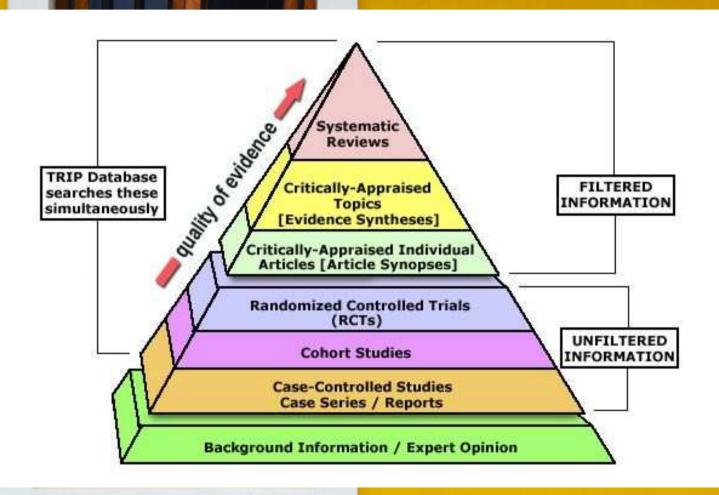
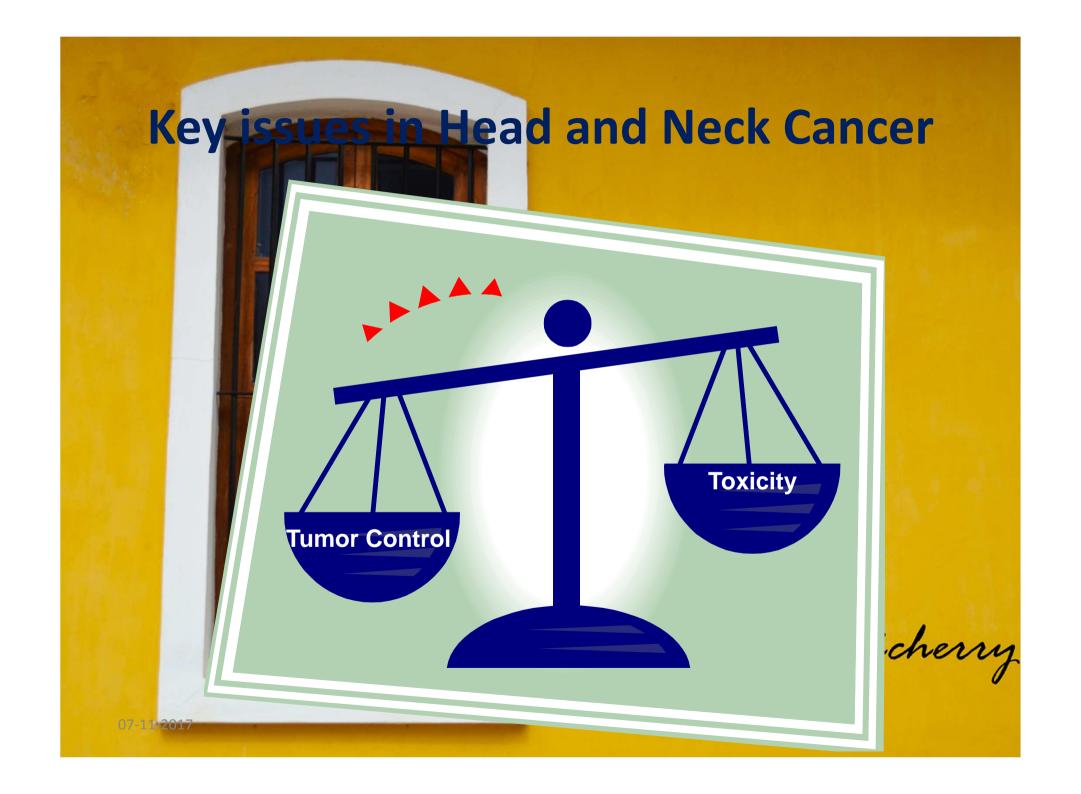


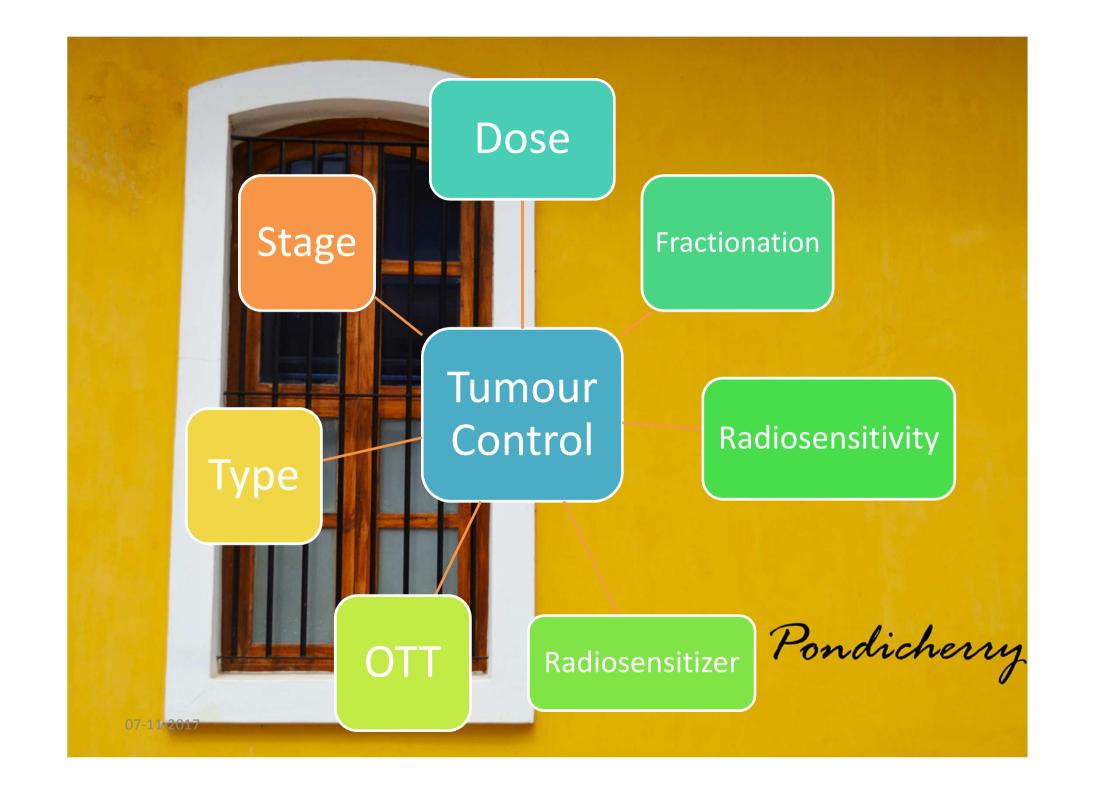
Overview and takehome message on recent clinical trials in HNC radiotherapy

