9. Forest plot of comparison: I radiotherapy vs radiochemotherapy, outcome: 1.4 Mortality 30 d.

Figure 12.	Forest plot of	comparison: I	radiotherapy	vs radiochemotherapy,	outcome:	1.8 pCR.
------------	----------------	---------------	--------------	-----------------------	----------	----------

	CR	r	RT			Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H,	Random, 95% Cl	
Bosset 2006	60	473	22	476	43.6%	3.00 [1.81, 4.97]			m CD
Boulis-Wassif 1984	6	126	3	121	11.1%	1.97 [0.48, 8.05]			pCK
Bujko 2006	22	138	1	148	5.8%	27.88 [3.70, 209.90]			-
Gerard 2006	41	359	13	360	34.4%	3.44 [1.81, 6.54]			
Latkauskas 2011	6	46	1	37	5.1%	5.40 [0.62, 47.03]			
Total (95% CI)		1142		1142	100.0%	3.52 [2.12, 5.84]		-	
Total events	135		40						
Heterogeneity: Tau ² =	0.09; Chi	² = 5.44	4, $df = 4$ (P = 0.2	5); I ² = 269	%	4 0 0		
Test for overall effect:	Z = 4.88 (P < 0.0	0001)				0.1 0.2 0	0.5 1 2 5 10	

ORIGINAL ARTICLE

Year: 2018 | Volume: 14 | Issue: 8 | Page: 224-231

Comparison of short-course with long-course preoperative neoadjuvant therapy for rectal cancer: A meta-analysis

Ke Chen, Guoming Xie, Qi Zhang, Yanping Shen, Taoqi Zhou

Department of Radiochemotherapy, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, China

Date of Web Publication 26-Mar-2018

Chen, et al.: Short versus long preoperative treatment for rectal cancer

Figure 3: Forest plots of comparison between short-term versus long-term treatments on survival outcomes. (a) 1-year overall survival; (b) 2-year overall survival; (c) 3-year overall survival; (d) 4-year overall survival; (e) 5-year overall survival 1-yr OS

2-yr OS

3-yr OS

4 yr OS

5 yr OS

https://www.tandfonline.com/doi/full/10.1080/0163 5581.2017.1374418?scroll=top&needAccess=true

