

Metaanalysis

Dr Preety Jain Associate Professor Govt Cancer Hospital Indore

In India

 $\boldsymbol{\cdot}$ Previously – thought - prevalence of prostate cancer in India is far lower compared to western countries but .

- increased migration rural to urban areas
- changing life styles
- increased awareness
- easy access to medical facility
- more cases of prostate cancer are being picked up
- we are not very far behind the rate from western countries.
- Current incidence rate of prostate cancer in India is ~ 10.66 per 100000 population

American Joint Committee on Cancer (AJCC) NM Staging System For Prostate Cancer (8th ed., 2017) Table 1. Definitions for T, N, M Clinical T (cT)

- Primary Tumor Primary tumor cannot be assessed TX T0
 - No evidence of primary tumor
- Clinically inapparent tumor that is not palpable
 Ta Tumor incidental histologic finding in 5% or less of
 tissue resected
- T1b Tumor incidental histologic finding in more than 5% of tissue resected
- T1c Turor identified by needle biopsy found in one or both sides, but not paipable T2 Turnor is paipable and confined within prostate T2a Turnor involves one-half of one side or less
- T2b Tumor involves more than one-half of one side but not both sides
- T2c Tumor involves both sides T3 Extraprostatic tumor that is not fixed or does not invade adjacent structures
- adjacent structures T3B. Extraprostate extension (unilateral or bilateral) T3b Tumor in twades adjacent structures other than seminal vesicies such as external sphrinter, rectum, biadder, levator muscles, and/or pelvic wall.

- logical T (pT)

- Paintogical (µ)
 Primary Tumor
 Primary Tumor
 Organ confined
 Extraprostatic extension
 Ta Extraprostatic extension
 imasion of the bladder neck
 more impacting extension (unliateral or bilateral) or micr
 imasion of the bladder neck
- Invasion of the Bradborn reck. T3b Tumor invades seminal vesicle(s) T4 Tumor is fixed or invades adjacent structures other than seminal vesicles such as external sphinter, rectum, bladder, levator muzicles, and/or pelvic wall Note: There is no parbologic 71 dassification. "Note: Posities vergical margin should be indicated by an R1 descriptor; indicating residual microscopic disease.

- N
 Regional Lymph Nodes

 NX
 Regional lymph nodes cannot be assessed

 N0
 No positive regional nodes

 N1
 Metastases in regional node(s)
- м Distant Metastasis
- No distant metastasis Distant metastasis

M0 M1

- M1a Non-regional lymph node(s)
- Mile Bone(s) with or without bone disease Mic Other site(s) with or without bone disease Note: When more than one site or metastasis is present, the most advanced o is used. Mic is most advanced. *Note

Group	т	N	M	PSA (ng/mL)	Grade Group	Histopathologi					
itage I	cT1a-c	N0	MO	PSA <10	1	This classification	on applies to aden	ocarcinomas and squamous carcinomas			
	cT2a	NO	MO	PSA <10	1	but not to sarcor	na or transitional or	ell (urothelial) carcinoma of the prostate.			
	pT2	NO	MO	PSA <10	1	Adjectives used	to describe histol	ogic variants of adenocarcinomas of the ring cell ductal and neuroendocrine			
itage IIA	cT1a-c	NO	MO	PSA≥10 <20	1	including small cell carcinoma. There should be histologic confirmation of					
	cT2a	NO	MO	PSA≥10 <20	1	disease.					
	pT2	NO	MO	PSA≥10 <20	1	Definition of H	stologic Grade (Froun (G)			
	cT2b	N0	MO	PSA <20	1	Recently, the G	eason system has	been compressed into so-called Grade			
	cT2c	N0	MO	PSA <20	1	Groups.					
itage IIB	T1-2	N0	MO	PSA <20	2						
itage IIC	T1-2	NO	MO	PSA <20	3	Grade Group	Gleason Score	Gleason Pattern			
•	T1-2	N0	MO	PSA <20	4	1	≤6 7	≤3+3 0.4			
itage IIIA	T1-2	N0	MO	PSA ≥20	1-4	2	-	3+4			
itage IIIB	T3-4	N0	MO	Any PSA	1-4	3	1	4+3			
tage IIIC	Any T	N0	MO	Any PSA	5	4	8	4+4, 3+5, 5+3			
tage IVA	Any T	N1	MO	Any PSA	Anv	5	9 or 10	4+5, 5+4, 5+5			
	Any T	Any N	M1	Any PSA	Anv						

veral risk strati	fication models h	ave developed.	
Risk Group	Low	Intermediate	High
Seattle/MSKCC	PSA <10 ng/mL and GS 2-6 and stage T1-T2b	PSA >10 ng/mL or GS >=7 or stage >=T2c	Two or three of the intermediate risk factors
Mt. Sinai	PSA <10 ng/mL and GS 2-6 and stage T1-T2a	PSA 10.1-20 ng/mL or GS 7 or stage T2b	Two or three of the intermediate risks and/or PSA >20 ng/mL and/or GS 10 and/or stage >=T2c
D'Amico	PSA <10 ng/mL and GS 2-6 and stage T1-T2a	PSA 10.1-20.0 ng/ml and/or GS 7 and/or stage T2b	PSA >20 ng/mL and/or GS 10 and/or stage >=T2c

Radiotherapy Techniques

- External Beam Radiation Therapy (EBRT)
 A)Conventional Techniques
 B)3D-CRT/IMRT/VMAT/SBRT
- 2. Brachytherapy:

A)Radioactive seed implants into prostate.

B) HDR brachytherapy

3. Radioisotopes

Metaanalysis

- ► 1. Surgery versus RT for clinically localized PCa : A systemic review and metaanalysis
- 2. Adjuvant RT following radical prostatectomy for pT3 or margin positive PCa.: A systemic review and metaanalysis
- 3. Higher then conventional radiation doses in localised Pca treatment : A metaanalysis of RCT
- ► 4. Does harmone treatment added to RT improve outcome in locally advanced PCa
- ▶ 5. SBRT for primary PCa : A systemic review
- 6. Comparison of treatment related toxicities in men: IMRT versus 3D CRT
- ▶ 7. Comparison of HRQOL among surgery & RT for localised PCa : A systemic review and metaanalysis

RP-PLND vs RT for clinically localised prostate cancer

Surgery Versus Radiotherapy for Clinically-localized Prostate Cancer: A Systematic Review and Meta-analysis Christopher J.D. Wallis <u>doi ong/10.1016/j.eururo.2015.11.010</u>
Objective :
To conduct a systematic review and meta-analysis to compare efficacy data on overall and prostate cancer-specific survival among patients treated with radiotherapy or radical prostatectomy for clinically-localized prostate cancer.
Nineteen studies of low to moderate risk of bias were selected
and up to 118 830 patients were pooled.
Inclusion criteria :
 Men of any age with nonmetastatic prostate cancer treated with any commonly-utilized form of radiotherapy including conformal external beam (EBRT), intensity-modulated (IMRT), <u>brachytherapy</u>, or a combination of radiotherapy modalities w curative treatment intent.
Irrespective of dose and duration of radiotherapy
Studies having a comparison group comprising patients treated with radical prostatectomy.
Exclusion criteria :
Studios associate adjugant or calgare therapies as the specific objective

Studies assessing adjuvant of salvage inerapies as the specific object Studies assessing nonstandard treatments (such as cryotherapy).

