ICRU 83: Clinician's Perspective

Dr. Kausik Bhattacharya Apollo Cancer Institute Hyderabad

- Learning objective
 - Ability to compare salient data points and clinical issues in IMRT Plans using ICRU 83
 - Choose from multiple plans to suit clinical objective

Planning Workflow

- Immobilization
- Image acquisition and registration
- Contouring
 Constraints
 Planning
 Plan evaluation
 Plan evaluation
- Plan implementation

Planning Workflow

- Immobilization
- Image acquisition and registration
- Contouring
- Constraints
- Planning
- Plan evaluation
- Plan implementation

To choose the best among multiple plans:

- Target coverage
- OAR sparing
- Hotspot/Coldspot
- DVH analysis
- Isodose coverage
- Indices (CI & HI)
- Clinical relevance

Objective Assessment

- Dose Volume Histogram
 - Cumulative
 - Differential

Defined Volumes

- GTV: Gross Tumor Volume
- CTV: Clinical Target Volume
- ITV: Internal Target Volume
- PTV: Planning Target Volume
- OAR: Organs @ Risk
- PRV: Planning Vol @ Risk
- RVR: Residual Vol @ Risk

Discretionary/ Evolving

- Assessment of isodose every slice coverage for clinical relevance
- Multimodality Images
- Biological Volumes
- Effect of variation in dose levels

RVR: Residual Vol @ Risk Body contour – (CTV + OAR)

Types of CTV/PTV

ICRU through the ages

ICRU through ages

ICRU 29 (1974)	ICRU 50 (1993)	ICRU 62 (1999)	ICRU 83 (2	2010)
Target Volume	GTV	GTV	GTV	
	CTV	CTV	CTV	
		ITV	ITV	
	ΡΤν	PTV	PTV	
Treatment volume	Treated volume	Treated volume	Treated vo	olume
Irradiated volume	Irradiated volume	Irradiated volume	Irradiated	volume
Organ at Risk	Organ at risk	Organ at risk	Organ at ri	isk
		PRV	PRV	
			RVR	
Hotspot (more than 100%- 2 sq cm)	Hotspot (more than 100% - 15 mm dia)	Hotspot (more than 100% - 15 mm dia)	High dose	to RVR
Dose heterogenity (no values)	Dose heterogenity (+7 to -5 %)	Dose heterogenity (+7 to -5 %)	Not specif	ied

Dose Reporting in 3D (ICRU 50)

- Dose must be reported to the ICRU reference point
 - ICRU reference point is usually isocenter
 - It could be a point in the center of the PTV
 - Uniform dose to PTV (-5 to +7%)
 - Maximum & minimum dose must be reported in PTV
 - Whenever possible dose should be reported to PRV

Paradigm Shift with IMRT

- IMRT represents a paradigm shift
- Non uniform dose (dose painting)
- Large dosimetric variations
- Isocenter dose is meaningless

Radiobiological consequence of large heterogeneous dose is uncertain (i.e 180c Gy/day versus 250c Gy/day)

IMRT: Sequential

IMRT: Simultaneous Integrated Boost

Both Low Dose & High Dose Volumes Treated Simultaneously

Isocenter dose is non-reprsentative

IMRT: Variability in PTV Dose

IMRT: Variability in OAR Dose

Variation of doses among 850 patients in 5 Institutions

ICRU-83: PTV

- Dose Volume Reporting
 - D_{50%} (Median Dose)
 - Most representative of prescribed dose
 - $D_{\text{mean is nearly identical to}} D_{50\%}$
 - D_{98%} (Near Minimum Dose)
 - Dose received by 98% of PTV
 - D_{2%} (Near Maximum Dose)
 - Dose received by 2% of PTV

Comparison of ICRU reference point dose to D_{98%}

Application of ICRU 83 in single dose level plans

DVH of PTV

Multiple dose level plan: Nasopharynx with SIB (60Gy & 70Gy in 33Fr)

DVH of PTV

Differential DVH

OAR & PRV

- Serial Organs: Spinal Cord, Esophagus
 - $D_{2\%}$ is important
 - Entire organ should be considered if possible
 - Minimum dimension of 15mm to be considered.
- Parallel organs: Parotid, Liver, Lung
 - D_{mean} is important
 - $\mathsf{D}_{\mathsf{mean}}$ and $\mathsf{D}_{\mathsf{median}}$ may not be same
- V_d in cases like Lungs (V_{20})

