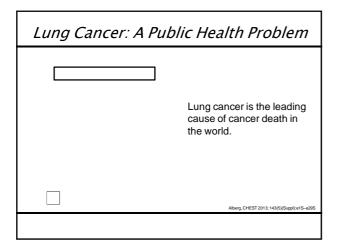
Meta-analysis in Lung Cancer


Dr. V. Srinivasan.,M.D.,F.I.P.M., HOD-Radiation Oncology, MIOT Institute of Cancer Cure Chennai

Today's Roadmap

- Part I: The Basics • Epidemiology, Screening, and Staging
- Part II: Non-Small Cell Lung Cancer
 •Stage I
 - Stage II/III Resectable and Unresectable

Stage IV
 Oligometastases

• Part III: Small Cell Lung Cancer

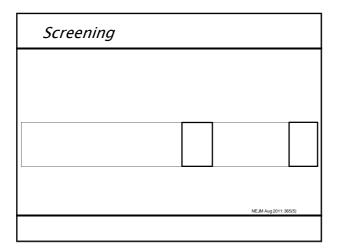
A Public Health Problem

A Public Health Problem

Risk Factors

143(5)(Suppl):e1S-e29S

• Active Cigarette Smoking


- <u>Other causal agents</u>: Secondhand smoke, ionizing radiation (including radon), occupational exposures (arsenic, chromium, nickel, asbestos), indoor and outdoor pollution
- Additional risk indicators: Age, male sex, family history, acquired lung disease (e.g. IPF)

Alberg, CHEST 20

Screening

- At least 6 large RCTs evaluated lung cancer screening with CXR, and none showed a mortality benefit to screening
- Refinements in low-dose CT technology led to the NLST
 - Average dose 2 mSv.
- Eligible patients:
 - 55-74 years
 - 30 pack years of smoking; if quit, then within 15 years
 53,454 randomized to 3 annual LDCTs vs. 3 annual CXRs

NEJM Aug 2011: 365(5)

Screening

- 20% relative reduction in lung cancer mortality
- 6.7% relative reduction in all-cause mortality
- Subsequent NEJM publication: ICER= \$81,000 per QALY
 NEMANg2011: 386(5)

Staging Investigations

- History, Physical, Appropriate Labs, PFTs
- CXR, CE-CT chest/upper abdomen
- Whole body PET/CT
 2 RCTS show that use of PET (or PET/CT) avoids unnecessary surgery in ~10-20%
 MRI head for stage III/IV

Getting Tissue from the Thorax

- Sputum cytology
- Bronchoscopy
- Endobronchial ultrasound
- Esophageal ultrasound
- Transthoracic biopsy
- Mediastinoscopy
- Electromagnetic navigation
- VATS

Notes:

 When nodes are positive on imaging, nodal biopsy is preferred first attempt at tissue as it provides diagnosis and stage
 Histopathology preferred over cytology

Addressing the Mediastinum

Needle or Surgical Approach?

Surgical Approaches Cervical: 1, 2, 3, 4, 7, +/- 10 Anterior: predominantly 5, 6

Needle vs. Surgical

- 241 patients with resectable NSCLC in whom mediastinal staging was indicated
- Randomized to surgical staging vs. combined EUS-FNA and EBUS-TBNA followed by surgical staging if negative

Needle vs. Surgical	
	 47% in EUS/EBUS arm avoided surgical staging
	Annemaet al , JAMA 2010

Staging System

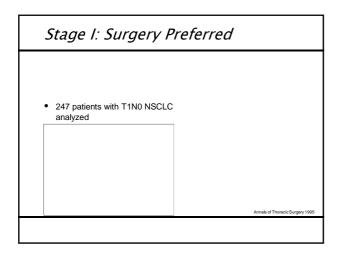
Staging System	
	Detterbeck, Chest 2010

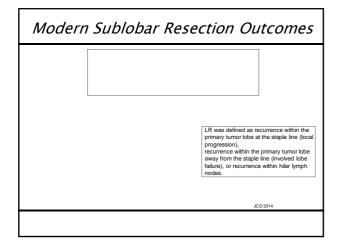
www.utdol.co

Management: Stage I NSCLC

Types of Surgical Resections				
pneumonectomy	sleeve lobectomy	wedge resection		
lobectomy		segmentectomy www.cis.esc.edu		

Types of Surgical Resections


 $\hfill\square$ Lobectomy is the standard surgery for operable NSCLC. $\hfill\square$ Various randomized /non randomized studies has shown survival advantage over limited resection (1)


however several recent studies and metanalysis have compared sub lobar resection with lobectomy in appropriately selected early-stage NSCLC with mixed results (2-5)

Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer Study Group. Ann Thorac Surg 1995;60(3):615–623
 Christopher Cao et al.Meta-analysis of intentional sublobar resections versus lobectomy for early stage non-small cell lung cancer : CORE group STUDY, Ann cardiothoracic surgery, 2014
 Amgad El-Sherif,Outcomes of Sublobar Resection Versus Lobectomy for Stage I Non–Small Cell Lung Cancer: A 13-Year
 Angad El-Surg 2006; 82:408 – 16
 Akada M et al. Radical sublobar resection for small-sized NSCI C a multicenter study. I Thorac

4.Okada M et al. Radical sublobar resection for small-sized NSCLC: a multicenter study. J Thorac

Contain We can national solutional resetution of similarized rocce, a multicenter study 3 monal Cardiovasc Surg 2006;12:769-75
 Watanabe A et al. Feasibility of VATS segmentectomy for selected peripheral lung carcinomas. Eur J Cardiothorac Surg 2009;35:775-80

World J Surg Oncol. 2014 May 1;12:138. doi: 10.1186/1477-7819-12-138.