	Cha	racter	istics c	of inclu	ided s	tud	lies	II.		/
Author (yr)	Data source (study interval)	Follow-up (median)	Inclusion criteria	Radiation modality	Radiation dose	Study size	Adjuvant therapies	RP	lge XRT	Outcome
Abdollah (2012)	SEER (1992-2005)	52 mo	Clinically localized. age 65-79	Unspecified	NA	68 665	ADT: RP: 0% XET: 95	65-69: 53% 70-74: 39% 75-79: 9%	65-69: 24% 70-74: 41% 75-79: 35%	PCM
Albersten (2007)	Connecticut Tumor Registry (1992-2005)	Mean 13.3 yr	Clinically localized.	LBRT	NA	1618	Excluded	median 65	median 71	PCM
Arvold (2011)	21" Century Oncology, Chicago Prostate Centre, Duke University (1988-2008)	6.1 yr (RP) and 3.6 yr (XRT)	Low risk or intermediate risk*	Brachy	min 115 Gy	8839	Included but proportion not specified	median low risk: 61.4; int risk: 62.9	median low risk: 68.8; int risk: 71.2	PCM
Boorjian (2011)	Mayo Clinic, Fox Chase (1988-2004)	10.2 yr (RP) and 6.0-7.3 yr (XRT)	High risk*	EBRT (conformal, 3DCRT, IMRT)	median 72 Cy (range, 50-79)	1847	ADT: RP: not specified XRT: 56%	median 66.0	median with ADT: 68.8: no ADT: 69.3	OM, PCM
Cooperberg (2010)	CaPSURE (1987-2007)	3.9 yr (RP) and 4.5 yr (XRT)	Clinically localized	LBKT	NA	6209 ¹	ADT RP: 6.7% XRT: 49.7% Postor XRT: 3%	median 62	median 72	OM, PCM
DeGroot (2013)	Ontario Cancer Registry (1990-1998)	NR	"Candidate for therapy": low and intermediate risk*	LBRT	median 64 Gy (range, 40-70)	1090	ADT RP: 29% XRT: 22%	mean 63	mean 69	PCM
Hoffman (2013)	PC05 (1994-2010)	15 yr	Clinically localized, age 55-74	LBRT	NA	1655	ADT: RP: 04 XRT: 115	55-64: 52% 65-74: 48%	55-64: 23% 65-74: 77%	OM, PCM
Jeldres (2008)	Quebec Health Plan (1989-2000)	7.4 yr	Age > 70	EBRT	NA	6183	Included but proportion not specified	median 71	median 74	OM
Kibel (2012)	Barnes-Jewish Hospital (BJ), Geveland Clinic (CC) (1995–2005)	67 mo	Clinically localized	EBRT (3DCRT, IMRT), brachy	median 74 Gy (8J) and 78 Gy (CC)	10 429	ADT: RP: not specified XRT: 345	median 8]: 61; CC: 60	median BJ-EBRT: 70; BJ-brachy: 60; CC-EBRT: 60; CC-brachy: 68	OM, PCM
Ladjevardi (2010)	Swedish National Prostate Cancer Registry (1996–2006)	4.4 yr	T1-3, N0-3, M0-3, M0-3, P5A < 20, age < 75	LBRT, brachy	NA	19 258	Not specified	<33: 105 55-59: 235 60-64: 335 65-69: 275 20-75: 85	<55: 4% 55-59: 13% 60-64: 25% 65-69: 33% 20-25: 25%	OM
Lee (2014)	Severance Hospital, Seoul Korea (1990–2000)	76 mo	Clinically localized high risk ¹	EBRT	74-79 Gy	376	ADT RP: 0% XRT: 100% Postop XRT: 10%	mean 67.5	mcan 68.6	PCM
Merglen (2007)	Geneva Cancer Registry (1989-1998)	6.8 yr	Clinically localized	LBRT	NA	363	ADT RP: not specified XRT: 26%	<60: 23% 60-69: 52% 70-79: 18% ≥80: 7%	<60: 9% 60-69: 52% 70-79: 38% ≥80: 1%	OM, PCM
1					/		/		ZE	

RP-PLND vs RT for clinically localised prostate cancer

Primary outcome : overall mortality

Secondary outcome : prostate cancer-specific mortality.

- Studies reporting surrogate endpoints such as biochemical recurrence only were excluded.
- Since age, comorbidity, and histologic factors such as grade and stage significantly impact overall and prostate cancer-specific mortality ,we considered studies only reporting multivariable adjusted <u>hazard ratios</u> (aHR).

Author	Inclusion criteria	Overall 1	mortality	Prostate can	cer mortality
Autor		RP	XRT	RP	XRT
Abdollah (2012)	Clinically localized, age 65-79	NA	NA	10 yr low/int: 1.4% 10 yr high: 6.8%	10 yr low/int: 3.9% 10 yr high: 11.5%
Albersten (2007)	Clinically localized, age < 75	10 yr: 17%°	10 yr: 22%2	10 yr low: 3% 10 yr int: 6% 10 yr high: 10%	10 yr low: 7% 10 yr int: 12% 10 yr high: 20%
Arvold (2011)	Low risk or intermediate risk	NA	NA	10 yr low: 0.4%* 10 yr int: 0%*	10 yr low: 0.8% ² 10 yr int: 3.5% ²
Boorjian (2011)	High risk	10 yr: 23%	10 yr RT + ADT: 33% 10 yr RT: 48%	10 yr: 8%	10 yr RT + ADT: 81 10 yr RT: 12%
Cooperberg (2010)	Clinically localized	NA	NA	10 yr: 5%°	10 yr: 12%°
DeGroot (2013)	"Candidate for therapy": low and intermediate risk	NA	NA	NA	NA
Hoffman (2013)	Clinically localized, age 55-74	15 yr: 35%°	15 yr: 58% ³	NA	NA
Jeldres (2008)	Age > 70	10 yr: 40.7% 15 yr: 72.7%	10 yr: 69.7% 15 yr: 86.7%	NA	NA
Kibel (2012)	Clinically localized	10 yr: 11.1%	10 yr EBRT: 17.4% 10 yr brachy: 18.3%	10 yr: 1.8%	10 yr EBRT: 2.9% 10 yr brachy: 2.3%
Ladjevardi (2010)	T1-3, N0-X, M0-X, PSA<20, age < 75	Relative survival is given resulting in survival estimates > 100% and therefore mortality < 0.			
Lee (2014)	Clinically localized high risk	NA	NA	10 yr: 10%	10y r: 20%°
Merglen (2007)	Clinically localized	NA	NA	10 yr: 17%	10 yr: 25%
Merino (2013)	Clinically localized	5 yr: 3.8% 7 yr: 6.3%	5 yr: 11.6% 7 yr: 16.9%	7 yr: 1.9%	7 yr: 7.9%
Rice (2013)	Low risk, age > 70	10 yr: 18%°	10 yr: 30% ³		
Sooriakumaran (2014)	All	10 yr low: 10% ^a 10 yr int: 15% ^a 10 yr high: 20% ^a	10 yr low: 16% ³ 10 yr int: 22% ³ 10 yr high: 30% ³	10 yr low: 1% ² 10 yr int: 3% ³ 10 yr high: 8% ³	10 yr low: 1%* 10 yr int:8%* 10 yr high: 15%*
Sun (2013)	Clinically localized, age 65-80	10 yr: 20%	10 yr: 37%	NA	NA
Tewari (2007)	Clinically localized, high risk, age < 75	10 yr: 54%	10 yr: 75%	10 yr: 25%	10 yr: 43%
Westover (2012)	Clinically localized, Gleason score 8–10, age < 75	NA	NA	5 yr: 0%	5 yr: 1.5%
Zelefsky (2010)	T1c-T3b	NA	NA	8 yr: 1.4%	8 yr: 4.7%

RP-PLND vs RT for clinically localised prostate cancer Overall mortality :

- Ten studies reporting on 95 791 patients were aggregated to assess the effect of treatment modality on overall mortality. · Patients treated with radiotherapy experienced an increased risk of overall mortality compared with those treated
- with radical prostatectomy (aHR 1.63, 95% confidence interval [CI] 1.54–1.73, p < 0.00001; I2 = 0%).
- · Similar direction of effect was found in patients with
 - o low risk prostate cancer (aHR 1.47, 95% CI 1.19–1.83, p = 0.0004, I2 = 59%).
 - intermediate risk prostate cancer (aHR1.50, 95% CI 1.24–1.82, p < 0.0001; l2 + N/A), or</p> whigh risk prostate cancer (aHR 1.88, 95% CI 1.64–2.16, p < 0.00001; (2 = 0%)).</p>