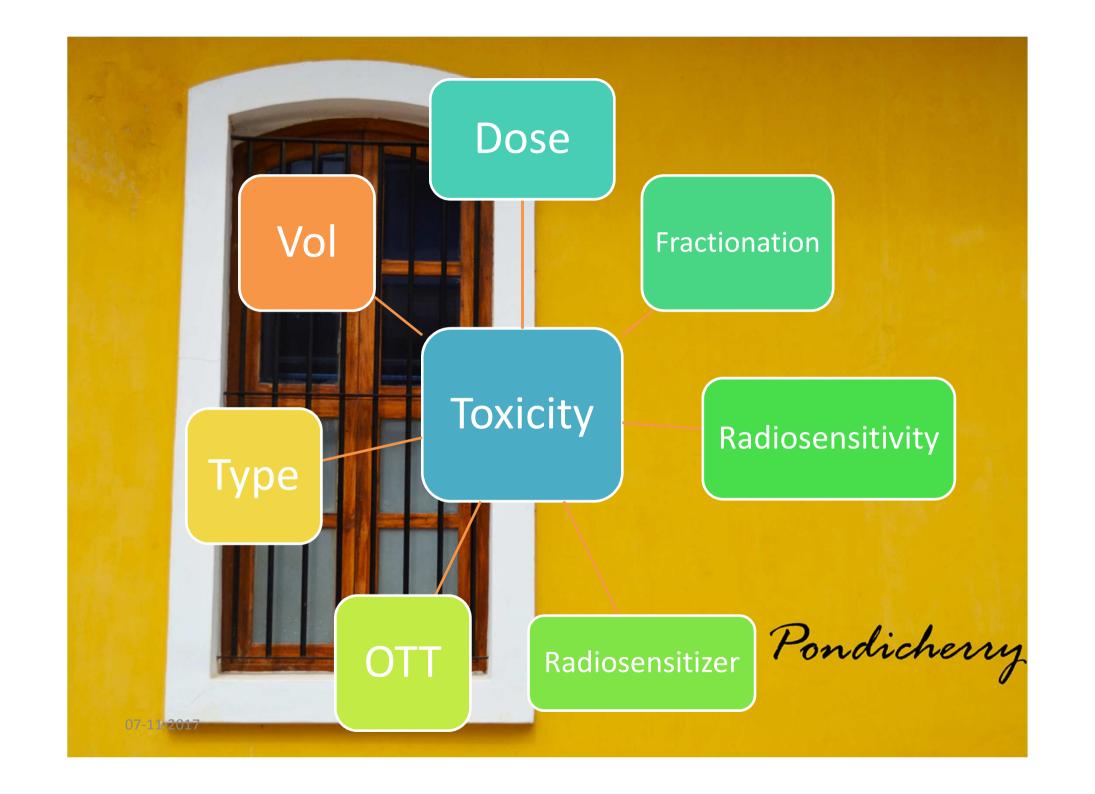

Dr Suman Mallik Consultant , Radiation Oncology Narayana Cancer Institute Howrah, Kolkata

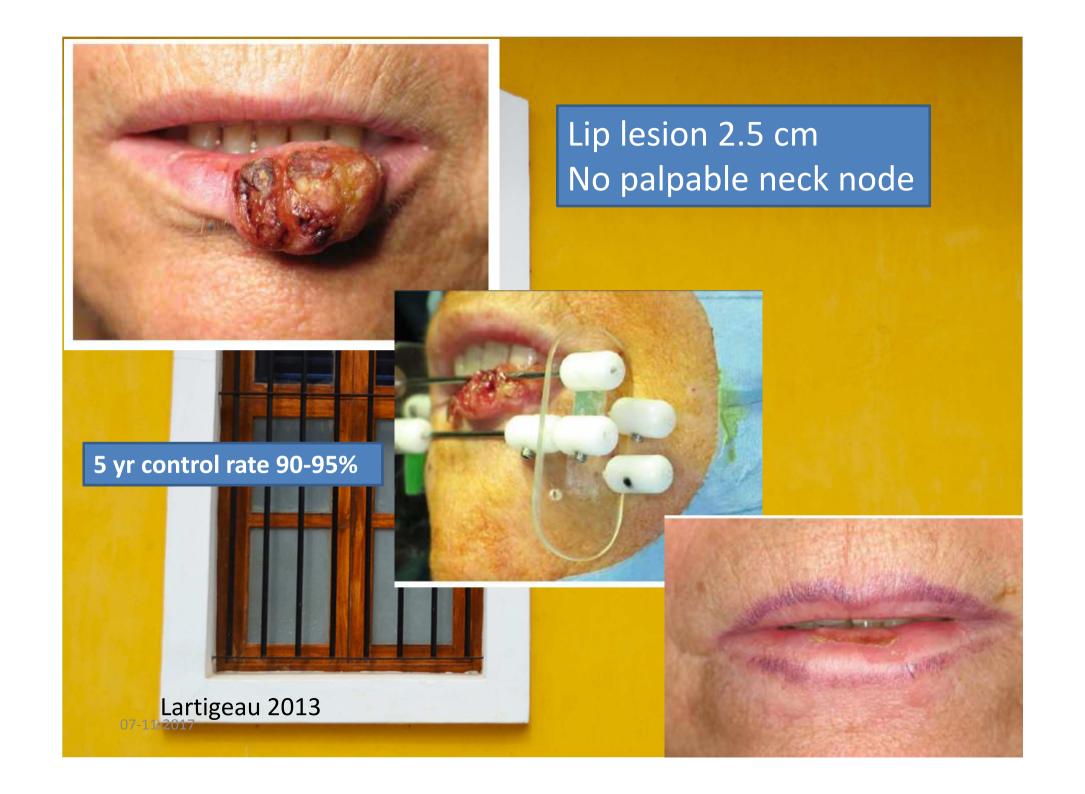
ICRO, Puducherry, 2017

Levels of Evidence


rerry


Evidence Based Medicine


EBM is the 'conscientious and explicit use of current best evidence in making decisions about the care of the individual patient. It means integrating individual clinical expertise with the best available external clinical evidence from clinical research?


David Sackett

Pondicherry

- Lips
- Oral cavity
- Nasopharyn
- Oropharynx

Original article

GEC-ESTRO ACROP recommendations for head & neck brachytherapy in squamous cell carcinomas: 1st update – Improvement by cross sectional imaging based treatment planning and stepping source technology

György Kovács ^{a,*,1}, Rafael Martinez-Monge ^{b,1}, Ashwini Budrukkar ^{c,1}, Jose Luis Guinot ^{d,1}, Bengt Johansson ^{e,1}, Vratislav Strnad ^{f,1}, Janusz Skowronek ^{g,h,1}, Angeles Rovirosa ^{i,1}, Frank-André Siebert ^{j,1}, on behalf of the GEC-ESTRO Head & Neck Working Group

Head and neck brachytherapy

	# pts	Technique	Local control	
Decroix	602	BT +/-EBI+/-Surg	76%	
Haie	269	BT EBI + BT	87% 49%	
Mazeron	121(BT 55-60 Gy BT 65-75 Gy	73% 92%	
Wendt	103	BT BT+ EBI <40 Gy BT+ EBI >40 Gy EBI	65% 92% 69% 28%	
Hareyama	130	BT EBI + BT	Lartigeau1.png	
Shibuya	370	BT + EBI	75% 48%	
Lefebvre	283	BT	(83%)	
Pernot	448	BT EBL+ BT	68%	
Matsura	173(BT EBI + BT	84 - 95% 74 - 80%	

rdicherry

2500 Patients

65-95%

Predictive Value of Tumor Thickness for Cervical Lymph-Node Involvement in Squamous Cell Carcinoma of the Oral Cavity

A Meta-analysis of Reported Studies

Shao Hui Huang, MSc^{1,2}, David Hwang, MB², Gina Lockwood, MMath³, David P. Goldstein, MD^{4,5}, and Brian O'Sullivan, MD^{2,4}

	TT Cutoff Point	No. of Studies	No. of Observations at Lower Range of TT Cutoff Point	No. of P _{LN} D	NPV	FN- <i>P_{LN}D</i> (1-NPV)	FN- <i>P_{LN}D</i> L 95%	FN- <i>P_{LN}D</i> U 95%
k	3 mm	4	113	6	94.7	5.3	1.9	14.0
П	4 mm	9	354	16	95.5	4.5	2.5	8.2
	5 mm	6	181	30	83.4	16.6†	9.8	26.6
Ġ	6 mm	4	362	47	87.0	13	3.7	36.4

NPV indicates negative predictive value; $P_{LN}D$, positive lymph node declaration.

† When the TI cutoff point migrates from 4 mm to 5 mm, the rate of $P_{LN}D$ increased from 4.5% to 16.6% (P = .007).

^{*} FN- $P_{LN}D$, percentage of patients with $P_{LN}D$ who fall below the TT cutpoint; FN- $P_{LN}D$ L 95% and FN- $P_{LN}D$ U 95%, lower and upper limit of 95% confidence interval for FN- $P_{LN}D$ respectively. FN- $P_{LN}D$ represents the percentage of patients with lymph node metastasis at the given TT cutoff. There was a significant trend for FN- $P_{LN}D$ as the TT cutoff point increased (test for trend, P = .03).