	Experim	ental	C	ontrol	Odds Ratio				
Study	Events	Total	Events	Total		OR	95%-CI	W(fixed)	W(random)
Buiko K 2006	52	155	53	157	<u></u>	0.99	10.62 1.581	53.6%	58 5%
Kraicovicova I 2012	16	96	14	55		0.59	10.26: 1.321	22.7%	19.7%
Pettersson D 2013	2	244	1	95		0.78	10.07: 8.671	2 2%	2.2%
Samuel YN 2012	11	162	15	161		0.71	[0.32; 1.59]	21.5%	19.6%
Fixed effect model		657		468	<u></u>	0.83	10.58-1.191	100%	
Random effects mode	al l					0.83	10 58- 1 191		100%
Heterogeneity: I-sourced	0% tau-an	wared	-00.70	45	1	0.00	[0.00, 1.10]		
					0.1 0.5 1 2 10				
a									
	Experim	ental	C	ontrol	Odds Ratio				
Study	Events	Total	Events	Total	12	OR	95%-CI	W(fixed)	W(random)
Buiko K 2006	2	155	9	157		0.21	[0.05: 1.01]	14.8%	10.5%
Eitta MA 2010	2	14	1	15		2.33	10.19:29.041	1.4%	4.4%
Kraicovicova 2012	11	96	3	55		2.24	10.60 8.421	5.7%	13.7%
Pach R 2012	9	77	9	77		1.00	10.37 2.671	13,4%	21.3%
Samuel YN 2012	46	162	49	161		0.91	10.56 1.461	59.2%	44.7%
Yeh CH 2011	1	28	4	37		0.31	[0.03; 2.90]	5.6%	5.4%
Fixed effect model		532		502	4	0.88	[0.61: 1.27]	100%	
Random effects mode	el				-	0.88	[0.51; 1.53]		100%
Heterogeneity: I-squared	-24.4%, tou-	-squar	ed=0.1141	p=0.2	573				
					0.1 0.5 1 2 10				
ь									
	Experim	ental	Co	ontrol	Odds Ratio				
Study	Events Total Events Total			1.1	OR 95%-CI W(fixed) W(random)				
Buiko K 2006	39	155	38	157		1.05	[0.63; 1.76]	29.2%	27.3%
Krajcovicova I 2012	7	96	-4	55		1.00	[0.28: 3.59]	4.9%	4.4%
Pettersson D 2013	128	244	39	95		1.58	[0.98; 2.56]	27.6%	31.4%
Samuel YN 2012	84	158	79	157		1.12	[0.72; 1.74]	38.4%	36.9%
Fixed effect model		653		464	÷	1.22	[0.94; 1.60]	100%	
Random effects mode	el .					1.22	[0.93; 1.60]		100%
Heterogeneity: I-squared	+0%, tau-sq	uared	-0, p=0.63	99					
-									
C					0.5 1 2				
	Experim	ental	Co	Introl	Odds Ratio				
Study	Events	Total	Events	Total	F	OR	95%-CI	W(fixed)	W(random)
Bujko K 2006	36	155	42	157		0.83	[0.50; 1.38]	85.2%	51.8%
Eitta MA 2010	3	14	1	15		3.82	[0.35; 41.96]	2.0%	12.3%
Yeh CH 2011	16	28	13	37	· · ·	2.46	[0.90; 6.74]	12.8%	35.9%
Fixed effect model		197		209	4	1.10	[0.71; 1.71]	100%	
Random effects mode	pi l					1.48	[0.58; 3.78]		100%
Heterogeneity: I-squared	+57.1%, tau-	squar	ed=0.3754	p=0.0	²⁷³				
					0.1 0.5 1 2 10				

Death rate

Recurrence rate

Complications

Distant metastasis

Figure 4: Forest plots of comparison between short-term versus long-term treatments on other outcomes. (a) death rate; (b) recurrence rate; (c) complications; (d) distant metastasis

Optimal Interval to 21 d Donglin Du, Zhourong Su Wei SIS Colorectal Can a e m a

Volume 17, Issue 1, Pages 13-24 (March 2018) DOI: 10.1016/j.clcc.2017.10.012

pCR with interval to surgery <vs >8 weeks

pCR was significantly higher with nCRT \Box Sx interval of > 8 weeks

OS

Local recurrence

Operative time

Post op Complications

Radiat Oncol J 2017;35(3):198-207 https://doi.org/10.3857/roj.2017.00059 pISSN 2234-1900 · eISSN 2234-3156

Preoperative chemoradiotherapy versus postoperative chemoradiotherapy for stage II–III resectable rectal cancer: a meta-analysis of randomized controlled trials

Jin Ho Song, MD¹, Jae Uk Jeong, MD², Jong Hoon Lee, MD³, Sung Hwan Kim, MD³, Hyeon Min Cho, MD⁴, Jun Won Um, MD⁵, Hong Seok Jang, MD⁶ for Korean Clinical Practice Guideline for Colon and Rectal Cancer Committee

 ¹Department of Radiation Oncology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju; ²Department of Radiation Oncology, Chonnam National University Hospital, Chonnam National University School of Medicine, Gwangju; Departments of ³Radiation Oncology and ⁴Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon; ⁵Department of Surgery, Korea University Ansan Hospital, Ansan;
 ⁶Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
pCR

ROJ Radiation Oncology Journal

Chemoradiotherapy timing in rectal cancer

(G) Other bias

Fig. 2. Forest plot of comparison: pathologic complete response (ypTONO) between preoperative and postoperative chemoradiotherapy.