Sublobectomy versus lobectomy for stage IA (T1a) non-small-cell lung cancer: a meta-analysis study. Lin Y. Huang, Lin H. Chen Y. LLS'.

Author information

Abstract

BACKGROUND: Although lobectomy is considered the standard surgical treatment for the majority of patients with non-small-cell lung cancer (NSCLC), the operation project for patients with stage IA NSCLC (T1a, tumor dameters2 cm) remains controversial. Sublobectomy is appropriate only in certain patients as many doctors consider it to be overtreatment. We evaluated the fine-year overall survival rate of sublobectomy and lobectomy for stage IA NSCLC (T1a, tumor diameters2 cm) through a meta-analysis.

METHODS: The five-year overall survival rate (OS) of stage IA (T1a) NSCLC after sublobectomy (including wedge resection and segmentectomy) and lobectomy were compared. We also compared the OS of stage IA (T1a) NSCLC after segmentectomy and lobectomy. The log (hazard ratio, In (HRI) and its standard error (SE) were used as the outcome measure for data combining.

RESULTS: There were 12 eligible studies published between 1994 and 2013 in which the total number of participants was 18,720. When compared to lobectomy, there was a statistically significant difference of sublobectomy on OS of stage IA (T1a) NSCLC patients (HR 138, 95% confidence interval (95% CI), 119 to 16, P<0.0001). For the comparison between segmentectomy and lobectomy, there was also a statistically significant difference of segmentectomy alone on OS of stage IA (T1a) NSCLC patients (HR 1.48, 95% CI: 127 to 1.73, P<0.00001) CONCLUSIONS. We have concluded that in stage IA (T1a) patients sublobectomy, including segmentectomy and wedge resection, causes a lower survival rate than lobectomy.

					Hazard Ratio	Hazard Ratio
	Study or Subgroup	log[Hazard Ratio]			IV. Random, 95% CI	IV. Random, 95% Cl
	Kates, M.2011		0.09507023		1.12 [0.93, 1.35]	
	Kolke, T.2003		0.70256003	1.2%	1.34 [0.34, 5.31]	
	Okada, M. 2006	-0.05129329		4.0%	0.95 [0.48, 1.88]	
	Okada, M.2001		0.49341322	2.2%	1.28 [0.49, 3.37]	
	Okami, J. 2010		0.19137077	8.7%	1.84 [1.26, 2.67]	
	Warren, W. H. 1994		0.65881253	1.3%	0.94 [0.26, 3.42]	
	Whitson, B. A. 2011		0.11037267		1.65 [1.33, 2.05]	1.
	Wisnivesky, J. P. 2010		0.12729366		1.09 [0.85, 1.40]	
	Wisnivesky, J. P.2011	-0.15082289		1.3%	0.86 [0.23, 3.26]	
	Wolf, A. S 2011		0.22767349 0.06302528	7.2%	1.60 [1.02, 2.50]	
	Yendamuri, S (1987-1997) Yendamuri, S (1998-2004)		0.12937478	10.1%	1.78 [1.57, 2.01] 1.40 [1.09, 1.80]	-
	Yendamuri, S (1998-2004) Yendamuri, S (2005-2008)		0.27561989	5.6%	1.27 [0.74, 2.18]	
	Zhong, C. 2012	-0.94160854		0.7%	0.3910.06.2.561	
	2nong, C. 2012	-0.34100034	0.90047000	0.7%	0.33 [0.06, 2.56]	
	Total (95% CI)			100.0%	1.38 [1.19, 1.61]	•
	Heterogeneity: Tau ^a = 0.03; Chi	P = 30.57, df = 13 (P	= 0.004); I ² = 1	57%		05 02 1 5 20
	Test for overall effect: Z = 4.11	(P < 0.0001)			u u	sublobectomy lobectomy
ombined HR disp tage IA patients v	layed in this figure when o	compared with s 2 cm, (HR 1.38;	ublobecto 95% Cl, 1.1	my sug 9 to 1.6	gested that there v i1; P <0.0001) [5,9,1	ectomy) of stage IA NSCLC patients. The vas a significant benefit of lobectomy on O 2,16-24J. Cl, confidence interval; df, degree

Systematic Review and Meta-Analysis of Randomized and Nonrandomized Trials on Safety and Efficacy of Video-Assisted Thoracic Surgery Lobectomy for Early-Stage Non-Small-Cell Lung Cancer Tristan D. Yan, Deborah Black, Paul G. Bannon, and Brian C. McCaughan

VATS vs open thoracic surgery meta analysis

- 21 studies; 2641 patients
 Two randomized trials
 1391 VATS resections
- 1250 open resections

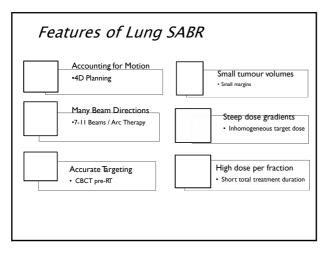
All cause mortality

Improved 5-year mortality rate of VATS (P = .04).