ORIGINAL ARTICLE

Elective versus Therapeutic Neck Dissection in Node-Negative Oral Cancer

Anil K. D'Cruz, M.S., D.N.B., Richa Vaish, M.S., Neeti Kapre, M.S., D.N.B., Mitali Dandekar, M.S., D.N.B., Sudeep Gupta, M.D., D.M., Rohini Hawaldar, B.Sc., D.C.M., Jai Prakash Agarwal, M.D., Gouri Pantvaidya, M.S., D.N.B., Devendra Chaukar, M.S., D.N.B., Anuja Deshmukh, M.S., D.L.O., D.O.R.L., Shubhada Kane, M.D., Supreeta Arya, M.D., D.N.B., D.M.R.D., Sarbani Ghosh-Laskar, M.D., D.N.B., Pankaj Chaturvedi, M.S., F.A.I.S., Prathamesh Pai, M.S., D.N.B., D.O.R.L., Sudhir Nair, M.S., M.Ch., Deepa Nair, M.S., D.N.B., D.O.R.L., and Rajendra Badwe, M.S., for the Head and Neck Disease Management Group

ABSTRACT

Whether patients with early-stage oral cancers should be treated with elective neck dissection at the time of the primary surgery or with therapeutic neck dissection after nodal relapse has been a matter of debate.

METHODS

In this prospective, randomized, controlled trial, we evaluated the effect on survival of elective node dissection (ipsilateral neck dissection at the time of the primary surgery) versus therapeutic node dissection (watchful waiting followed by neck dissection for nodal relapse) in patients with lateralized stage T1 or T2 oral squamouscell carcinomas. Primary and secondary end points were overall survival and diseasefree survival, respectively.

Between 2004 and 2014, a total of 596 patients were enrolled. As prespecified by the data and safety monitoring committee, this report summarizes results for the first 500 patients (245 in the elective-surgery group and 255 in the therapeuticsurgery group), with a median follow-up of 39 months. There were 81 recurrences dix, available at NEJM.org and 50 deaths in the elective-surgery group and 146 recurrences and 79 deaths in the therapeutic-surgery group. At 3 years, elective node dissection resulted in an improved rate of overall survival (80.0%; 95% confidence interval [CI], 74.1 to 85.8), as compared with therapeutic dissection (67.5%; 95% CI, 61.0 to 73.9), for a hazard Coppight © 2015 Massachusetts Medical Society. ratio for death of 0.64 in the elective-surgery group (95% CI, 0.45 to 0.92; P=0.01 by the log-rank test). At that time, patients in the elective-surgery group also had a higher rate of disease-free survival than those in the therapeutic-surgery group (69.5% vs. 45.9%, P<0.001). Elective node dissection was superior in most subgroups without significant interactions. Rates of adverse events were 6.6% and 3.6% in the elective-surgery group and the therapeutic-surgery group, respectively.

CONCLUSIONS

Among patients with early-stage oral squamous-cell cancer, elective neck dissection resulted in higher rates of overall and disease-free survival than did therapeutic neck dissection. (Funded by the Tata Memorial Centre; ClinicalTrials.gov number, NCT00193765.)

The authors' affiliations are as follows: Head Neck Services (A.K.D., R.V., N.K., M.D., G.P., D.C., A.D., P.C., P.P., S.N., D.N.), Department of Medical Oncology, Advanced Center for Treatment, Research and Education in Cancer (S.G.), Clinical Research Secretariat (R.H.), and the Departments of Radiation Oncology (J.P.A., S.G.-L.), Head Cytology (S.K.), Radio-diagnosis (S.A.), and Surgical Oncology (R.B.) - all at the Tata Memorial Centre, Mumbai, India, Address reprint requests to Dr. D'Cruz at the Tata Memorial Centre. Head and Neck Services. Parel, Mumbai, India 400012, or at docdcruz@gmail.com.

A complete list of members of the Head and Neck Disease Management Group is provided in the Supplementary Appen-

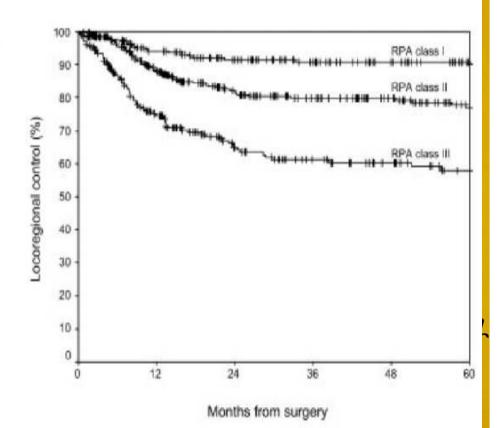
This article was published on May 31, 2015, at NEJM.org.

DOI: 10.1056/NEIMoa1506007

ndicherry

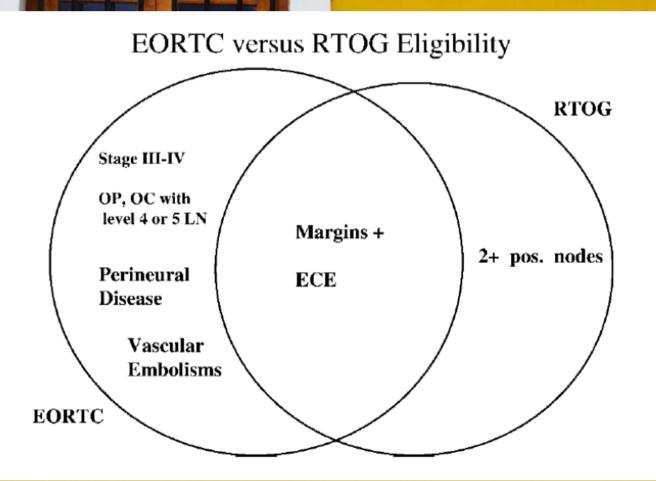
ORIGINAL ARTICLE

Elective versus Therapeutic Neck Dissection in Node-Negative Oral Cancer


associated with node positivity. A marked increase in cumulative lymph-node positivity was observed with increasing depth of invasion from 3 mm (5.6%) to 4 mm (16.9%).

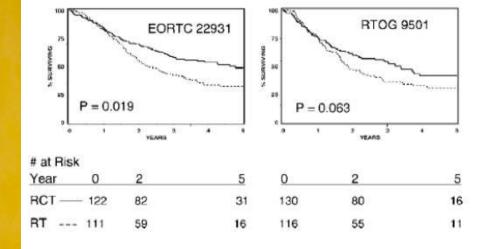
treated to prevent one relapse. A higher percentage of patients in the elective-surgery group received adjuvant radiotherapy on the basis of nodal indications, and the contribution of this factor to the improved rate of overall survival cannot be excluded. However, our trial was not designed to answer this question.

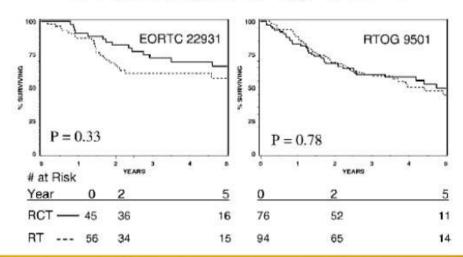
dicherry


Post op RT (RPA class)

RPA class	Definition(s)		
Class I (intermediate risk)	Free surgical margins and no extranodal spread		
Class II (high risk)	T1, T2, and T4 tumors with close or positive surgical margins		
	One lymph node metastasis with extranodal spread		
Class III (very high risk)	T3 tumors with close or positive surgica margins		
	Multiple lymph node metastases with extranodal spread		
	N3 neck		

DEFINING RISK LEVELS IN LOCALLY ADVANCED HEAD AND NECK CANCERS: A COMPARATIVE ANALYSIS OF CONCURRENT POSTOPERATIVE RADIATION PLUS CHEMOTHERAPY TRIALS OF THE EORTC (#22931) AND RTOG (#9501)