	,	3			
radiotherap	ру		[]	11	
	Overall mortality		Prostate cancer-specific mortality		
	Adjusted HR (95% CI, p value)	I ²	Adjusted HR (95% CI, p value)	I ²	
Risk category					
Low risk	1.47 (1.19-1.83, p = 0.0004)	59%	1.70 (1.36-2.13, p < 0.00001)	0%	
Intermediate risk	1.50 (1.24-1.82, p < 0.0001)	NA	1.80 (1.45-2.25, p < 0.0001)	0%	
High risk	1.88 (1.64-2.16, p < 0.00001)	0%	1.83 (1.51-2.22, p = 0.0001)	423	
Radiotherapy modality					
EBRT (CRT and IMRT)	1.69 (1.55-1.85, p < 0.00001)	8%	2.26 (1.94-2.63, p < 0.00001)	0%	
IMRT	No studies available		2.26 (1.21-4.21, p = 0.01)	0%	
Brachytherapy	1.70 (1.40-2.10, p < 0.001)	NA	1.58 (1.01-2.49, p = 0.05)	0%	
Duration of follow-up					
<5 yr	1.54 (1.38-1.71, p < 0.00001)	0%	1.51 (0.25-9.19, p = 0.66)	89	
5-8 yr	1.73 (1.49-2.02, p < 0.00001)	18%	1.80 (1.57-2.05, p < 0.00001)	0%	
>8 yr	1.74 (1.55-1.95, p < 0.00001)	0%	2.26 (1.60-3.20, p < 0.00001)	65	
Era of accrual					
Early	1.75 (1.57-1.97, p < 0.00001)	5%	2.04 (1.54-2.72, p < 0.00001)	443	
Later	1.59 (1.48-1.70, p < 0.00001)	0%	2.12 (1.69-2.66, p < 0.00001)	58	
Geographic region					
United States	1.63 (1.54-1.73, p < 0.00001)	0%	2.11 (1.65-2.69, p < 0.00001)	59%	
Rest of the world	1.65 (1.55-1.76, p < 0.0001)	42%	1.85 (1.59-2.15, p < 0.00001)	0%	

RP-PLND vs RT for clinically localised prostate cancer

Conclusion :

In this review and <u>meta-analysis</u> of 19 studies with low to moderate risk of bias, an increased overall and prostate cancer-specific mortality for patients treated with <u>radiotherapy</u> compared with those treated with surgery for clinically localized <u>prostate cancer</u>.

Adjuvant Radiotherapy after Radical Prostatectomy

Adjuvant radiotherapy following radical prostatectomy for pathologic T3 or margin-positive prostate cancer: A systematic review and meta-analysis. doi:10.1016/j.radonc.2008.04.013 Three RCTs representing 1743 patients were included.

Eligibility Criteria :

Patients with prostate cancer treated initially with RP of any approach, and found to have either tumour extension beyond the prostatic capsule (pT3a), seminal vesicle invasion (pT3b), positive resection margins (R1) or more than one of these features.

They randomized patients to receive either adjuvant external beam RT to the prostatic bed in the immediate postoperative period or to observation with therapies (including RT, ADT, and other therapies) held in reserve for salvage.

Trials in which the adjuvant RT arm included adjuvant treatment modalities in addition to RT (i.e., concurrent adjuvant ADT) were excluded.

characteristics of etigit	die chais		
Trial descriptors	EORTC 22911	SWOG 8794	German Cancer Society ARO 96-02 and AUO AP 09/95
Eligibility criteria	At least one of: extraprostatic extension, seminal vesicle invasion, or positive surgical margins (pT2 N0 M0 R1 or pT3 N0 M0 R0-1) WHO P5 0-1 Ase ≤75 vrs	At least one of: extraprostatic extension, seminal vesicle invasion, or positive surgical margins (pT2 N0 M0 R1 or pT3 N0 M0 R0-1) SW0G P5 0-2 Nesative pelvic lymphadenectomy ^a	Extraprostatic extension or seminal vesicle invasion with or without positive surgical margins (pT3 NO R0-1) Undetectable PSA following RP
Median age	65 vrs	64.9 vrs	NR
Stratification variables	Institution; pT3a (present vs. absent); R0 vs. R1; pT3b (present vs. absent)	Tumour extent (pT3a or R1 vs. pT3b vs. R1 and pT3b); NADT (present vs. absent)	Gleason score (2-6 vs. 7-10); R0 vs. R1; pT3a vs. pT3b; NADT (present vs. absent)
NADT use (% of patients)	10%	8.5%	NR
Number randomized	1005	431	307
Number eligible	968	425	300
Time from RP until start of adjuvant RT	<16 weeks	<18 weeks	8-12 weeks
Adjuvant RT dose-fractionation	60 Gy in 30 fractions	60-64 Gy in 30-32 fractions	60 Gy in 30 fractions
Adjuvant RT volume	 Initial phase: 50 Gy to ''volume including surgical limits from seminal vesicles to apex with security margin to encompass subclinical disease in peri-pros- tatic area'' 10 Gy boost to ''reduced volume circumscribing the previous landmarks of the prostate with a reduced security marein'' 	Single phase: RT delivered to "prostatic fossa and paraprostatic tissues"	Prostatic fossa and region of seminal vesicles with 1 cm margin
Treatments received by observation arm (n)	Pelvic radiotherapy (113); hormonal treatment (45); surgical castration (1); other (4)	Pelvic radiotherapy (70); other therapies NR	NR
Median follow-up	5 years	10.6 years	4.5 years
Primary endpoint	Biochemical progression-free	Metastasis-free survival	Biochemical progression-

Conclusions

Adjuvant RT following RP in patients with pathologic T3 or margin-positive prostate cancer reduces the risk of biochemical and locoregional failure compared to observation, and prolongs the time to initiation of ADT.

Adjuvant RT is associated with a low rate of acute and late major toxicity.

To date, an overall survival benefit has not been demonstrated with adjuvant RT.

Longer follow-up is needed to ascertain whether such a benefit exists.

Early referral following RP to a radiation oncologist for a discussion around the pros and cons of adjuvant RT is advisable.

		tournary and Ga	istrointestinal (Re	ctal) Morbidity, I	by Assigned Radi	ation Therapy Do	se and Toxicity	Grade
	· · · · · ·	70.2.04	(n - 196*)	No.	(%)	79.2.0.4	(0 - 195)	
Vorbidity	Grade 1	Grade 2	Grade 3	Grade 4	Grade 1	Grade 2	Grade 3	Grade 4
cute							0.0000	2/800 4
GU	79 (40)	82 (42)	2 (1)	0	69 (35)	95 (49)	2 (1)	1 (1)
GI	62 (31)	81 (41)†	2 (1)	0	48 (25)	112 (57)†	U	0
GU	85 (43)	35 (18)	3 (2)	0	84 (43)	39 (20)	1 (1)	0
GI	71 (36)	15 (8)‡	1 (1)	0	84 (43)	33 (17)‡	1 (1)	0
$P = .004$ by $\chi^2 t$ $P = .005$ by $\chi^2 t$ (1% of patie	anayas of morbidity est. nts receiving con	ventional-dose a	and 2% receiving	high-dose radia	tion experienced	acute urinary or	rectal morbidity	of Radiation

The Role of Dose Escalation

HIGHER-THAN-CONVENTIONAL RADIATION DOSES IN LOCALIZED PROSTATE CANCER TREATMENT: A META-ANALYSIS OF RANDOMIZED, CONTROLLED TRIALS. doi:10.1016/j.ijrobp.2008.10.091

Purpose:

To determine in a meta-analysis whether the outcomes in men with localized prostate cancer treated with high dose radiotherapy (HDRT) are better than those in men treated with conventional-dose radiotherapy (CDRT), by quantifying the effect of the total dose of radiotherapy on biochemical control (BC).

Seven RCTs with a total patient population of 2812 were identified.

Eligibility Criteria:

 The men in the studies had to have histologically confirmed localized prostate cancer and to have undergone no previous treatment with pelvic radiotherapy, radical prostatectomy, or androgen deprivation therapy.