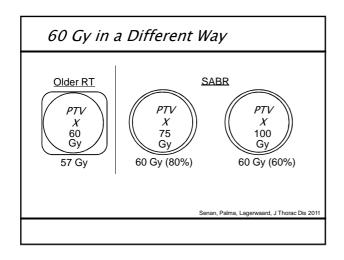
Study or subcategory	RR (random) 95% Cl	Weight %	RR (random)
Sugi et al ²	-	11.70	0.90
Koizumi et al ¹⁰		17.32	0.75
Tashima et al ¹²		7.25	0.25
Shigemura et al14		3.13	2.72
Shiraishi et al ¹⁵		18.30	0.62
Sawada et al ¹⁶		10.09	0.43
Sakuraba et al ¹⁷		32.21	0.72
Total (95% CI)	•	100.00	0.66
Total events: 44 (VATS), 65 (Open)			
Test for heterogeneity: $\chi^2_{e} = 4.51$, $P = .2$	61, I ² = 0%		
Test for overall effect: z = 2.11, P = .04			
0.01	0.1 1 10	100	
Favo	rs VATS Favors	Doen	

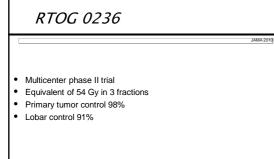
CONCLUSION: Both randomized and nonrandomized trials suggest that VATS lobectomy is an appropriate procedure for selected patients with early-stage NSCLC when compared with open surgery

	J ¹ , <u>Chen Q¹, Jiang J</u> ¹ .					
First author, year, location	Participants	Study Group	Patients, n	Men, n	Age, y, median	Outcomes (MLND/MLNS)
Darling (10), 2011, USA	N0 or N1 NSCLC	MLND	525	272	67	Overall survival (52.4%/50.9%); local recurrence (5.7%/ 4.8%); distant metastasis (21.7%/22.3%)
		MLNS	498	257	68	
Allen [17], 2006, USA	N0 or N1 NSCLC	MLND	525	272	67	Complications (e.g., arrhythmia, prolonged air leakage and pneumonia)
		MLNS	498	257	68	
Izbicki [18], 1998, Germany	In stage I–IIIA NSCLC	MLND	76	52	ND	Overall survival (70.6%/47.9%); local recurrence (28.99 34.4%); distant metastasis (26.3%/31.2%)
		MLNS	93	73		
Izbicki [19], 1994, Germany	In stage I–IIIA NSCLC	MLND	82	56	58.5	Complications (e.g., arrhythmia, prolonged air leakage and pneumonia)
		MLNS	100	80	60.9	
Sugi [20], 1998, Japan	Peripheral NSCLC<2 cm diameter	MLND	59	31	64.7±1.2	Overall survival (81.4%/83.9%); local recurrence (3.4% 3.6%); distant metastasis (10.2%/8.9%); complications (e.g., arrhythmia, prolonged air leakage, and pneumor
		MLNS	56	26	66.7±2.6	
Wu (21), 2002, China	In stage I–IIIA NSCLC	MLND	240	182	57	Overall survival (48.37%/36.98%); local recurrence (2.9 4.8%); distant metastasis (22.5%/30.7%)
		MLNS	231	184	57	

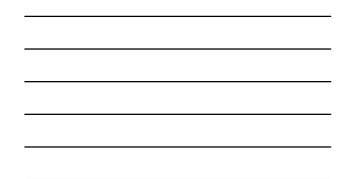


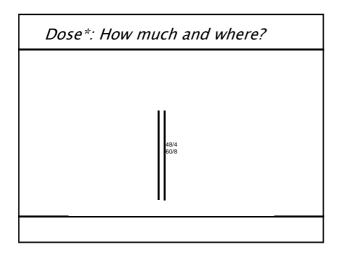
Conclusion


- There was no statistically significant difference in overall survival, local recurrence, and distant metastasis between MLND and MLNS in early stage NSCLC patients.
- Furthermore, no evidence was found that MLND increased complications compared with MLNS.
- However, due to **significant staging heterogeneity** between RCTs, whether or not MLND is superior to MLNS remains to be determined.

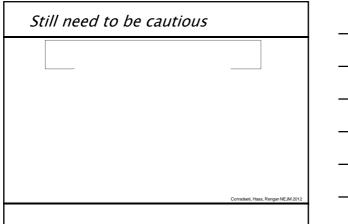

RT
et al, Lung Cancer 2003

Stereotactic Radiation	
SBRT Stereotactic Body Ab Radiation Therapy Ab	SABR Stereotactic lative Radiation Therapy





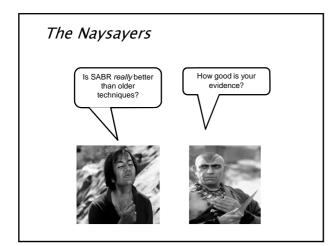
 2014 ASTRO update -- 5-year outcomes: primary tumor recurrence 7%, involved lobar recurrence 20%, regional recurrence 38% and distant recurrence 31%.