Jacques Bernier, MD, PhD,¹ Jay S. Cooper, MD,² T. F. Pajak, PhD,³ M. van Glabbeke, Ir,⁴ J. Bourhis, MD, PhD,⁵ Arlene Forastiere, MD,⁶ Esat Mahmut Ozsahin, MD, PhD,⁷ John R. Jacobs, MD,⁸ J. Jassem, MD,⁹ Kie-Kian Ang, MD,¹⁰ J. L. Lefèbvre, MD¹¹


icherry

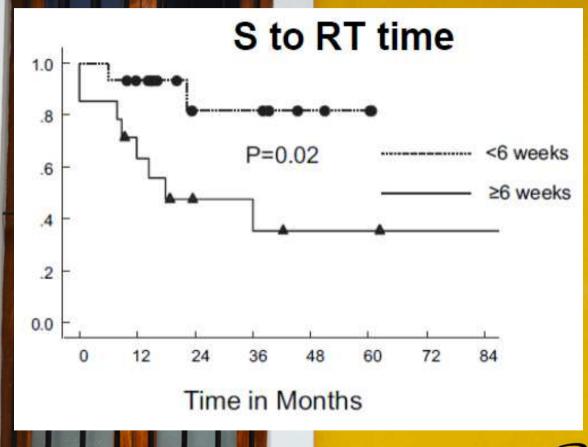
EORTC 22931+RTOG 9501

Overall Survival
Patients with positive margin and/or ECE

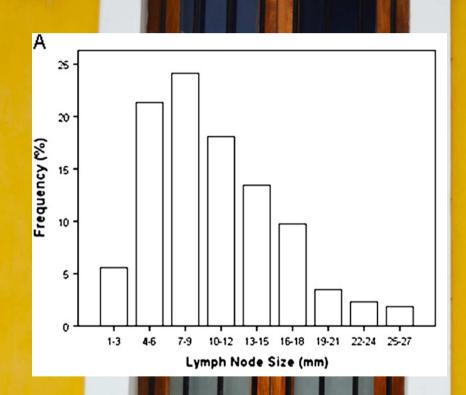
Overall Survival
Patients without positive margin and/or ECE

Post op CTRT

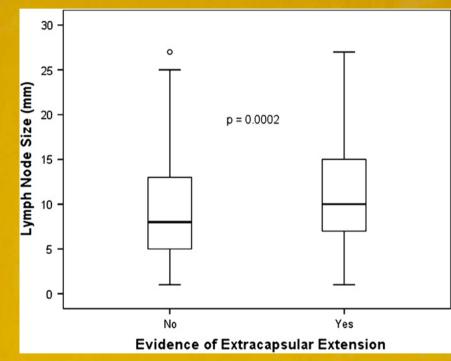
- In a combined analysis of these two trials, an unplanned subset analysis found that for patients with ECE or positive margins, adjuvant chemoradiotherapy improved overall survival over radiation alone.
- This conclusion and these data have been the subject of significant controversy, including the validity of pooled-subsite analysis, lack of reported HPV status


Pondicherry

Results OCAT

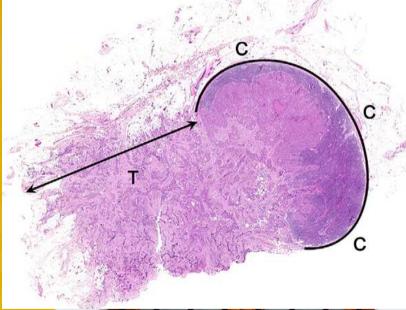

- The 5 year LRC comparable.
- Advanced T&N stage, tongue involvement, and ECE had poorer outcomes but with no significant difference in IRC or OS between the three arms even with these high risk features.
- Acute grade 3 or more (CTCAE Vr 3.0) skin and mucosal toxicity were comparable between arms.
- Intensification of adjuvant radiotherapy with concurrent chemotherapy or accelerated radiotherapy did not result in improved disease outcomes in resectable oral cavity cancers, dicherry