Studies that included patients with evidence of metastatic disease were excluded.

cteristics of stud	lies of high-dose radioth	erapy for localized pr	ostate cancer
Treatment modality	PTV, CTV, and setup	Risk group definition	Biochemical failure definition
Conformal radiotherapy was given with photons and phase 2 with protons	CTV = prostate, with 5-mm margin.	Low risk: Stage <t2a and="" gleason<br="">score ≤6 and PSA ≤10 ng/mL.</t2a>	Defined using the American Society for Therapeutic Radiology and Oncology criteria of three successive increases in PSA level
	PTV = CTV + 7-10 mm.	High risk: Stage T3 or Gleason	F3A BWL
	Setup: error was minimized by obtaining daily portal images throughout the first phase; portal images were obtained weekly during the second phase.	score ≥8 or PSA >20 ng/mL. Intermediate risk: all others.	
Conformal radiotherapy with photons	$CTV = \text{prostate} \pm SV + 10 \text{ mm} \pm 5 \text{ mm}$ (except toward the rectum, 0 mm) for the last 10 Gy in the high-dose arm.	Low risk: Stage <t2a and="" gleason<br="">score ≤6 and PSA ≤10 ng/mL.</t2a>	Biochemical failure was defined according to the definition of the American Society of Therapeutic Radiation Oncology and was considered three consecutive increases in PSA level after a nadir.
	Setup: not reported.	High risk: Stage T3 or Gleason score ≥8 or PSA >20 ng/mL.	
		Intermediate risk: all others.	
	Conformal indioherapy pikes 2 with postess	cteristics of studies of high-dose radiation Treatment modality PTV. CTV. and seage proves with 5 mm margin. Conformal moderneys was conference on the state of the search provide proves with the search provide	cateristics of studies of high-dose radiotherapy for localized print Transmit modelly PTV, CTV, and step Risk group definition Conformal indiotherapy was pase 2 with process PTV = CTV + 7-10 mm. Steps error was minimized by botaining indiv pering spectrospectration of the print of th

HRC RT01 (27) Contential indicempty CTV + GTV (bits 0.6-S-cm margin PTV = 0.5-10 cm. Low risk: Stage -CT2 and Grean nord: 9 and PKN = 10 putties and PKN = 10 putties and PKN = 10 putties and PKN = 10 putties and potential for the set indicatory. PA failure was diffed as at its work and PKN = 10 putties and potential for the set and potential for the set and content indicatory. V = 453 Strip: not reported. High risk: Stage -CT2 and Grean and report risk is done. PA failure was diffed as at its work and reported the 2 putties in the set of PKA > 50 putties. PA failure was diffed as at its work and reported the set of PKA > 50 putties. M.D. Addresson C22 Conversitual for box is an disconformal indicion is an of our of PKA reliance. PA is 11 cm for the isom of a of PKA > 50 putties. The mark + 2 age.I. Linking definition was used to define PKA failure. V = V301 PA is 10 putties. Pass 2 (TV = potential ad 11 X = 9 putties. Low risk: Stage -CT2 and Greasen score 76 and PKA > 510 putties. The mark + 2 age.I. Linking definition was used to define PKA failure. NDR. From Trip: High risk: Stage T1 or Greasen score 76 and PKA > 510 putties. The mark + 2 age.I. Linking definition was used to define PKA failure. NDR. From Trip: High risk: Stage T1 or Greasen score 76 and PKA > 510 putties. The mark + 2 age.I. Linking definition was used to define PKA failure. NDR. From Trip: High risk: Stage T1 or Greasen wide joncen and properties failed is the high x 16 cm. Not reported. Note reported. Stage Fi					
 w = 6.3 Stop: not reported. Number of the stop of the	MRC RT01 (27)	Conformal radiotherapy with photons	CTV = GTV plus a 0-5-cm margin. PTV = 0.5-1.0 cm.	Low risk: Stage <t2a and="" gleason<br="">score ≤6 and PSA ≤10 ng/mL.</t2a>	PSA failure was defined as an increase in PSA concentration to greater than the nadir by at least 50% and greater than 2 ng/mL 6 mo or more after the start of
Law: 19 AD. A definition of the second of the	V = 843 HDRT: 422 Low: 99 Intermediate: 127 High: 184 CDRT: 421		Setup: not reported.	High risk: Stage T3 or Gleason score ≥8 or PSA >20 ng/mL. Intermediate risk: all others.	radiotherapy.
M. D. Andreson (22) Conventional flow bases and conformal radius in the ghane 2 dater the senter and purpose risks and 11 x + 11 on for the another and purpose risks and 11 x + y Jume distance 3 date and the flow bases area for a diff AS 10 modified. The wafe - 2 agest, Julium distance, ware set to define PSA in policy. Y = 301 Intermediate 64 right 530 right 530 right 540 refer est, 500 right 540 right 540	Low: 95				1.8 // /
 v = 301 Pine 2 (TV = protein ed SV; PIV = CTV = 12.1.5 cm in the access of the PIS A 30 style="text-access of the PIS A 30 style="	M. D. Änderson (22)	Conventional four boxes and conformal radiation in the phase 2 after the first 46 Ge	Phase 1= field sizes 11 × 11 cm for the anterior and posterior fields and 11 × 9 cm for the lateral fields.	Low risk: Stage <t2a and="" gleason<br="">score ≤6 and PSA ≤10 ng/mL.</t2a>	The nadir + 2 ng/mL failure definition was used to define PSA failure.
HDRT: 151 Setup: not reported. Intermediate risk: all others. Lew: 20 Intermediate risk: all others. Intermediate risk: all others. Intermediate risk: all others. Intermediate risk: all others. Intermediate risk: all others. Intermediate: 71 Intermediate risk: all others. Intermediate risk: all others. Shipley et al. (26) Conventional flow loss and with photons and with terme listen 13 cm highs 115 cm deep. PA value of cingolit. or more, or if the series PA iter increased by nove than 16 for solid or given in Phase 2 all other each prote wetnetict readers. V = 202 Setup: Bigline diagnostic inflographs were taken block reads prote bigling of solid or	V = 301	min to opt	Phase 2 CTV = prostate and SV. PTV = CTV + 1.25-1.5 cm in the anterior and inferior dimensions and 0.75-1.0 cm in the posterior.	High risk: Stage T3 or Gleason score ≥8 or PSA >20 ng/mL.	
Allipticy et al. (26) Conventional four box with photons and promote 50.4 G // in the bight-done am. Anteropotetrior fields 15 cm high x 16 cm. Not reported wide, iteration 15 cm high, x 11.5 cm deep. PSA value of 4 aginL, or more, or if the series PSA regimes of the high-done am. V = 202 Senge Bighane diagnostic inflagraphs were taken before exh protes monitoring of the tarent in the house monitoring of the tarent in the house. Senge Bighane diagnostic inflagraphs were taken before exh protes monitoring of the tarent in the house.	HDRT: 151 Low: 30 Intermediate: 68 High: 53 CDRT: 150 Low: 31 Intermediate: 71 High: 48		Setup: not reported.	Intermediate risk: all others.	
N = 202 Setup: Biplane diagnostic adiopandia were takin before ado protos traciament takin before ado protos traciament session to assure correct positioning of the target in the beam.	Shipley et al. (26)	Conventional four box with photons and protons in Phase 2 after the first 50A Gy in the high-dose arm	Anteroposterior fields 15 cm high × 16 cm wide; lateral 15 cm high× 11.5 cm deep.	Not reported	PSA value of 4 ng/mL or more, or if the serum PSA level increased by more than 10% compared with a previous value obtained less than 2 y after treatment
	N = 202	ingo oose wiin	Setup: Biplane diagnostic radiographs were taken before each proton treatment session to assure correct positioning of the target in the beam.		
HRXT: 100 L	HDRT: 103 Low Intermediate High CDRT: 99 Low				
Intermediate	Intermediate				