SABR Outcomes: VUMC Amsterdam				
5 yr LC 89.5%	5 yr RC 87.3%	5 yr DC 80.1%		
0		Senthi et al Lancet Oncology 2012		

Central Tumors			
	60/8		
60/3			
•Meta-analysis (Senthi 2012): • BED₁₀ ≥ 100 to maximize local control • BED₃ ≤ 240 to keep risk of fatal toxicity to 1%.			
	Timmerman et al JCO 2006 Haasheek et al ITO 2011		

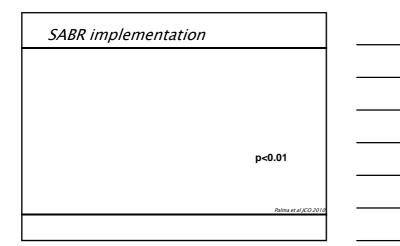
7. Meta-analysis in Lung Cancer Dr. V. Srinivasan




Still need to be cautious

Awaiting RTOG 0813

 Be aware of 'central' vs. 'ultra-central' locations (ASTRO 2014)



Is SABR better than older	techniques?
	Timmerman J Clin Oncol 32:2847-2854
	ministrinan 3 Gill Oncol 32:2847-2854

SABR Implementation: Population Data

Using the Amsterdam Cancer Registry, elderly patients divided into 3 time periods after the routine introduction of FDG-PET:
 Period A (1999-2001): pre-SABR
 Period B (2002-2004): some SABR availability
 Period C (2005-2007): SABR fully available

tal JC

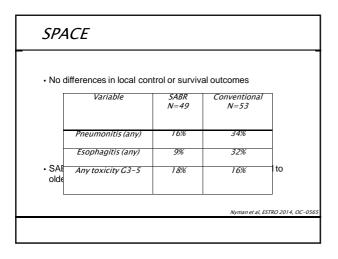
SABR implementation			
			Palma et al JCO 2010
			ranna et al JCO 2010

SABR vs. older techniques

- At least two other population-based studies with similar results
 - Haasbeek, Netherlands, Annals of Oncology 2011
 Shirvani, SEER-Medicare, IJROBP 2012
- At least 3 RCTs launched comparing SABR with standard or less-hypofractionated regimens
 SPACE (Sweden) - completed
 - CHISEL (Australia)
 - LUSTRE (Canada)

RCT #1: SPACE

Comparison


66 Gy in 3 fractions (0.5 – 1 cm margin) **vs. 70 Gy in 35 fractions** (2 cm margin)

Major Inclusion Criteria

T1-2 N0 M0
Medically Inoperable or Refusing Surgery
WHO 0-2
Biopsy proven or growing on CT with positive PET

Nyman et al, ESTRO 2014, OC-056

Variable	SABR N=49	Conventional N=53
Median Age	72.7	75.3
Male	45%	36%
COPD	71%	64%
T2	47%	25%
SCC	18%	28%
Adenocarcinoma	45%	36%

Stage I Inoperable: Summary

• SABR has been widely adopted as standard treatment for inoperable patients

- Non-randomized comparisons suggest better local control, better survival than with conventional treatments
- Convenience of SABR probably improves access to care
- Preliminary randomized data (SPACE) suggests that long-course treatments can also achieve good local control
- More randomized data is coming

Operable Patients

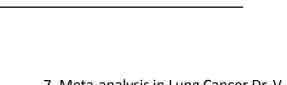
SEER-Medicare: SABR vs. other techniques

• 10,923 patients aged 66+ with stage I NSCLC, 2001-2007

- Five treatment strategies: lobectomy (59%), sublobar (12%), conventional radiation (15%), observation (13%), SABR (1%).
 - Propensity matched

• Individual-level PET and co-morbidity data

What is a Propensity Score?


• A number assigned to an individual patient that takes into account numerous baseline confounders

- 'Fitness Score': 0 is poor, 100 is very good
 Two patients may have same score but very different baseline characteristics
- Logistic model where the dependent variable is treatment allocation

 $ln[PS/(1-PS)] = \beta_0 + \beta_1(ECOG) + \beta_2(T-stage) + \beta_3(FEV_1) + \dots$

SEER-Medicare: SABR vs. other techniques

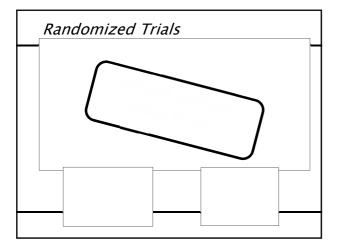
SABR vs. VATS lobectomy	
	Annals of Oncology Mar 2013

SABR vs. Wedge Resection

124 patients with stage I NSCLC not fit for anatomic lobectomy

69 wedge, 55 SABRSABR patients significantly older, higher Charlson scores

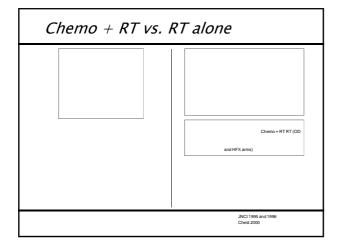
SABR vs. Wedge Resection


- SABR patients had better local control
- No differences in other types of recurrence or DSS
- SABR worse OS due to non-cancer deaths

"[SABR] may be equivalent, if not superior to, wedge resection for recurrence and CSS. "

	High Risk Patients: Severe COPD
•	Systematic Review of the Literature • Only 4 papers reported with subgroups of patients with severe/very severe COPD or ppo-FEV1<40% • All reported local control of ≥89% • 30 day mortality: all SABR studies = 0%, surgical average = 10% overall Survival (VUMC) [n=176] Overall Survival (Review)
/ery severe FEV1<30%)	Servere (FEV1 30-50%)
	Logrankp=0.01 Palma et al UROBP 2011

In Search of Level 1 Evidence...