TOLERANCE OF NORMAL TISSUE TO THERAPEUTIC IRRADIATION

B. EMAMI, M.D.,¹ J. LYMAN, PH.D.,⁵ A. BROWN, M.D.,⁴ L. COIA, M.D.,³ M. GOTTEIN, PH.D.,⁴ J. E. MUNZENRIDER, M.D.,⁴ B. SHANK, M.D.,² L. J. SOLIN, M.D.³ AND M. WESSON, M.D.²

³Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110; ³Memorial Sloan-Kettering Cancer Center, New York, NY 10021; ³Department of Radiation Therapy, University of Pennsylvania School of Medicine and the Fox Chase Cancer Center, Philadelphia, PA 19111; ⁴Massachusetts General Hospital, Department of Radiation Medicine, Boston, MA 02114 and Harvard Medical School; and ³University of California-Lawrence Berkeley Laboratory, Research Medicine and Radiation Biophysics Division, Berkeley, CA 94720

	TD 5/5 Volume			TD 50/5 Volume			
Organ	1	1	2	1	2	2	Selected endpoint
Kidney I	5000	3000*	2300		4000*	2800	Clinical nephritis
Kidney II							
Bladder	N/A	8000	6500	N/A	8500	8000	Symptomatic bladder contracture and volume loss
Bonr:							
Femoral Head I and II	-	-	5200	-	-	6500	Necrosis
T-M joint mandible	6500	6000	6000	7700	7200	7200	Marked limitation of joint function
Rib cage	5000			6500			Pathologic fracture
Skin	10 cm ²	50 cm ³	300 cm²	no can	30 cm²	AND CHI	Telangiectasia
	7000	6000	5500	-	-	7000	Necrosis
Brain	6000	5000	4500	7500	6500	6000	Necrosis
Brain stem	6000	5300	5000	-		6500	Necrosis Infarction
Optic nerve I & II	No parti	al volume	5000		-	6500	Blindness
Chiasma	No parti	al volume	5000	No partia	al volume	6500	Blindness
Spinal cord	5	50 arm	30 ers	5 cm	10 cm	30 cm	Myelitis necrosis
Cauda couina	No solo	5000	4780	No ushu	180	7500	Chainelle annual
Canos eduna	NO VOU	inc effect	6000	NO VOIU	me effect	7500	nerve damage
Brachial plexus	6200	6100	6000	7700	7600	7500	Clinically apparent nerve damage
Eye lens I and II	No parti	al volume	1000	-	-	1800	Cataract requiring intervention
Eye retina I and II	No parti	al volume	4500			6500	Blindness
Ear mid/external	3000	3000	3000*	4000	4000	4000*	Acute serous otitis
Ear mid/external	5500	5500	5500*	6500	6500	6500*	Chronic serous otitis
Parotid* 1 and 11		3200*	3200*		4600*	4600*	Xerostomia
5				(TD 100/	5 is 5000)		
Larynx	7900+	7000*	7000*	9000*	8000*	8000*	Cartilage necrosis
Larynx	-	4500	4500*			8000*	Laryngeal edema
Lung I	4500	3000	1750	6500	4000	2450	Pneumonitis
Lung []							
Freehouse	6000	4500	4000	7000	5500	5000	Pericarditis
Esophagus	6000	5800	5500	7200	7000	6800	Clinical stricture/ perforation
Stomach	6000	5500	5000	7000	6700	6500	Ulceration, perforation
Small intestine	5000		4000*	6000		5500	Obstruction perforation/fistula
Colon	5500		4500	6500		5500	Obstruction perforation/ ulceration/fistulu
Rectum	Volume No volu	100 cm ³ me effect	6000	Volume No volu	100 cm ³ me effect	8000	Severe proctitis/ necrosis/Tistula, stenosis
Liver	5000	3500	3000	5500	4500	4000	Liver failure

Organs at Risk: QUANTEC

Quantitative Analysis of Normal Tissue Tolerance in Clinic

Aliliated with Latin American Association of therapeutic radiation and oncology

PAEDIATRIC RADIATION ONCOLOGY SOCIETY

Visit www.redjournal.org for the LIROBP's online submission and peer corles system.