Late Grade 2 GI and GU toxicity							
Six trials consisting of a total patient popule	ation of 2708, evaluated GI a	and GU toxicity.	//				
High-dose radiotherapy was associated with late Grade >2 GI toxicity, with an OR of 1.58 (99% CI 1.24–2; p < 0.0001), without heterogeneity (p = 0.054).							
No significant difference was observed between the treatment arms with regard to late Grade >2 GU toxicity, with an OR of 2 (39% CI 0.33-1.54; p = 0.054), as shown in Figs.							
	G	1*	GL	J*			
Study (reference)/toxicity criteria	High dose	Conventional	High dose	Conventional			
Zietman et al. (23)/RTOG scale	43% G1 17% G2	36% G1 8% G2	43% G1 20% G2	43% G1 18% G2			
Dutch (25)/RTOG/EORTC	1% G3 32% G≥2 5% G≥3	1% G5 27% G≥2 4% G≥3	1% G3 39% G≥2 13% G≥3	41% G≥2 12% G≥3			
MRC RT01 (27)/RTOG scale	60% G≥1 33% G≥2 10% G≥3	58% G≥1 24% G≥2 6% G≥3	26% G≥1 11% G≥2 4% G≥3	22% G≥1 8% G≥2 2% G≥3			
M. D. Anderson (22)/RTOG/EORTC	42% G1 28% G2 10% G3	66% G1 42% G2 3% G3	35% G1 7% G2 7% G3	21% G1 11% G2 5% G3			
GETUG (28)/RTOG modified	57% G1 43% G2 3% G3	42% G1 28% G2 10% G3	65% G1 46% G2 11% G3	67% G1 48% G2 8% G3			
Sathya et al. (24)/CTC scale Shipley et al. (26)/RTOG scale	3.9% G3 or G4 27% G≥2	1.9% G3 or G4 9% G≥2	13.7% G3 or G4 14% G≥2	3.8% G3 or G 6% G≥2			
1				71 11			

CONCLUSIONS

- This meta-analysis provides evidence that HDRT is superior to CDRT in terms of preventing biochemical failure in low-, intermediate-, and high-risk prostate cancer patients, suggesting that HDRT should be offered to all patients regardless of their risk status.
- Across a range of total radiotherapy doses from 64 to 79.2 Gy, biochemical control in men with localized prostate cancer, according to regression analysis, was essentially uniform.
- The presence of a dose-response relationship supports the use of HDRT, because CDRT
 may increase the recurrence risk.
- Although the highest effective radiotherapy dose has not yet been identified, it could be higher than 90 Gy.
- However, because significant differences in late Grade 2 rectal toxicity were seen between the HDRT and CDRT groups, further trials of IGRT and IMRT to deliver doses higher than 80 Gy should be conducted with the goal to maintain the therapeutic index at a satisfactory level.

				.,					
TRIAL CHA	\RA(CTERSI	rics					\sim	
Authors	Pts	HT Duration	Experimental Arm	Median FU, y	Primary Endpoint	Secondary Endpoint	% Node Positive	% Gleason Score 7-10	% T3-T4
Bolla 2002 ⁵ ,2008 ¹⁴	415	UT	Goserelin 3 y+EBRT (70 Gy)	9.1	DFS	OS	3.4	34.1	91.0
Pilepich 2005 ¹⁰	977	LT	Goserelin until progression+EBRT (65-70 Gy)	7.6	LR, DM, DFS	CSS	26.9	62.2	69.8
See & Tymell 2006 ¹²	1,370	LT	Bicalutamide 150 mg (median 1.8 y)+EBRT (64 Gy)	7.2	PFS	0S	1	24.6	22.0
D'Amico 200813	206	ST	AST 6 mo prior and concurrent with 3D-EBCRT (70 Gy)	7.6	BF	CSS, OS	0	72.3	0
Denham 2005 ⁷	802	ST	STAD 3 or 6 mo prior and concurrent with EBRT (66 Gy)	5.9	Time to LR, CSS	Time to LR, time to DM	0	38.0	40.1
Laverdiere 2004 ⁸	161	ST	3 mo AS (Group 2) or 10 mo AS (Group 3)+EBRT (64 Gy)	5.0	BNED	NR	0	26.0	30.0
Roach 2008 ¹¹	456	ST	ADT 4 mo prior and concurrent with EBRT (65-70 Gv)	12.6	LR	DFS, OS	8.1	65.9	70.0

Ps indicates patients; HT, homove teatment; PL, Islow-up; LT, long term; EBYT, external beam nationherapy; Qy, gray; DYS, disease-free survice; CB, oxenal survice; LH, local relapee; LM, datant metatatses; CSS, cancer-specific survice; PKS; progression-free survice; ST, short term; AST, androgen suppression therapy; SJ, 3-dimensiona; BF, biochemical failure; STAD, short-term androgen deprivation; AS, androgen suppression; BHED; no biochemical elidence of disease; NR, not reported; ADT, androgen deprivation therapy;

Primary Outcomes

- HT significantly decreased biochemical and clinical failure over exclusive RT by 24% and 19%, respectively.
- The absolute benefit was 10% for biochemical failure and 7.7% for clinical progression-free survival, corresponding to 10 and 13 NNT (number needed to treat), respectively.
- The benefit was obtained regardless of HT duration.

Secondary outcomes

- HT significantly reduced the risk of death for prostate cancer by 24%, without significant heterogeneity. This
 corresponds to an absolute benefit of 5.5%, with 18 NNT.
- In the sensitivity analysis, the absolute benefit in cancer-specific survival ranges from 5.3% in the long-term trials to 7.2% in the short-term trials.
- HT significantly decreased the risk of death by any cause by 14%, regardless of treatment duration, with ar absolute benefit of 4.9%, corresponding to 20 NNT.
- With regard to recurrence, both local relapse (LR) and DM were significantly decreased (36% and 28%, respectively) by the addition of HT to RT, with a 9.8% and 9.5% absolute benefit, corresponding to 1// NNT.

		M	\bigvee			
Outcomes	Pts (RCTs)	RR (95% CI)	P	Heterogeneity P	% AD	NN
3F	3956 (7)	0.76 (0.70-0.82)	<.0001	.08	10.0	10
LT	2656 (3)	0.79 (0.75-0.83)	<.0001	.50	8.6	12
ST	1300 (4)	0.67 (0.55-0.82)	<.0001	.006	14.2	7
PFS	4020 (5)	0.81 (0.71-0.93)	.002	<.0001	7.7	13
LT	2762 (3)	0.81 (0.61-0.95)	.011	.005	7.4	14
ST	1258 (2)	0.83 (0.67-1.02)	.088	<.0001	-	-
SS	4266 (6)	0.76 (0.69-0.83)	<.0001	.56	5.5	18
LT	2762 (3)	0.77 (0.60-0.84)	<.001	.89	5.3	19
ST	1464 (3)	0.67 (0.49-0.91)	.022	.25	7.2	14
s	4266 (6)	0.86 (0.80-0.93)	<.0001	.36	4.9	20
LT	2762 (3)	0.84 (0.75-0.94)	.003	.21	5.6	18
ST	1464 (3)	0.87 (0.79-0.97)	.013	.34	4.1	21
R	2650 (4)	0.64 (0.54-0.75)	<.0001	.27	9.8	11
LT	1392 (2)	0.65 (0.53-0.78)	<.0001	.36	8.7	12
ST	1258 (2)	0.61 (0.44-0.84)	.002	.09	11.8	8
м	2650 (4)	0.72 (0.65-0.81)	<.0001	.43	9.5	11
LT	1392 (2)	0.70 (0.61-0.79)	<.0001	.99	11.1	9
ST	1258 (2)	0.80 (0.65-0.99)	.04	.24	5.7	17

ADT	with	RT vs R	Гa	llone in loc cancer	ally ad	vanced p	ostate	
Secon	dary ou	itcomes					$\ $	
 No si witho 	gnificant o	differences in to geneity.	oxicit	ies and cardiac dea	aths were obs	served by compar	ing the 2 arms,	
 Acco outco clinica 	rding to ti me, with al progres	he metaregress the exception of ssionfree surviv	sion of lyn val.	analysis, none of th nph node positivity :	e considered and Gleason	predictors signific score, which sign	cantly affected ificantly influenc	ed
Combine	ad Toxicity a	nd Cardiac Death	s Resi	ults	Meta-regress Predictors (ie Risk Ratio of	tion Analysis Model P a, Regression of the S the Corresponding O	Values According to elected Predictor on utcome)	Selected the Log
Outcomes	Pts (RCTs)	RR (95% CI)	Ρ	Heterogeneity P	Outcome	Node Positive	Gleason 7-10	T3-T4
	• •	. ,			CPES	.026	.00003	.02
Overall toxicity	2050 (4)	0.92 (0.87-1.11)	.41	.55	CSS	.67	.23	.39
GU toxicity	2050 (4)	0.66 (0.36-1.22)	.19	.05	OS	.51	.44	.99
GI toxicity	2050 (4)	0.69 (0.46-1.03)	.07	.71	LR	.28	.06	.17
Cardiac deaths	4266 (6)	0.87 (0.70-1.09)	.24	.69	DM	.50	.85	.16
Pts indicates pa confidence interv	tients; RCT, ral; GU, geni	randomized clinica tourinary; GI, gastr	al trial ointes	; RR, relative risk; Cl, tinal.	BF, biochemical cer-specific sur metastases.	I failure; CPFS, clinical p vival; OS, overall surviv	rogression-free survival; al; LR, local relapse; D	CSS, can- M, distant