Summary: Stage I treatment

- Surgery remains standard of care, but nonrandomized data suggests that SABR can achieve comparable outcomes
- Some randomized data expected in 2015. Trials being launched through VA system and in China
- SABR beats 3D-CRT on convenience and toxicity, but early RCT data suggests that good local control can also be achieved with very prolonged fractionation schedules

Management: Stage III NSCLC

Unresectable: RT alone

- Perez et al RTOG RCT (IJROBP 1986) established 60 Gy in 30 fractions based on highest rates of local control (no survival differences vs. 40 or 50 Gy).
- Altered fractionation provides a 2.5% benefit in 5year survival (meta-analysis JCO 2012) at the expense of increased esophagitis

Chemo: Concurrent vs. Sequential	
Auperin, JCO 2012	

NSCLC| Chemotherapy: Meta-analysis

Meta-analysis of 8 trials (778 patients) using cisplatinbased chemotherapy^[1]

- -Absolute improvement in survival of 10% at
- 1 yr^[1]

-Median survival, BSC vs chemo: 4 vs 8+ mos, respectively

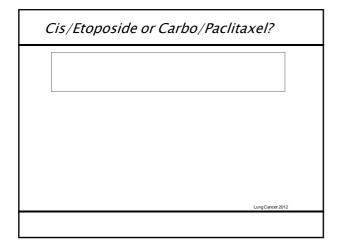
• Median survival now 12+ mos in more recent trials -VEGF-targeted therapy plus platinum

doublet^[2]

- Quality-of-life benefit from chemotherapy^[3]
 NSCLC Collaborative Group, et al. BM. 1995;311:899-909.
 Herbst R, et al. Clin Lung Cancer. 2009;10:20-27
 S. Klastersky J, et al. Lung Cancer. 2001;34(Suppl 4):595-S101.
 Chambers et al. BMC Cancer. 2012; 12: 184

Optimal Chemotherapy Unknown

- Most common options in U.S. are carboplatin/paclitaxel and cisplatin/etoposide
- No phase III data to compare these
 Pneumonitis rates appear higher with carbo/paclitaxel
 Phase II survival data favors cisplatin/etoposide
- Cis-Vinca alkaloid also reasonable


NSCLC| Initial Systemic Therapy: Doublets

Meta-analysis: 65 trials (N = 13,601) between 1980-2001 -Compared efficacy of

•Doublet vs single-agent regimens •Triplet vs doublet regimens

Survival Outcome	Doublet vs Single-Agent Regimens	Triplet vs Doublet Regimens
1-yr OS	Doublet > single-agent • OR: 0.80; 95% CI: 0.70-0.91; <i>P</i> < .001 • 5% absolute benefit	Triplet = doublet • OR: 1.01; 95% CI: 0.85-1.21; P = .88
Delbaldo C, et al. JAMA. 200 Median OS	Doublet > single-agent • MR: 0.83; 95% CI: 0.79-0.89; • P< .001	Triplet = doublet • MR: 1.00; 95% CI: 0.94-1.06; P = .97

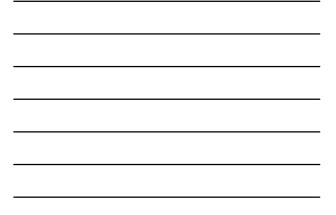
STRIPE Pneumonitis Meta-analysis		
	UROBP 2011	

Cis/Etoposide or Carbo/Paclitaxel?		

NSCLC| Bevacizumab

E4599 • Advanced NSCLC (stage IIIB or IV)- non- squamous —Randomised to paclitaxel/ carboplatin or paclitaxel/carboplatin + bevacizumab —Excluded brain mets and haemoptysis

	Median PFS	Median OS	RR	Significant Bleeding
PC	4.5	10.3	15%	0.7%
PCB	6.2	12.3	35%	4.4%
P-value	< 0.001	0.003	< 0.001	< 0.001


Advanced NSCLC (stage IIIB or IV)- non- squamous

- Randomised to cisplatin/gemcitabine + placebo/low dose bevacizumab/ high dose bevacizumab

- Excluded brain mets and haemoptysis

- Confirmed outcome with less spectacular results

Reck M, et al. J Clin Oncol. 2009;27:1227-1234.. Sandler A, et al. N Engl J Med. 2006;355:2542-2550.

Optimal RT Dose - RTOG 0617

Optimal Dose - RTOG 0617

 Factors predictive of OS: Radiation dose (60 Gy), maximum esophagitis grade, PTV size, heart V5 and V30

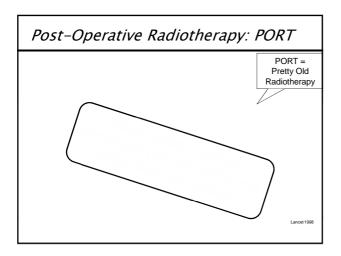
Unresectable Stage III – Summary

Concurrent chemoradiotherapy is preferred
 Optimal chemotherapy is an open question

• Randomized evidence best supports a total dose of 60 Gy in 2 Gy daily fractions with chemotherapy

• Sequential chemoradiation, and radiation alone are options in less-fit patients