Time to radiothe rapy after surgery



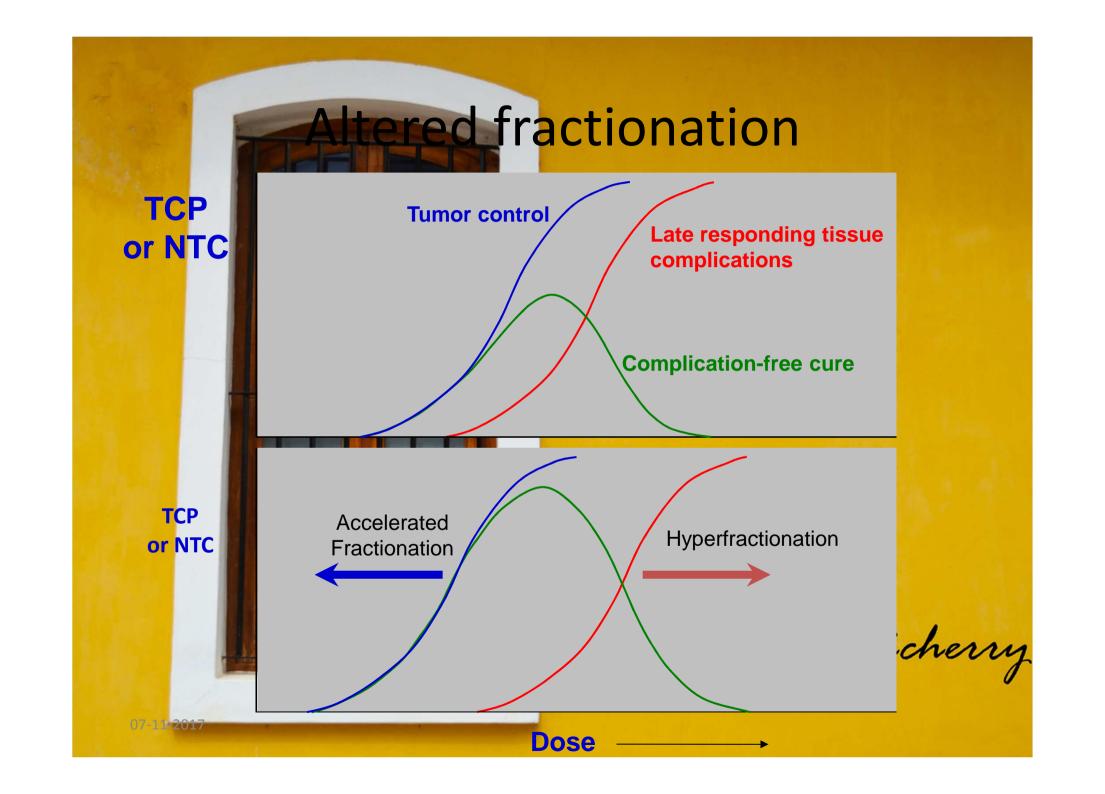
Pondicherry

ECE and nodal size


07-11-2017

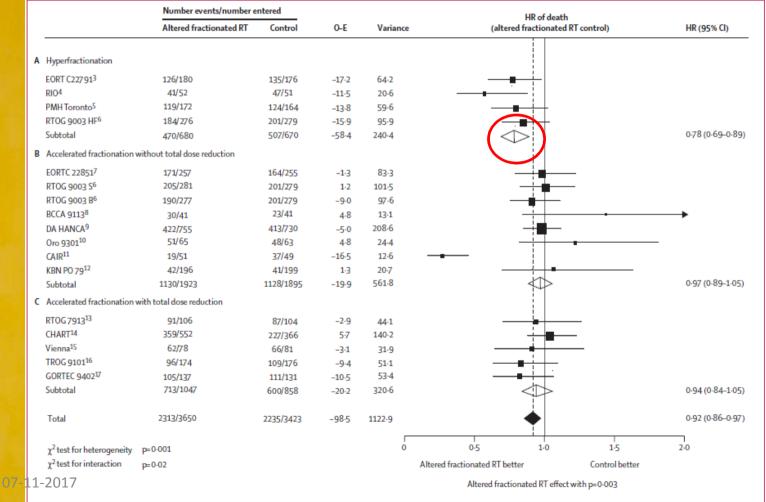
Pondicherry

PIRUS GHADJAR IJROBP 2010

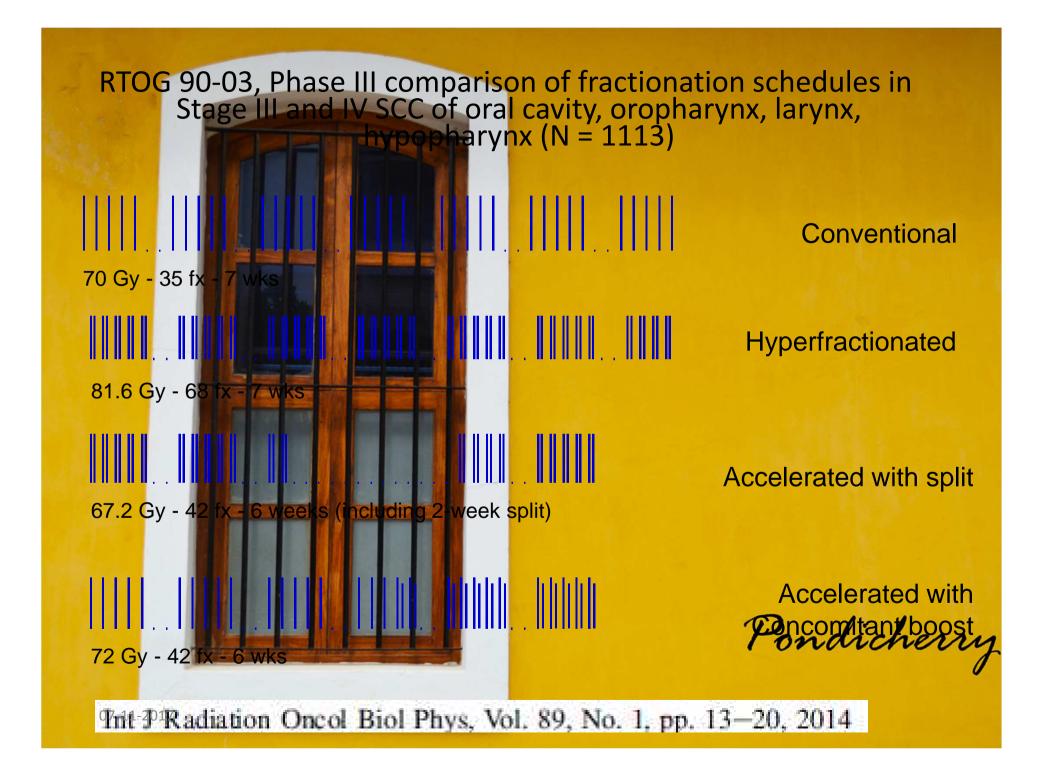

- The mean and median extent values of ECE were 1.8 and 1 mm
- ECE 5 mm in 97% and 3 mm in 91% of the 231 LN analyzed.
- The largest percentage of LN had an ECE of 1 mm (58%)
- In 17 (17%) patients, infiltration of the adjacent
- muscular fascia was observed, with mean and median extension values of 2.8 and 2.0 mm, respectively (range, 1–9 mm).

PIRUS GHADJAR IJROBP 2010

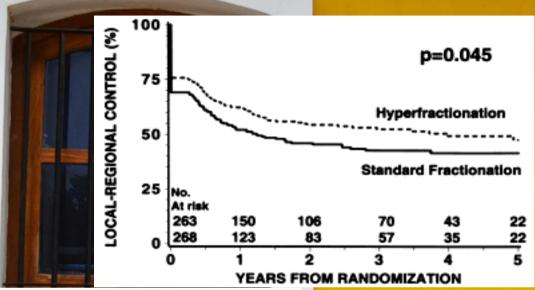
CTV in presence of ECE



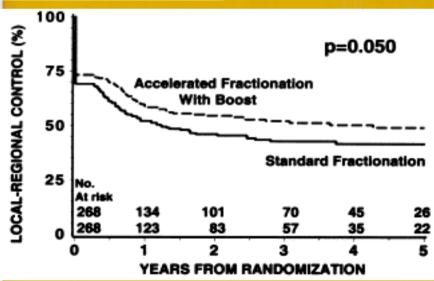
Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis


Jean Bourhis, Jens Overgaard, Hélène Audry, Kian K Ang, Michele Saunders, Jacques Bernier, Jean-Claude Horiot, Aurélie Le Maître, Thomas F Pajak, Michael G Poulsen, Brian O'Sullivan, Werner Dobrowsky, Andrzej Hliniak*, Krzysztof Skladowski, John H Hay, Luiz H J Pinto, Carlo Fallai, Karen K Fu, Richard Sylvester, Jean-Pierre Pignon, on behalf of the Meta-Analysis of Radiotherapy in Carcinomas of Head and neck (MARCH) Collaborative Group

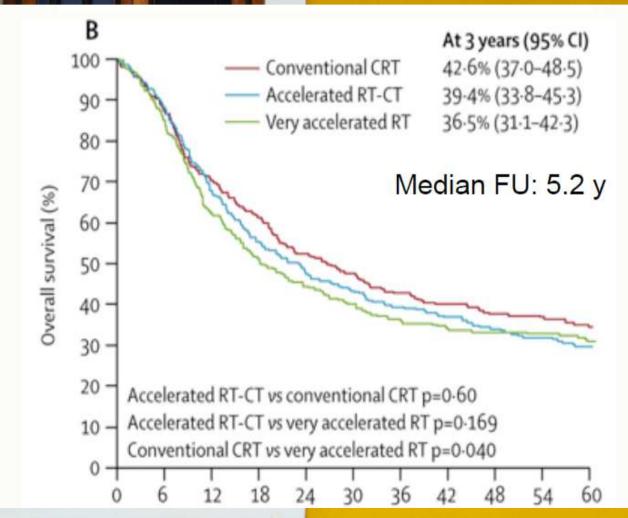
Lancet 2006; 368: 843-54 See Comment page 819 Published Online