QUANTEC

Organ	Volume segmented	Irradiation type (partial organ unless otherwise stated) [†]	Endpoint	Dose (Gy), or dose/volume parameters [†]	Rate (%)	Notes on dose/volume parameters
	Bilateral whole parotid glands	3D-CRT	Long term parotid salivary function reduced to <25% of pre-RT level	Mean dose <39	<50	For combined parotid glands (per Fig. 3 in paper)
Pharynx	Pharyngeal constrictors	Whole organ	Symptomatic dysphagia and aspiration	Mean dose <50	<20	Based on Section B4 in paper
Larynx	Whole organ	3D-CRT	Vocal dysfunction	Dmax <66	<20	With chemotherapy, based on single study (see Section A4.2 in paper)
	Whole organ	3D-CRT	Aspiration	Mean dose <50	<30	With chemotherapy, based on single study (see Fig. 1 in paper)
	Whole organ	3D-CRT	Edema	Mean dose <44	<20	Without chemotherapy, based
	Whole organ	3D-CRT	Edema	V50 <27%	<20	larynx cancer**
Cochlea	Whole organ	3D-CRT	Sensory neural hearing loss	Mean dose ≤45	<30	Mean dose to cochlear, hearing at 4 kHz
	Whole organ	SRS (single fraction)	Sensory neural hearing loss	Prescription dose ≤ 14	<25	Serviceable hearing
Parotid	Bilateral whole parotid glands	3D-CRT	Long term parotid salivary function reduced to <25% of pre-RT level	Mean dose <25	<20	For combined parotid glands [¶]
	Unilateral whole parotid gland	3D-CRT	Long term parotid salivary function reduced to <25% of pre-RT level	Mean dose <20	<20	For single parotid gland. At least one parotid gland spared to <20 Gy

QUANTEC

Organ	Volume segmented	Irradiation type (partial organ unless otherwise stated) [†]	Endpoint	Dose (Gy), or dose/volume parameters [†]	Rate (%)	Notes on dose/volume parameters
Brain	Whole organ Whole organ Whole organ	3D-CRT 3D-CRT 3D-CRT	Symptomatic necrosis Symptomatic necrosis Symptomatic necrosis	Dmax <60 Dmax = 72 Dmax = 90	<3 5 10	Data at 72 and 90 Gy, extrapolated from BED models
	Whole organ	SRS (single fraction)	Symptomatic necrosis	V12 <5-10 cc	<20	Rapid rise when V12 > 5-10 cc
Brain stem	Whole organ	Whole organ	Permanent cranial	Dmax <54	<5	
	Whole organ	3D-CRT	neuropathy or necrosis Permanent cranial neuropathy or necrosis	D1–10 cc ≤59	<5	
	Whole organ	3D-CRT	Permanent cranial neuropathy or necrosis	Dmax <64	<5	Point dose <<1 cc
	Whole organ	SRS (single fraction)	Permanent cranial neuropathy or necrosis	Dmax <12.5	<5	For patients with acoustic tumors
Optic nerve / chiasm	Whole organ Whole organ Whole organ	3D-CRT 3D-CRT 3D-CRT	Optic neuropathy Optic neuropathy Optic neuropathy	Dmax <55 Dmax 55-60 Dmax >60	<3 3–7 >7-20	Given the small size, 3D CRT is often whole organ ^{‡‡}
	Whole organ	SRS (single fraction)	Optic neuropathy	Dmax <12	<10	
Spinal cord	Partial organ Partial organ Partial organ	3D-CRT 3D-CRT 3D-CRT	Myelopathy Myelopathy Myelopathy	Dmax = 50 Dmax = 60 Dmax = 69	0.2 6 50	Including full cord cross-section
	Partial organ Partial organ	SRS (single fraction) SRS (hypofraction)	Myelopathy Myelopathy	Dmax = 13 Dmax = 20	1 1	Partial cord cross-section irradiated 3 fractions, partial cord cross-section irradiated

DVH of OAR (PRV)

Overlapping CTV & OAR

No Cropping!