Resectable Stage III NSCLC			
Options for curative-intent trea	tment:		
Surgery Chemo ±RT]		
Chemo Surgery	\Rightarrow \pm RT		
ChemoRT Surgery			
Concurrent ChemoRT	<i>Sobering quote:</i> "While there are many		
Others: sequential chemoRT RT alone	potential treatment options, none yields a high probability of cure."		
	- Schild et al, utdol.com		


Option 1: Surgery first

- In carefully selected patients with limited stage IIIA disease that can be completely resected, initial surgery is often the treatment of choice
 Examples include T3N1 disease, or T4 disease due to multiple tumor nodules in one lung.
- Superior sulcus (Pancoast) tumors are a special case
 SWOG 9416 evaluated neoadjuvant chemoRT for T3-T4 N0/1 superior sulcus tumors (45 Gy with concurrent cis/eto then resection)
 - 2-year survival 55%

Surgery first? Then what?		
	JCO 2008	

INDICATIONS – Post OP Radiotherapy

- Completely resected R0
- Stage I & II –no role.
- Stage IIIA- may benefit
 - · Other indications
 - $\bullet\,$ Stage I & II $\,$ close/positive margins.
 - Stage IIIA
 - Close margin (<5mm),
 - Positive margin,
 - N2 disease,
 - Nodal ECE

Post-Operative Radiotherapy: PORT					
Lancet 1998					

PORT meta-analysis Trialist Group

- 2128 patients.
- 9 randomised trials of S +PORT vs Surgery
- 21% relative increase in the risk of death with RT 2 yr reduced OS from 55% to 48%
- Adverse effect was greatest for Stage I,II
- Stage.III (N2): no clear evidence of an adverse effect
- CRITICISM:
- 25% pts were pN0
 no quality control in the radiotherapy

Role Of PORT Called Into Question

Postoperative radiotherapy in non-small-cell lung cancer: systematic review and meta-analysis of individual patient data from nine randomised controlled trials. PORT Meta-analysis Trialists Group. *Lancet* 1998;352(9124):257–263.

Post-Operative Radiotherapy: PORT

- · Several subsequent observational studies suggest some value for PORT
 - Data sources:
 - ANITA trial (post hoc analysis IJROBP 2008)
 - SEER (JCO 2006)
 - National Cancer Database (JTO 2014)
- PORT in N2 disease is the current topic of the Phase III European LUNG-ART randomized trial (EORTC 22055) - dose is 54 Gy in 30 fractions

Where to treat? LUNG-ART guideline

stra, IJROBI

Resectable Stage III NSCLC						
Options for curative-intent treatment:						
Surgery Chemo ±RT						
Chemo Surgery \pm RT						
ChemoRT Surgery						
Concurrent ChemoRT						

Option 2: Chemo before surgery

- Pre-operative chemotherapy improves survival compared to surgery alone (Meta-analysis, Lancet 2014).
- But, compared to post-operative chemotherapy, outcomes are similar (NATCH RCT).
- Induction chemotherapy may be considered in patients planned for surgery who have low volume/microscopic mediastinal disease

Option 2: Chemo before surgery

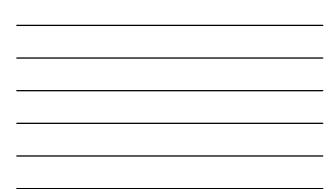
• If choosing induction therapy before surgery, no clear benefit to chemoradiation vs. chemo.

• SAKK16/00 Phase III RCT: ASCO 2013

Randomized to cis-doc vs. cis-doc-RT (44Gy) before surgery

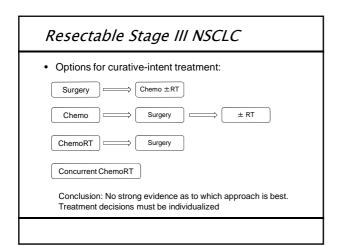
JNCI 2007

• No benefits in RT group


•2 older RCTs showed similar results

Option 2: Chemo before surgery								
PFS OS								
"In view of its low morbidity and be	mortality, radiotherapy should							
considered the preferred locoregic	onal treatment."							
	JNCI 2007							

Resectable Stage III NSCLC							
Options for curative-intent treatment: Surgery							
Chemo Surgery \Rightarrow RT							
Concurrent ChemoRT							



Option 3: ChemoRT first – or ald	one
	Lancet2009

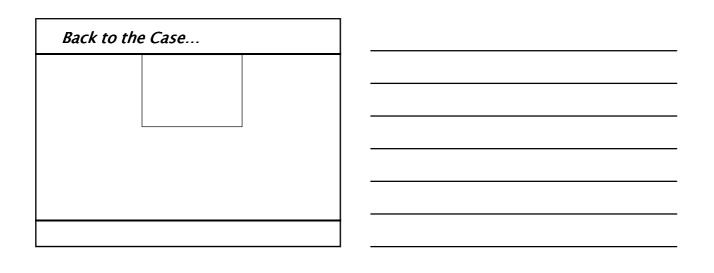
)
•

Albain Trial – <u>Exploratory</u> Analysis			
Lobectomy vs	Lobectomy vs. Matches Pneumonectomy vs. Matches		
		Lancet2009	

Option	ns for curative	e-intent tre	atment:		
Surge	ry	Chemo ±RT			
Chem	• (Surgery	\longrightarrow (± RT]
Chemo	RT →	Surgery			
Concur	rent ChemoRT			urrent chemoRT (when only lobecto	