ADT with RT vs RT alone in locally advanced prostate cancer

Conclusion:

- The present meta-analysis demonstrates that the administration of hormone-suppressive therapy in patients affected by prostate cancer who are candidates to receive exclusive RT significantly improves all investigated outcomes.
- Although with significant heterogeneity in many of the endpoints, the overall absolute benefit is in the range of 7.5% to 10% in favor of HT for both primary outcomes biochemical failure and clinical progression free survival.
- Although no statistically significant differences in toxicity were observed, the 31% to 34% reduction in the RR of GU and GI toxicities observed for patients receiving the combined treatment suggests that the addition of HT to RT may actually prove beneficial in a larger trial population.
- According to the results reported herein, no significant difference in terms of cardiac deaths was observed when comparing exclusive RT with HT & RT.

The effectiveness of intensity modulated radiation therapy versus three-dimensional radiation therapy in prostate cancer: A meta-analysis of the literatures. Yu T, Zhang Q, Zheng T, Shi H, Liu Y, Feng S, et al. doi.org/10.1371/journal.pone.0154499 PURPOSE: To assess whether IMRT can provide better clinical outcomes in comparison with 3DCRT in patients diagnosed with procancer. A total of 23 studies containing 9556 patients were included

INCLUSION CRITERIA:

(1) Studies with GI, GU toxicity or other clinical outcomes, including RFS or OS

(2) Late GI and late GU toxicity were scored according to the Fox Chase (FC) modification of the Radiation Therapy Oncology Group (RTOG) and Late Effects Normal Tissue Task Force (LENT) toxicity criteria (RTOG/FC-LENT late toxicity

criteria)/Common Terminology Criteria (CTC) (version 2.0, 3.0 or 4.0) (3) Late rectal bleeding was scored based on RTOG criteria

(4) Biochemical failure was defined as a rise in prostate-specific antigen (PSA) level of ≥ 2 ng/ml above the nadir, with no backdating (ASTROPhoenix definition)

IMRT vs 3D-CRT for Prostate cancer

Summary of the studies included in the meta-analysis :

- The total number of the included patients was 9556, ranging from 27 to 1571 per study.
- The study design was more often a retrospective (n = 16) than a prospective cohort study (n = 5).
- The prescribed doses to the primary tumor were 70-85.3 Gy in IMRT group and 55.8-84.8 Gy in 3DCRT group.
- Stage I/II comprised 77.3% of the patients, and the remaining 22.7% were in stage III/IV.
- The median follow-up time ranged from 5.3 months to 120 months.

Sun	າຫ	ary	v of t	the st	udies	inc	ludec	l in t	the m	eta	-anal	ysis.
kuthor	Year	Study design	Number (3DCRT/ IMTR)	PTV	total dose/ fraction dose (Gy) (3DCRT VS IMRT)	Margin (mm)	Method for dose prescript-ion	Image guidance	ADT%(3DCRT/ IMRT) & p value	Tumor stage MI (IIMV)	Median follow-up (m) (3DCRT/ IMRT)	score criteria
ost-operativ	e RT (n	= 2)										
Vongi F[36]	2009	Retro.	172(81/91)	Prostatic bed, Pelvic nodes	72.1/1.8 VS 72.5/1.8	8	Isodose level	NO	61/56n.s.	NRNR	33	RTOG toxicity scale
ioenka A 37]	2011	Retro.	285 (109/ 176)	NR	66-72/NR VS 66-72/NR	NR	NR	NO	100/100n.s.	NRINR	97/53	RTOG toxicity scale, CTCAE version 3.0
rimary RT (n = 21)											
lshman JB 38]	2005	Retro.	27 (14/13)	Prostatic bed, Pelvic nodes, seminal vesicles	75.6/1.8 VS 81/ 1.8	10	Isocenter	NO	100/100n.s.	12/15	30/30	RTOG toxicity scale
Tho JH[39]	2008	Retro.	50 (35/15)	Prostatic bed	70.2/1.8 V\$70/ 2.5	NR	Isocenter	NO	44/44n.s.	26/24	33	RTOG toxicity scale
olezel M 40]*	2010	Pro.	232 (94/ 138)	Prostatic bed, Pelvic nodes, seminal vesicles	74/2 V\$ 78/2	10	Isocenter	NO	94.7/55	76/156	68.4/37.2	RTOG toxicity scale
olezel M 41]*	2015	Pro.	533 (320/ 233)	Prostatic bed, seminal vesicles	70-74/2 V\$78- 82/2	10	Isocenter	NO	40.3/62.3	332/221	104/60	RTOG toxicity scale, ASTROPhoenix definition
orsythe K 42]	2011	Retro.	812 (521/ 291)	Prostatic bed, seminal vesicles	NR	10-12	Isocenter	Partly	87.9/75.9p <0.01	NRINR	74.433.6	RTOG toxicity scale
ani AB[43]	2007	Pro.	481(373/ 108)	Prostatic bed, seminal vesicles	68.5/1.8-2 V\$75/1.8-2	10	NR	NO	53/51	413/68	NRNR	RTOG toxicity scale
üm H[44]	2014	Retro.	86 (56/30)	Prostatic bed, Pelvic nodes, seminal vesicles	70/1.8 V\$ 70/2.5	5	Isocenter	NO	56.7/53.6n.s.	43/43	78.6/73.4	RTOG toxicity scale
(upelian PA 45]*	2002	Retro.	282 (116/ 166)	Prostatic bed, Pelvic nodes, seminal	78/2 V\$ 70/2.5	8-15	Isodose level	NO	72/60p = 0.049	263/19	25/25	RTOG toxicity scale, ASTROPhoenix definition

Summary of the outcomes presented in this meta-analysis :

- 14 studies compared the effects of acute toxicity of an IMRT group to that of a 3DCRT group, including acute GI toxicity (n = 12), acute GU toxicity (n = 12) and acute rectal toxicity (n = 4).
- 21 studies compared the late toxicity effects of IMRTgroup to that of 3DCRT group, including late GI toxicity (n = 13), late GU toxicity (n = 12) and late rectal bleeding (n = 5).
- 6 studies compared the biochemical controlbetween IMRT group and 3DCRT group, and
- 3 studies compared the OS between IMRT group and 3DCRT group

Group	No. of studies	No. of total patients	RR (95% CI) (IMRT VS 3DCRT)	P for heterogeneity	l ²
Acute GI toxicity (grade 2-4)	12	4142	0.59 (0.44, 0.78)	0.000	84.0%
Acute GU toxicity (grade 2-4)	14	4603	1.08 (1.00, 1.17)	0.026	47.2%
Acute rectal toxicity (grade 2–4)	4	2188	1.03 (0.45, 2.36)	0.005	76.8%
Late GI toxicity (grade 2-4	4)				
1 year	4	1634	0.38 (0.15, 0.97)	0.002	80.2%
3 years	7	2243	0.70 (0.44, 1.13)	0.004	71.3%
5–10 years	8	4900	0.55 (0.31, 0.98)	0.000	93.9%
Total	13	6519	0.54 (0.38, 0.78)	0.000	90.4%
Late GU toxicity (grade 2-	-4)				
1 year	3	1341	0.83 (0.64, 1.06)	0.415	0.0%
3 years	5	1815	1.00 (0.79, 1.28)	0.905	0.0%
5–10 years	8	4128	1.03 (0.69, 1.51)	0.000	83.7%
Total	12	5608	1.03 (0.82, 1.30)	0.000	72.3%
Late rectal bleeding (grade 2-4)	5	1972	0.48 (0.27, 0.85)	0.05	58%
Biochemical control	6	2416	1.17 (1.08, 1.27)	0.010	67.0%
OS	3	924	1.07 (0.96, 1.19)	0.009	79.0%