August 17, 2006




cherry

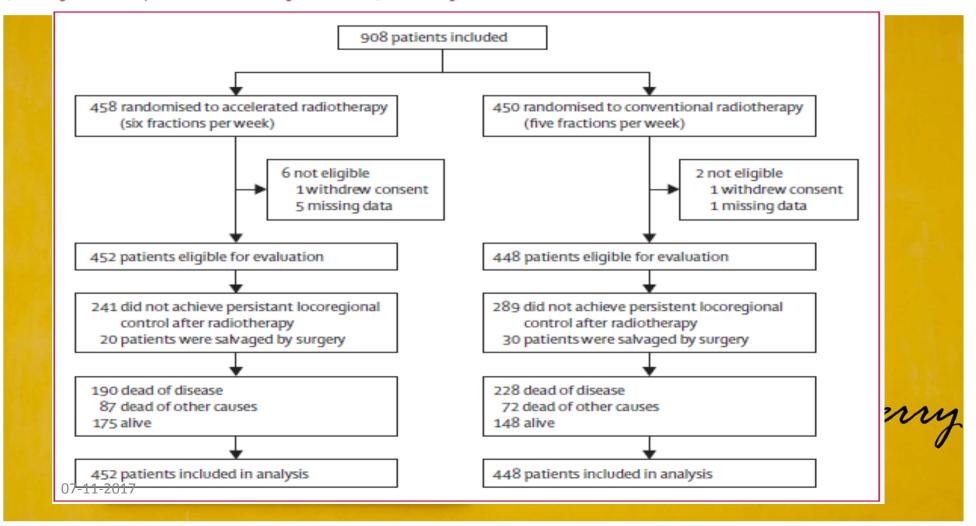
Fu 2000

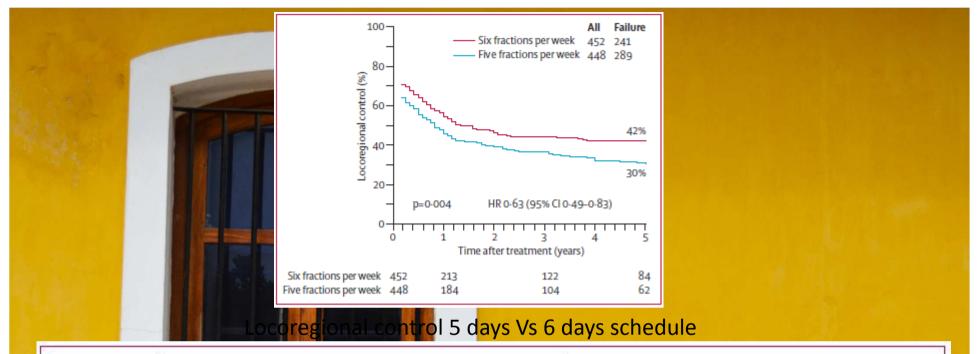

ry

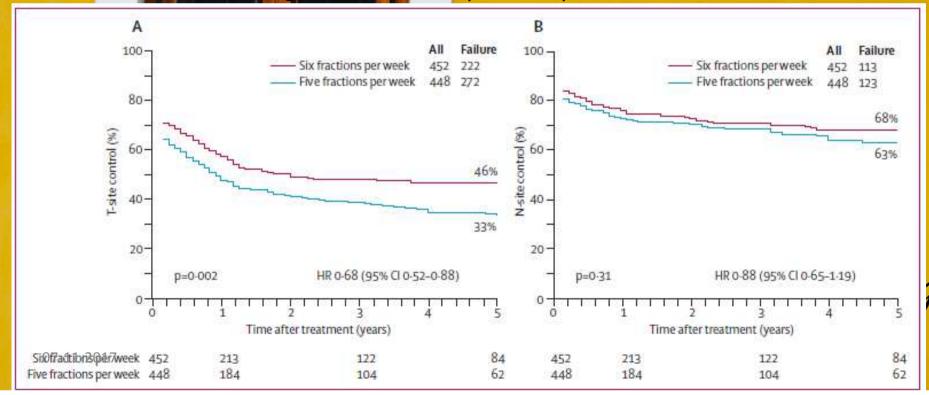
RTOG 90-03, adverse effects						
	No. of the last of	ute		2000		
Maximum toxicity per patient	Conventional	Hyperfract	Concom Acc + boost	split		
Grade 1	15%	4%	4%	7%		
Grade 2	57%	39%	36%	41%		
Grade 3	35%	54%	58%	49%		
Grade 4	0%	1%	1%	2%		
	Lat	te				
Maximum toxicity	Conventional	Hyperfract				
per patient		PATO LA	boost	split		
Grade 1	11%	8%	7%	16%		
Grade 2	50%	56%	44%	50%		
Grade 3	19%	19%	29%	20%		
Grade 4	8%	9%	8%	7%		
Grade 5	1%	0%	Pondice	1%		
			ronwa	revy		
07-13 <mark>-2017</mark>						
A CONTRACTOR OF THE PARTY OF TH						

- With patients censored for LRC at 5 years, only the comparison of HFX with SFX was significantly different: HFX, hazard ratio (HR) 0.79 (95% confidence interval 0.62-1.00) PZ.05; AFX-C, 0.82 (95% confidence interval 0.65-1.05) PZ.11. With patients censored at 5 years, HFX improved overall survival (HR 0.81, PZ.05).
- Prevalence of any grade 3, 4, or 5 toxicity at 5 years; any feeding tube use after 180 days; or feeding tube use at 1 year did not differ significantly when the experimental arms were compared with SFX. When 7-week treatments were compared with 6-week treatments, accelerated fractionation appeared to increase grade 3, 4 or 5 toxicity at

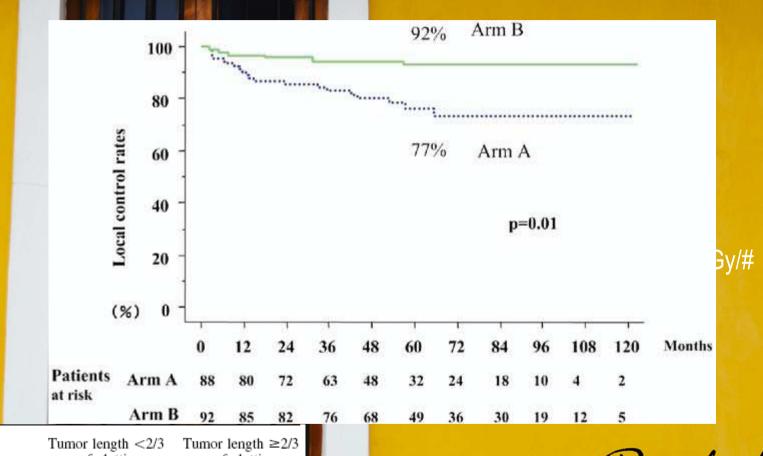
GORTEC 9902 OS


licherry


Bourhis Lancet Oncol 2012



Five versus six fractions of radiotherapy per week for squamous-cell carcinoma of the head and neck (IAEA-ACC study): a randomised, multicentre trial


Jens Overgaard, Bidhu Kaylan Mohanti, Naseem Begum, Rubina Ali, Jai Prakash Agarwal, Maire Kuddu, Suman Bhasker, Hideo Tatsuzaki, Cai Grau

Hypo-fractionation (RCT) in vocal cord

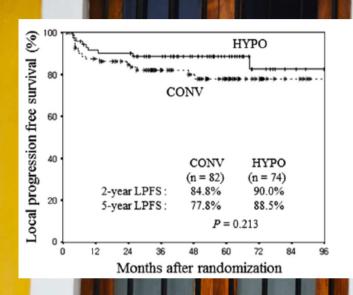
Arm Of glottis Tumor length $\leq 2/3$ of glottis

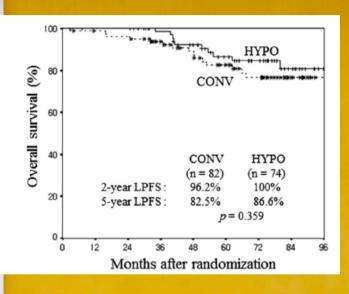
Arm A (2 Gy/fr)

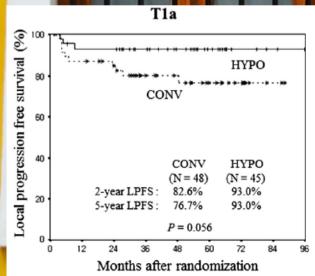
A-1 (n = 31) 60 Gy/30 fr/6 wk

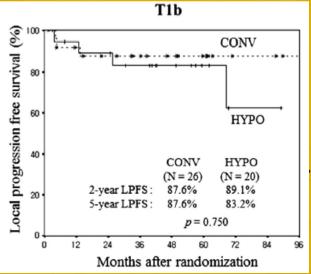
A-2 (n = 57) 66 Gy/33 fr/6.6 wk

Arm B (2.25 Gy/fr)


B-1 (n = 31) 56.25 Gy/25 fr/5 wk


B-2 (n = 61) 63 Gy/28 fr/5.6 wk


Pondicherry


Yamazaki et al IJROBP 2006

KROG 0201 (Vocal cord) N=156

dicherry

A-Hypno (on going)

55 Gy in 20 fractions / 4 wks +/- CCT

66 Gy/33# in 5 wks +/CCT

Primary End point: Tumour control. Late Grade 2 toxicity.

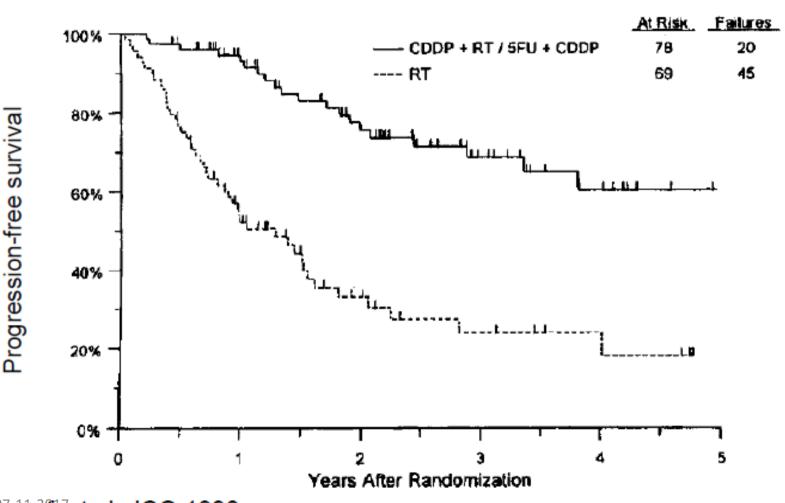
Secondary End Pt: OS, DFS, Other Late toxicity, QOL

Pondicherry

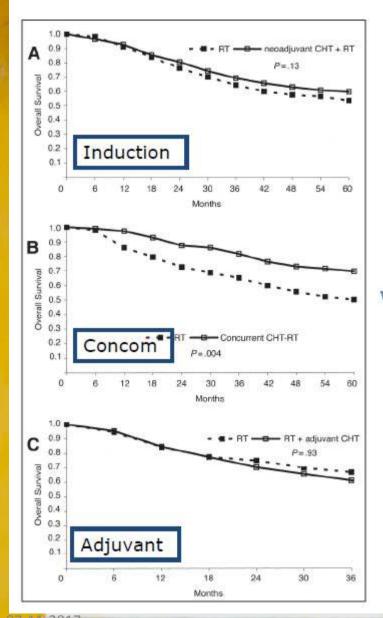
Courtesy: Gupta T, Agarwal JP.