A. 5-year locoregional recurrence

B. 5-year distant recurrence

C. 5-year relapse-free survival

	Preop-CRT Postop-CRT			D-CRT		Risk Ratio	Risk Ratio			
Study or Subgroup	Events Total		Events Tota		Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl			
Park JH et al. 2011	29	107	29	112	12.5%	1.05 [0.67, 1.63]				
Roh MS et al. 2009	43	123	61	131	26.0%	0.75 [0.55, 1.02]		-	t	
Sauer R et al. 2004	130	405	138	394	61.5%	0.92 [0.75, 1011]			F	
Total (95% CI)		635		637	100.0%	0.89 [0.76, 1.04]		-	1	
Total events	202		228					-	1	
Heterogeneity : Chi2 =	1.82, df =	2 (P = 0	0.40); F =	0%						-
Test for overall effect: Z = 1.49 (P = 0.14)							0.02	0.5	1 2	5
							Favou	rs [Preop-CRT]	Favours [Postop-CRT]	1

5-yr RFS

D. 5-year overall survival

A. sphincter preservation rate

B. conversion rate from APR to LAR

	Preop	Preop-CRT Postop				Risk Ratio	Risk Ratio				
Study or Subgroup	Events	Total	Events	nts Total	Weight	M-H, Fixed, 9596 Cl	M-H, Fixed, 95% CI				
Park JH et al. 2011	42	62	22	52	57.2%	1.60 [1.12, 2.30]					
Roh MS et al. 2009	0	0	0	0		Not estimable					
Sauer R et al. 2004	45	116	15	78	42.8%	2.02 [1.21, 3.36]		I			
Total (95% CI)		178		130	100.0%	1.78 [1.31, 2.41]		I			
Total events	87		37								
Heterogeneity : Chi2 =	0.56, df =	1 (P = 0	0.45); 12 =	0%			-			_	
Test for overall effect:	Z = 3.72 (P	P = 0.00	002)				0.02	0.5 1	2	5	
							Favo	urs [Postop-CRT]	Favours [Preop-CRT]		

A	_≥	gra	de 3	acut	e comp	olicat	ion
---	----	-----	------	------	--------	--------	-----

	Preop-CRT Postop-CR			D-CRT		Risk Ratio	Risk Ratio				
Study or Subgroup	Events Total		Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl				
Park JH et al. 2011	16	107	18	112	7.3%	0.93 [0.50, 1.73]					
Roh MS et al. 2009	51	123	65	131	26.2%	0.84 [0.64, 1.10]			+		
Sauer R et al. 2004	109	405	158	394	66.5%	0.67 [0.55, 0.82]			1		
Total (95% CI)		635		637	100.0%	0.73 [0.63, 0.86]			1		
Total events	176		241					-	1		
Heterogeneity : Chi? =	2.20, df =	2(P = 0	0.33); 12 =	9%							
Test for overall effect:	Z = 3.87 (F	= 0.00	001)				0.02	0.5	1 2	5	
							Favou	rs [Preop-CRT]	Favours [F	Postop-CRT]	

B. ≥ grade 3 perioperative or chronic complication

SO WHAT ARE THE INDICATIONS FOR SCPRT/ CRT

RESECTABLE CANCERS

- To reduce the risk of local recurrence
- To compensate for inexperienced surgeon
- If the surgeon finds other reasons for which he is not convinced that an R0 resection can be achieved
- To treat lateral pelvic lymph nodes
- Anatomy and vasculature are well preserved
- To help to achieve sphincter sparing?
- **Frail**, aged or unsuitable for radical surgery because co-morbidity

Clinical Practice points

- Pre-op RTsignificantly reduces local recurrence
- Pre-op CRTresults in higher rates of pCR compared to RTalone
- CRTis associated with higher toxicity c/w RTalone
- Pre-op RT is associated with better local control compared to post op RT
- pCR rates are higher when interval from CRT to Sx is more than 8 weeks
- Longer interval to surgery did not compromise outcomes and was not associated with difference in toxicityrates
- Hypofractionation with doses >5Gy appears to increase perioperative mortality and post op morbidity in some reports

No benefit of CRT over SCPRT was seen based on long term HRQL, acute toxicity, local control and survival Sometimes wait and watch can be offered to few patients after good response to CRT

Progress is impossible without change, and those who cannot change their minds cannot change anything. *George Bernard Shaw*

JAN LU