OUTCOME :

- IMRT significantly decreased grade 2–4 acute GI toxicity compared with 3DCRT [RR = 0.99, 95% CI (0.44, 0.78)]
- Incidence of grade 2–4 acute GU toxicity was only 1.08 -fold higher in IMRT than that in 3DCRT, which showed modest effect [RR = 1.08, 95% CI (1.00, 1.17)]
- There was no significant difference between IMRT and 3DCRT in grade 2-4 acute rectal toxicity [RR =
- 1.03, 95% CI (0.45, 2.36)]

 A significant overall benefit of grade 2-4 late GI toxicity in favor of IMRT was found for all studies with a RR
- of 0.54 [95% CI (0.38, 0.78)].
- IMRT was with comparable grade 2–4 late GU toxicity with 3DCRT [RR = 1.03, 95% CI (0.82, 130)] (the results clearly favor IMRT over 3DCRT in grade 2–4 late rectal bleeding [RR = 0.48, 95% CI (0.27, 0.85)]
- There was a significant difference in *biochemical control* favoring IMRT [RR = 1:17, 95% CI (1.08, 1/27)].
- IMRT showed modest increase in biochemical control in comparison with 3DCRT.
- A non-significant increase in overall survival favoring IMRT was found [RR = 1.07, 95%CI (0.96, 1,19)]

Conclusion :

- IMRT significantly decreases the occurrence of 2–4 grade acute GI toxicity, late GI toxicity, late rectal bleeding, and achieves better PSA relapse free survival in comparison with 3DCRT.
- IMRT and 3DCRT remain the same in regard of acute rectal toxicity, late GU toxicity and overall survival, while IMRT increases the morbidity of acute GU toxicity.
- In general, based on the above results, IMRT should be considered as a better choice for the treatment of prostate cancer.

Stereotactic body radiotherapy for primary prostate cancer: A systemic review

- The relatively slow proliferation rate of prostate cancer is reflected in a low α/β ratio, most commonly reported between 1 and 4.
- · These values are similar to that for the rectal mucosa.
- Since the α/β ratio for prostate cancer is similar to or lower than the surrounding tissues responsible for most
 of the toxicity reported with radiation, appropriately designed radiation treatment fields and schedules using
 extremely hypofractionated regimens should result in similar cancer control rates without increased risk of
 late toxicity.
- Center researchers found insufficient evidence to indicate that SBRT is an effective treatment for prostate cancer.
- One systematic review of case series looked at outcomes from SBRT (Tan, Siva, Foroudi, & Gill, 2014).

Fourteen phase I–II trials and retrospective studies using SBRT for the treatment of prostate cancer were
used

Three studies were identified which addressed cost.

itudy, year	Institution	Analysis	Dose	Delivery	Median follow-up (months)	n	Received hormone therapy (X)	Risk group	bPFS
ling et al. 2013 ¹⁷	Pooled analysis‡	Retrospective	36.25 Gy in 5# (543) 35 Gy in 5# (353) 38–40 Gy in 5# (113) (daily for 953 of patients)	CX	36	1100	L (8), I (15), H (38)	L, I, H	L = 95%, I = 8 H = 81% at months
Madsen et al. 2007 ¹⁹	Virginia Mason, Seattle, USA	Phase VII trial	33.5 Gy in 5#	Conformal RT	41	40	NI	L	90% at 48 mo
oblaw et al. 201325	Sunnybrook, Canada	Phase I/I	35 Gy in 5#	IMRT	55	84	1 (1)	L	98% at 60 mo
loike et al. 2011 ²⁶	Dallas, USA	Phase I	45 Gy in 5#	Tomotherapy; some	30	15	10 (22)	L, I	100%
			47.5 Gy in 5#	patients received	18	15			
			50 Gy in 5#	a Calypso transponder	12	15			
abbari et al. 2012 ²⁷ †	UCSF, San Francisco, USA	Retrospective	38 Gy in 4#	CK	18.3	20	NI	L, I, H	100%
longi et al. 2013 ²⁸	Rozzano, Milan, Italy	Phase I/I	35 Gy in 5#	VMAT	11	40	10 (25)	L, I	N/A
lang et al. 201179	Korea Cancer Centre Hospital, Seoul, Korea	Retrospective	32 Gy in 4# 34 Gy in 4# 36 Gy in 4#	CK	40	44	38 (87)	L, I, H	93.6%
ee et al. 2012 ³⁰	Seoul St. Mary's Hospital, Korea	Retrospective	Median 36 Gy in 5# (range 35-37.5 in 5#)	CK	41	29	6 (20)	L, I, H	86%
Niai et al. 2013 ³¹	Drexel University College, Philadelphia, USA	Retrospective	35 Gy in 5# 37.5 Gy in 5# 36.25 Gy in 5#	CK	31	70	23 (33)	L, I, H	94.5% at 36 n

Outcome

- The overall biochemical progression-free survival ranged 81–100%.
 When bPFS was analysed according to total dose received, no difference was observed for the dose range studied in this analysis (35–40 Gy in five fractions).
- studied in this analysis (35–40 Gy in five fractions).

 The most common planning CTV-PTV expansion used was a 3-mm margin posteriorly and 5-mm expansion
 in all other dimensions.
- Langen et al. assessed intra-fraction motion in 17 patients with electromagnetic transponders implanted in the prostate; on average, the prostate displaced by >3 mm and >5mm approximately 14% and 3% of the time, respectively.
- Lifetime costs and QALY for hypothetical cohorts of SBRT-treated patients were simulated on parameters including assumed mortality, bPFS and toxicity and compared with similar parameters from IMRT-treated patients for prostate cancer through the Markov model of analysis.
- It was consistently seen that SBRT overall was more cost-effective than IMRT and PT in the treatment of prostate cancer.

Stereotactic body radiotherapy for primary prostate cancer:

Toxicities:

- Acute grade 2 urinary and rectal toxicities were reported in 5–42% and 0–27% of patients, respectively.
- Acute grade 3 or more urinary and rectal toxicity were 0.5% and 0%, respectively,
- Late grade 2 urinary toxicity was reported in 0–29% of patients, while 1.3% had a late grade 3 urinary toxicity.
- There were no late grade 4 urinary toxicities seen.
- Late grade 2 rectal toxicity was reported in 0–11%, while 0.5% had a late grade 3 rectal toxicity.
- · Late grade 4 rectal toxicity was reported in 0.2% of patients.

Stereotactic body radiotherapy for primary prostate cancer:

Conclusion:

- SBRT for prostate cancer remains a promising new treatment for the future, with high local control rates and
 toxicity rates comparable with fractionated radiotherapy.
- The duration of treatment is significantly shorter and significantly cheaper when compared with conventional fractionation IMRT.
- SBRT studies suggest that there is an excellent early biochemical control and equivalent early and late unnary
 and rectal toxicity rates when compared with historical data of patients treated with conventional fractionation.
 QOL post-treatment with regard to uninary and sexual symptoms appears to favour SBRT over radical
- prostatectomy at 36 months follow-up.
- Rectal QOL symptoms were temporarily worse with SBRT over radical prostatectomy but improved after 12 months.
- Ultimately, further studies are required for formal evaluation of SBRT regimes to assess differences in toxicity and biochemical control, especially when comparing modern technologies, such as VMAT, tomotherapy and CK and more widely available technology such as IMRT, to deliver treatment.

IMRT vs 3D-CRT for Prostate cancer toxicities

National Population-Based Study Comparing Treatment-Related Toxicity in Men Who Received Inten. Modulated Versus 3-Dimensional Conformal Radical Radiation Therapy for Prostate Cancer A.Sujenthiran, MRCS <u>doi.org/10.1016/j.ijrobp.2017.07.040</u>

Purpose :

To compare, severe genitourinary (GU) and gastrointestinal (GI) toxicity in patients with prostate cancer who were treated with radical intensity modulated radiation therapy (IMRT) or 3-dimensional conformal radiation therapy (3D-CRT), in a national population-based study.