Fractionation

- Split course treatment is bad for tumour control.
- Prolongation of dose is corrected.
- Concomitant poost at the end of treatment has an advantage to counter accelerated repopulation.
- Shorter treatment has advantage if enough dose is delivered with manageable toxicity.
- Prolongation is okay if enough dose given to keep ahead of proliferation, need to protect against toxicity.


Addition of Radiosensitisers

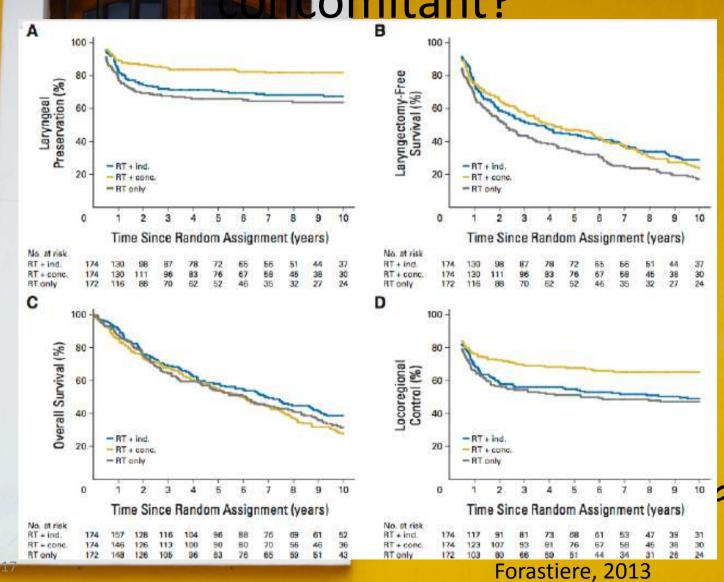
- Addition of concchemotherapy is indicated in PORT with positive margins and presence of ECE.
- Conc chemotherapy in general improve survival compared to neoadjuvant and adjuvant chemotherapy.
- Addition of EGFR inhibitors considered in those patients who are not suitable for conc chemotherapy.
- For advanced nasopharyngeal cancer addition of neo adjuvant chemotherapy can improve outcome.


 Pondicherry

NPC RT ±chemo (cis + adj cis-FU)

Intergroup 0099 (n=147)

Al-Safraf¹⁷et al, JCO 1998



NPC Meta-analysis n = 2,455

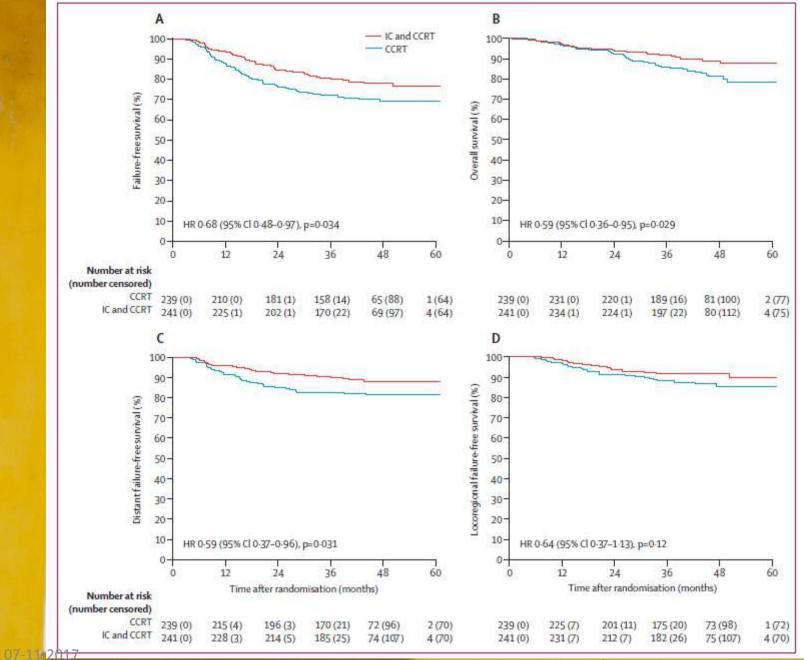
survival benefit of 20% after 5 years

erry

Chemotherapy: Induction or concomitant?

Induction chemotherapy plus concurrent chemoradiotherapy > 1 versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: a phase 3, multicentre, randomised controlled trial

Ying Sun*, Wen-Fei Li*, Nian-Yong Chen*, Ning Zhang*, Guo-Qing Hu*, Fang-Yun Xie*, Yan Sun*, Xiao-Zhong Chen, Jin-Gao Li, Xiao-Dong Zhu, Chao-Su Hu, Xiang-Ying Xu, Yuan-Yuan Chen, Wei-Han Hu, Ling Guo, Hao-Yuan Mo, Lei Chen, Yan-Ping Mao, Rui Sun, Ping Ai, Shao-Bo Liang, Guo-Xian Long, Bao-Min Zheng, Xing-Lai Feng, Xiao-Chang Gong, Ling Li, Chun-Ying Shen, Jian-Yu Xu, Ying Guo, Yu-Ming Chen, Fan Zhang, Li Lin, Ling-Long Tang, Meng-Zhong Liu, Jun Ma


480 patients of Nasopharyngeal M Carcinoma stage III-IV (except N0 cases)

Standard Arm CTRT

Experimental Arm NACT(3# TPF) followed by CTRT

Pondicherry

Ying Sun *Lancet Oncol* 2016; 17: 1509–20

ierry

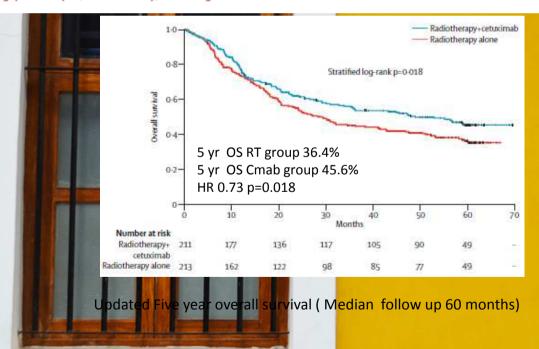
Ying Sun *Lancet Oncol* 2016; 17: 1509–20

Toxicity profile

	Induction chemotherapy plus concurrent chemoradiotherapy group (n=239)		Concurrent chemoradiotherapy group (n=238)		p v alue*	
	Grade 3	Grade 4	Grade 3	Grade 4	Grade 3	Grade 4
Anyt	132 (55%)	42 (18%)	125 (53%)	3 (1%)	0-55	< 0.0001
Haematological						
Neutropenia	64 (27%)	37 (15%)	16 (7%)	1 (<1%)	<0.0001	< 0.0001
Febrile neutropenia	5 (2%)	2 (1%)	0	0	0.061	0-50
Neutropenic infection	1 (<1%)	0	0	0	1-00	
Leucopenia	86 (36%)	12 (5%)	40 (17%)	1 (<1%)	<0.0001	0-0020
Anaemia	4 (2%)	0	5 (2%)	0	0.75	340
Thrombocytopenia	5 (2%)	1 (<1%)	2 (1%)	0	0.45	1-00
Non-haematological						
Stomatitis (mucositis)	96 (40%)	2 (1%)	82 (34%)	2 (1%)	0.20	1.00
Vomiting	52 (22%)	4 (2%)	45 (19%)	0	0.44	0-12
Nausea	46 (19%)	4 (2%)	40 (17%)	0	0.49	0-12
Dry mouth	13 (5%)	~±	13 (5%)	-4	0.99	40
Dermatitis	8 (3%)	1 (<1%)	10 (4%)	0	0.62	1-00
Oesophagitis, dysphagia, or odynophagia	5 (2%)	0	9 (4%)	0	0.27	+0
Hepatoxicity	7 (3%)	0	2 (1%)	0	0.18	126
Allergic reaction	2 (1%)	0	0	0	0-50	#

Data are n or n (%). *p values were calculated with the χ^2 test (or Fisher's exact test): †No grade 3–4 nephrotoxicity, ototoxicity, or neurotoxicity was recorded. ‡According to the Common Terminology Criteria for Adverse Events (version 3.0) dry mouth has only grade 1–3.