Planning constraints and priorities to be adjusted for desirable dose

Practical IMRT Planning

Wilfried De Neve, Yan Wu, Gary Ezzell

Planning for overlaps in PTVs or PTV / OAR

Solutions for overlap

- 1. Assigning a much higher importance weight to PTV-II than to PTV-III at optimization;
- 2. Relaxing the maximum dose objective for PTV-III;
- Fragmentation of the PTV-III volume (panel d) and relaxing the maximum dose objective for a subvolume of PTV-III or a combination of 1–3
- 4. Fragmentation of PTV-III to create a subvolume for relaxing the maximum dose constraint;
- 5. Unambiguous dose objectives for plan optimization

Checking for dose littering

Solutions for dose littering

- 1. volume containing a PTV, 4 PRV and the remaining of the imaged volume called UIV: Unspecified Imaged Volume;
- 2. method described by investigators from Washington University. A soft Dmax (dose maximum) constraint is assigned the whole UIV;
- 3. method used at Virginia Commonwealth University. No constraints imposed to a narrow TZ (transitional zone) immediately outside PTV but to a shell surrounding the TZ. Inside the remaining UIV, one or more Pseudo-OAR(s) are constructed or draw an RVR.
- 4. "Matroska" method described by investigators from Ghent University Hospital. Several shell structures inside each other (like Russian matroskas) leave no UIV. Outer shells have more severe dose maximum constraints than inner shells.

Perfectly conformal plan...

- how much of PTV is covered?
- how much is the spill?
- how is the uniformity within PTV?

Coverage Factor

• tells you how much you miss on PTV

ideal value = 1

Conformity Index (CI)

- ideally = 1; but expect around 1.3 to 1.5
- presently, inverse of the ratio is followed

Conformity Index ICRU 50

- Conformity Index (CI) = TV/PTV
- TV = treated volume is the tissue volume that receives at least the dose selected and specified
- CI => optimised close to 1.0
- For small volumes CI up to 2 can be acceptable (SRS)
- For bigger volumes, CI should be closer to 1

Homogeneity Index (HI)

• measure of uniformity within PTV

- expressed as the ratio D_2/D_{98}
 - D₂ is the maximum dose received by at least 2% of the PTV
 - D₉₈ is the maximum dose received by at least 98% of the PTV

Homogeneity Index (RTOG-1993)

 $HI_{RTOG} = I_{max}/RI$

(I_{max} = maximum isodose in the target, RI reference isodose) Ideal HI <u><</u> 2

Minor violation = 2 to 2.5

Major violation > 2.5 (Clinical discretion needed)

Alternative formula

$$HI = D_2 - D_{98}/DP \times 100$$

(D₂ = minimum dose to 2 % of the target
D₉₈ = minimum dose to 98% of the target
D_P = prescribed dose)

Homogeneity Index (HI)

- for a typical 3-D CRT plan, it is around 1.07
- for IMRT it should be ≤ 1.15

• D_5 / D_{95} has also been used

Conformity & Homogeneity indices

QA..... Fluence analyses showed most planned cases treatable with ≥ 95% fidelity

vediyappan - OmniPro I'mRT

1 Integral 0103

8.0 -

4.0 -

0.0 -

-4.0 -

-8.0

File Edit Measure Workspace View Tools Equipment Help

[cm] Y 100% = 223.9 cGy

이 🛎 🖢 🗳 물 🖉 물 홍, 🄈 특히 이 안 🐬 1 2 🚦 🖁 號 약 역 및 뷰

Histogram: Result - Gamma

Record Separator: (CR LF) (Windows)

Total number of pixels: 5616 Minimum Signal 0.00

Maximum Signal: 1.54

Average Signal: 0.30

Export to CSV-File

Decinal Symbol:

Data Separator:

Type: Standard Histogram

C Range 0.00 to 0.00

@ Full Range (0.00 to 1.54)

F Relative Count

Dimlar

· 6

Close

Print_

Save file

×

Learning for the day

- Definitions of new volumes as per ICRU 83
- 2D to 3D to IMRT planning
- Evaluation of dose at a relevant point
- Evaluation of dose as a volume
- Accounting for inhomogeneity
- Accounting for overlapping volumes

Learning for the day

- Mathematical and graphical representation of dose across a volume
- No more hot spots & cold spots
- D2, D98 and Dmean are the new standards
- Conformity & Homogeneity indices
- Limitation of DVH
- Ability to choose a proper radiation plan on the basis of these variables