Resectable Stage III – Summary

- Based on randomized data, outcomes appear to be similar whether the definitive local treatment is surgical or radiotherapy based
- <u>Primary surgical patients</u>: adjuvant chemotherapy is standard, PORT is indicated if margin positive and debatable for N2.
 - The benefit of neoadjuvant treatment in resectable cases is unclear (compared to just post-operative chemotherapy)
- <u>Primary chemoradiotherapy:</u> benefit of adding surgery afterward, or instead of RT, is unclear


(Other NSCLC Resources: Stage III

Other NSCLC Resources: Planning	
	_
JCO 2010)
300 2010	

Oligometastatic NSCLC

A Hot Topic Recently

A Hot Topic Recently

NSCLC Phase II Data							
<u></u>						'	

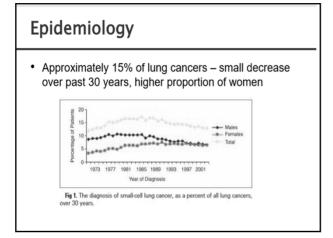
Ashworth, Clin Lung Ca 2014

MDACC/Colorado Trial

 The COMET Trial

 Principal Investigators

 D. Palma, S. Senan


 Target Sample Size

 99

 Palma et al, BMC Cancer 2012, 12:305

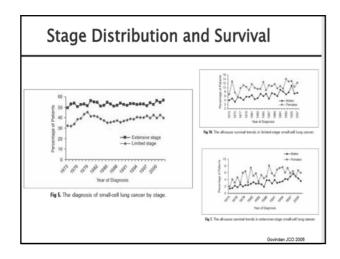
Slide courtesy Dr. D Gomez MDAC

Small Cell Lung Cancer

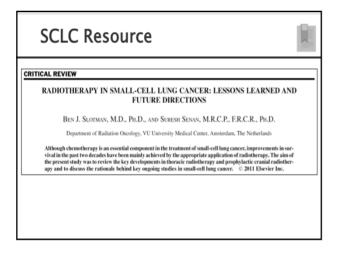
Pathology

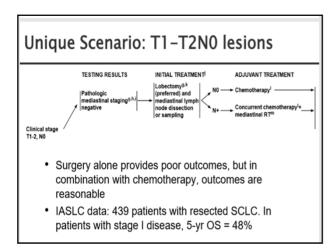
- · Small round blue cell tumor
- Virtually all are reactive for keratin and epithelial membrane antigen
- 75% have one more neuroendocrine markers
 Chromogranin, synaptophysin, NSE, etc.

Staging - officially AJCC but...

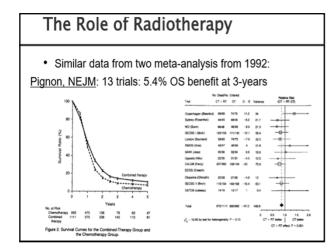

NCCN Definitions

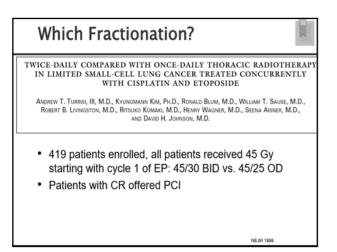
Limited Stage

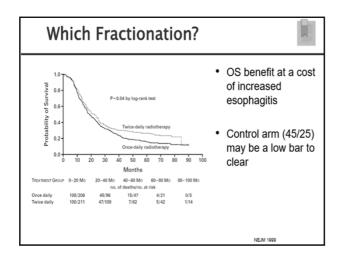

AJCC (7th edition) Stage I-III (T any, N any, M0) that can be safely treated with definitive radiation doses. Excludes T3-4 due to multiple lung nodules that are too extensive or have tumor/nodal volume that is too large to be encompassed in a tolerable radiation plan

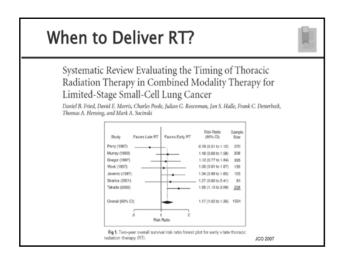

Extensive Stage

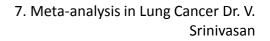
 AJCC (7th edition) Stage IV (T any, N any, M 1a/b), or T3-4 due to multiple lung nodules that are too extensive or have tumor/nodal volume that is too large to be encompassed in a tolerable radiation plan