Data sources and patient population :

Patients treated with IMRT (n=6933) or 3D-CRT (n=16,289) between January 1, 2010 and December 31, 2013 in the English National Health Service were identified using cancer registry data, the National Radiotherapy Dataset, and Hospital Episodes Statistics, the administrative database of care episodes in Nationa Health Service hospitals.

Patient population :

- Among the patients who received radical RT (n=23,222), the use of IMRT increased from 3.1% in 2010 to 64.7% in 2013.
- Approximately 60% of men included were between 65 and 74 years old.
- Approximately 1 in 5 men had at least 1 recorded comorbidity.
- Nearly 60% of patients were staged with locally advanced disease.
- The median dose per fraction and total dose received were the same in both groups (2 Gy per fraction and 74
 Gy, respectively).
- Men in the 3D-CRT group were more likely to be older and have an RCS Charlson score 1 but were less likely to have locally advanced disease and receive radiation to the prostate and nodes compared with the IMRT group.
- Median (interquartile range) follow-up was 3.6 (1.9) years for all men in the study; 2.7 (1.0) years for the IMRT group and 4.1 (1.6) years for the 3D-CRT group.

	~		
Characteristic	3D-CRT (n=16,289)	IMRT (n=6933)	Р
Year of radiation therapy			<.01
2010	4248 (26.1)	216 (3.1)	
2011	5159 (31.7)	624 (9.0)	
2012	4678 (28.7)	1605 (23.1)	
2013	2204 (13.5)	4488 (64.7)	
Age (y)			<.01
<60	1069 (6.5)	532 (7.7)	
60-64	2409 (14.8)	1096 (15.8)	
65-74	9311 (57.2)	3879 (56.0)	
>75	3500 (21.5)	1426 (20.6)	
RCS Charlson comorbidity score			<.01
0	12,407 (76.2)	5463 (78.8)	
≥1	3882 (23.8)	1470 (21.2)	
Socioeconomic deprivation status (national quintiles)			.19
1 (least deprived)	3683 (22.6)	1649 (24.0)	
2	4063 (25.0)	1735 (25.2)	
3	3552 (21.8)	1471 (21.4)	
4	2707 (16.6)	1112 (16.2)	
5 (most deprived)	2270 (14.0)	919 (13.4)	
Missing	14	47	
Prostate cancer risk group			<.01
Locally advanced	6433 (56.4)	3603 (59.4)	
Intermediate risk localized	4433 (38.9)	2211 (36.4)	
Low risk localized	534 (4.7)	384 (5.3)	
Missing	4889	864	
Radiation therapy treatment region			<.01
Prostate	11,782 (72.3)	5786 (86.4)	
Prostate and regional	950 (5.8)	911 (13.6)	
Missing	3557	236	
Abbreviations: 3D-CRT = 3-dimensional conformal radiation Surgeons.	therapy; IMRT = intensity modulate	ed radiation therapy; RCS = Roy	al College of
Values are number (percentage).			

• Pa th	IMRT v atients experience e 3D-CRT group.	Timing a ed 4.9 GI event	RT for F	Pros	tate cal	ncer xicity MRT group, con	npared with 6,5 in	a an an Anna an Anna an Anna
• Pa in	atients who receiv the 3D-CRT grou	ved IMRT exper .p.	tenced 2.3 GU ev	ents pe	r 100 person years	s of followup, co	mpared with 2.4	
• M wi • Tr	en treated with IN ho received 3D-C nere was no signi	/IRT were less li RT. ficant difference	ikely to experience e in GU toxicity be	e GI tox tween ti	icity (HR 0.66; 959 ne groups (HR 0.9	% CI 0.61-0.72; 4; 95% CI 0.84	P<(01) than those -1.06; PZ.31)	•
(GI toxici	ty			GU toxicit	у	
Therapy	5-y cumulative incidence (%) (95% CI)	Rate (total events/100 person years)	HR* (CI)	Р	5-y cumulative incidence (%) (95% CI)	Rate (total events/100 person-years)	HR* (CI)	Р
3D-CRT IMRT	24.5 (23.8-25.3) 17.0 (15.6-18.5)	6.5 4.9	1.00 0.66 (0.61-0.72)	-<.01	11.1 (9.2-13.3) 10.7 (10.1-11.3)	2.4 2.3	1.00 0.94 (0.84-1.06)	.31
Abbreviat * Adjuste and radiatio	tions: CI = confiden ed for year of radiation n therapy treatment r	ce interval; HR = n therapy treatment region.	hazard ratio. Other al , age, RCS Charlson o	bbreviatic omorbidit	ns as in Table 1. y score, socioeconomi	c deprivation statu	s, prostate cancer risk į	group,

Conclusion

This national population-based study of patients with nonmetastatic prostate cancer, shown that

men who received radical RT using IMRT were less likely to experience severe GI toxicity and similar or severe GU toxicity compared with those who received 3DCRT.

Study	Design	QOL measure	Patient numbers	Treatment cohorts	QOL domain	NOS score	Follow-up time
Sanda 2008	Prospective study	EPIC	RP:603 EBRT:292	RP: Retropubic, laparoscopic or robot-assisted techniques with nerve-sparing at the surgeon's discretion EBRT: Intensity-modulated radiotherapy or highly conformal techniques with ADT	Sexual, Bowel QOL	7	2, 6, 12, 24 months
Katz 2012	Retrospective study	EPIC	RP:123 EBRT:216	RP: Retropubic prostatectomy with nerve-sparing at the surgeon's discretion EBRT: 35 Gy in the first 38 patients and 36.25 Gy in the remaining without ADT	Urinary, Sexual, Bowel QOL	5	1, 6, 12, 24, 36 months
Ferrer 2008	Prospective study	EPIC	RP:134 EBRT:205	RP: Retropubic prostatectomy with nerve-sparing at the surgeon's discretion EBRT: 3D conformal technique	Urinary, Sexual, Bowel QOL	6	3, 6, 12, 24 months
Donovan 2016	RCT	EPIC	RP:553 EBRT:545	RP: Open retropubic, nerve- sparing approach EBRT: 3D conformal radiotherapy at a total dose of 74 Gy with ADT	Urinary, Sexual, Bowel QOL	7	6, 12, 24, 36, 48, 60, 72 months
Resnick 2013	Prospective study	EPIC	RP:1164 EBRT:491	RP, EBRT	Urinary, Sexual, Bowel QOL	7	6, 12, 24, 60, 180 months
Nicolaisen 2014	Cross-sectional survey	EPIC	RP:38 EBRT:59	RP, EBRT	Urinary, Sexual, Bowel OOL	4	36 months

Health-related quality of li between RP and EBRT fo	fe (QOL) outcome comparison or localized prostate cancer
Discussion :	
Conclusion	
Men treated with RP experienced an acute worsen with respect to urinal EBRT with bowel function.	y and sexual QOL in the first two months post operation, which also happened in
The two treatment groups continued to relieve in all functional outcomes	to have similar health-related prognosis in the long-term followup.
anurogen-deprivation merapy	I XXII.
EBRT group had the highest incidence of Bowel side eff	ects in the first month and resolve quickly within two month which
can be controlled well in the subsequent five years.	
Bowel symptoms deteriorated 5 years later especially in the	e 15th year, indicating EBRT may have long-term bowel side effect
which cannot be ignored.	

Key Takeaway Messages

- er the PSA better the outcome
- Start RT at the earliest after PSA > 0.2 ng/ml • Higher dose(upto 70 Gy) clearly better
- Adjuvant and salvage-RT after RPE both improve recurrence free second chance of cure
- Adjuvant RT should be considered in patients with positive margins SBRT/extremely hypofractionated image-guided IMRT regimens (6.5 Gy per fraction greater) can be considered as an alternative to conventionally fractionated regimen at clinics with appropriate technology, physics, and clinical expertise.
- HT along with RT
 - improves outcome **Duration uncertain**
 - Balance toxicities

Slide 81

PJ1 Preety Jain, 13-08-2018