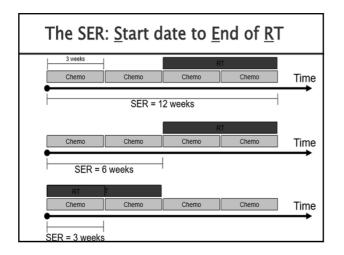




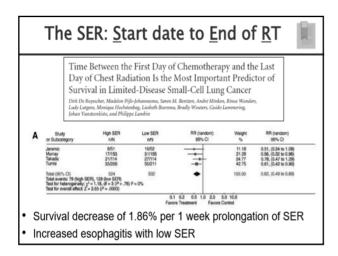


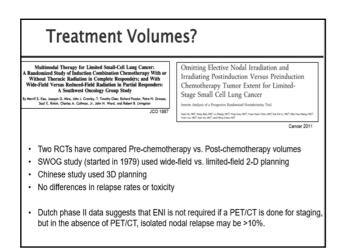


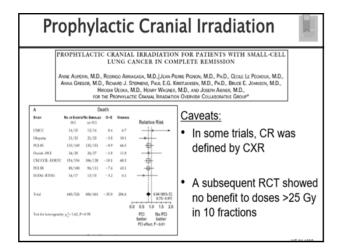


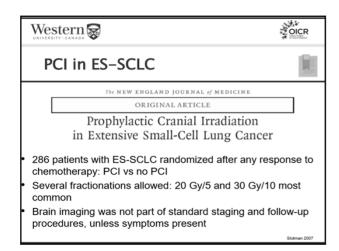

Whic	h Fractionati	on?		
	JEFFREY A. BOGART, M.D.,* JAMES E. DOROTHY WATSON, [†] ANTONIUS A. MILLER,	STAGE SMALL-CELL LUNG CAN LEUKEMIA GROUP B STUDY 399 HERNDON II, PH.D., [†] ALAN P. LYSS, M.I [§] MICHAEL E. LEE, [†] ANDREW T. TURRISI,	SCER: 808	
I	AND MARK	R. GREEN, M.D. ¹		
		Table 5. Comparison of INT-	0096 and CALG	B 39808
,	of paclitaxel + topotecan	Trial	INT-0096	CALGB 39808
 70 Gy in 3 	35 fractions with EP	Thoracic radiotherapy regimen	45 Gv	70 Gy
Phase II c	lesign, 63 patients	Patient and tumor characteristics	twice daily	every day
		Male Weight loss > 5%	58% 18%	54% 31%
		Age, years (median)	61	60
		Supraclavicular adenopathy	4%	0
		Toxicity profile		
		Hematologic toxicity	87% 32%	83% 21%
		Esophagitis Outcome	32%	21%
		Median overall survival	20.3 months	22.4 months
		2-year overall survival	44%	48%
		2-year DFS	29%	31%
			LIROBP 2004	

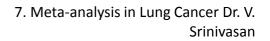
Ongoing Trials

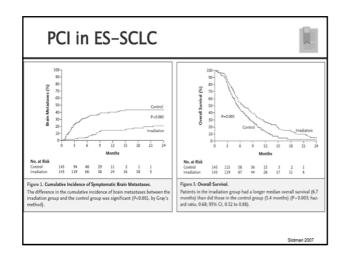

- Two ongoing trials:
 CALGB 30610: 70 Gy/35 OD vs. 45 Gy/30 BID
 CONVERT: 66 Gy/33 OD vs. 45 Gy/30 BID
- Reasonable doses include:
 - 60-70 Gy in 1.8 2 Gy per fraction
 - 45 Gy in 30 fractions BID (or similar short-course regimens)



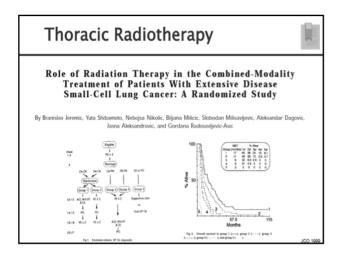


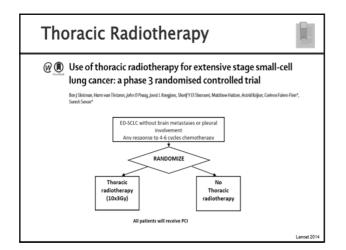


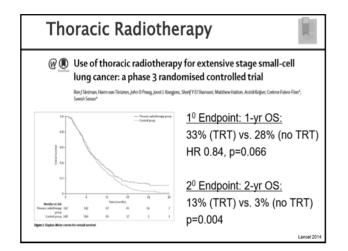




Extensive Stage SCLC


- Majority of SCLC patients have extensive stage disease
- Disease is highly responsive to chemotherapy, but median survival is 8-13 months
- Multiple RCTs have evaluated chemotherapy combinations and timing. Two-drug regimens are better than single-drug regimens, but >2 is not very beneficial but more toxicity
- Platinum + Etoposide (4-6 cycles) remains standard first-line in most centers
- Can radiation help improve survival?





Use of thoracic radiotherapy for extensive stage small-ce lung cancer: a phase 3 randomised controlled trial Banj Stema, Ham van Tieteren, John O'Paug, Joset I. Knegim, Starty (Y El Starovei, Matthew Hatton, Astrid Keijker, Carliere Fahre Sensis Sensi [*]					
Cough (grade 3)	0 (0-0%)	1(0-4%)			
Dysphagia (grade 3)	1 (0-4%)	0 (0-0%)			
Dyspnoea (grade 3)	3 (1-2%)	4(1.6%)			
Oesophagitis (grade 3)	4 (1-6%)	0 (0-0%)			
Fatigue (grade 3)	11 (4-5%)	8 (3-2%)			
Fatigue (grade 4)	0 (0-0%)	1 (0-4%)			
Insomnia (grade 3)	3 (1-2%)	2 (0-8%)			
Nausea or vomiting (grade 3)	1(0-4%)	0 (0-0%)			
Headache (grade 3)	3(1.2%)	2 (0-8%)			

SCLC: Take Home Messages

· Limited Stage

Chemoradiotherapy (with early RT)
 Several reasonable radiation fractionations
 45/30 BID, 70/35 (CALGB), 60/30, 40/15 (NCIC BR-6)

• PCI in responders

- Extensive Stage
 - Doublet platinum-based chemotherapy
 - In patient with a response, consider thoracic radiotherapy and PCI.