Table 4: Cumulative adverse events during treatment by maximum grade per patient during treatment


ry

Rx Intensification: Biological

Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival

James A Bonner, Paul M Harari, Jordi Giralt, Roger B Cohen, Christopher U Jones, Ranjan K Sur, David Raben, Jose Baselga, Sharon A Spencer, Junming Zhu, Haqop Youssoufian, Eric K Rowinsky, K Kian Ang

Pondicherry

Bonner J et al lancet 2010

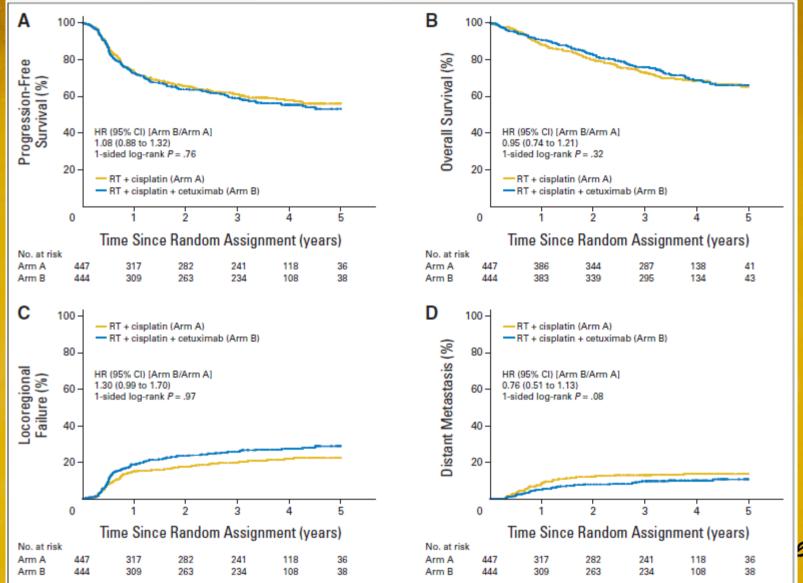
JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

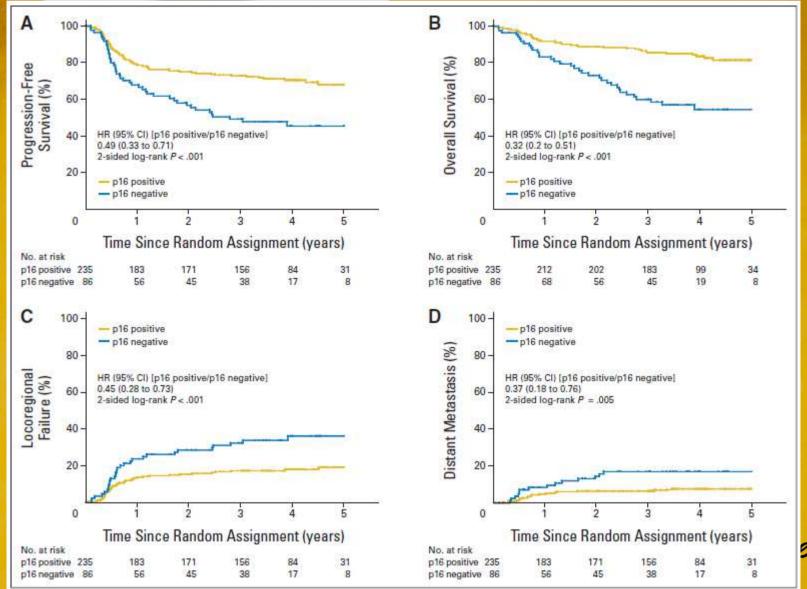
Randomized Phase III Trial of Concurrent Accelerated Radiation Plus Cisplatin With or Without Cetuximab for Stage III to IV Head and Neck Carcinoma: RTOG 0522

K. Kian Ang,† Qiang Zhang, David I. Rosenthal, Phuc Felix Nguyen-Tan, Eric J. Sherman, Randal S. Weber, James M. Galvin, James A. Bonner, Jonathan Harris, Adel K. El-Naggar, Maura L. Gillison, Richard C. Jordan,

Andre A. Ko ade L. Thorstad, Andy Trotti, Jonathan J. Beitler, Adam S. Garden, William J. Spanos,†


891 patients of Head and Neck Cancer (oropx/hypopx/lx) locally advanced

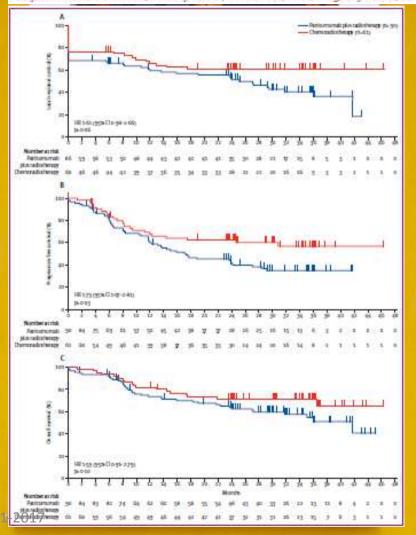
E C C O N


Standard Arm CTRT(
Cisplatin)

Experimental Arm CTRT with Cisplatin and Cetiximab

Pondicherry

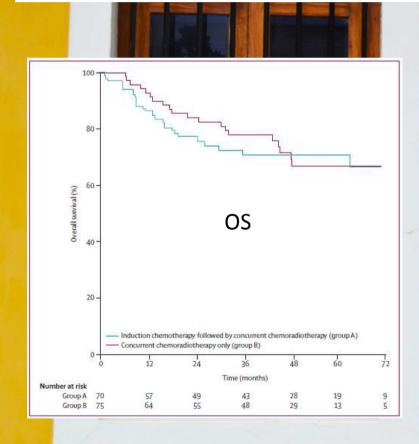
erry

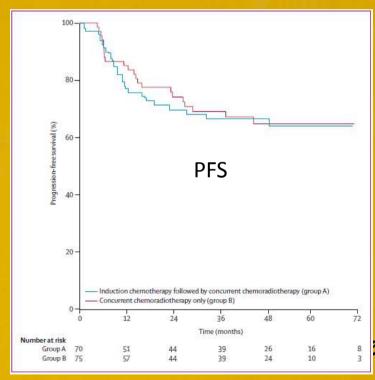


erry

Panitumumab plus radiotherapy versus chemoradiotherapy in patients with unresected, locally advanced squamous-cell carcinoma of the head and neck (CONCERT-2): a randomised, controlled, open-label phase 2 trial

Jordi Grait, Jone Trigg: Scoden Mayes, Mahamet Chrushin, Kenyutof Scholaraki, Georges Habason, Jean-Francois Daisme. Alejanska Cisar Yussen Assona, Ast hum, Crustak, Ricard Media, Alicia Zhona, Kelly S (Tenes, Ar Words Welde




CTRT with Cisplatin is still standard of care

Pondicherry

Induction chemotherapy followed by concurrent chemoradiotherapy (sequential chemoradiotherapy) versus concurrent chemoradiotherapy alone in locally advanced head and neck cancer (PARADIGM): a randomised phase 3 trial

Robert Haddad, Anne O'Neill, Guilherme Rabinowits, Roy Tishler, Fadlo Khuri, Douglas Adkins, Joseph Clark, Nicholas Sarlis, Jochen Lorch, Jonathan J Beitler, Sewanti Limaye, Sarah Riley, Marshall Posner

ECOG 1308

Eastern Cooperative Oncology Group 1308
 phase 2 trial used induction chemotherapy to
 select patients for radiation dose modification
 (from 66-70-Gy to 54 Gy) for HPV positive
 disease. According to whether they achieved a
 complete response to induction therapy.
 Results from this study are currently pending.

Pondicherry

RTOG 1016

 Accrual is nearly completed in RTOG 1016, a phase 3 trial randomizing HPV-positive HNC patients to cisplatin versus cituximab given concurrent with 70 Gy radiation.

• This study hopes to definitively answer the question of whether cetuximab, with its favourable toxicity profile, can be safely substituted for cisplatin in patients with definitively positive HNC.

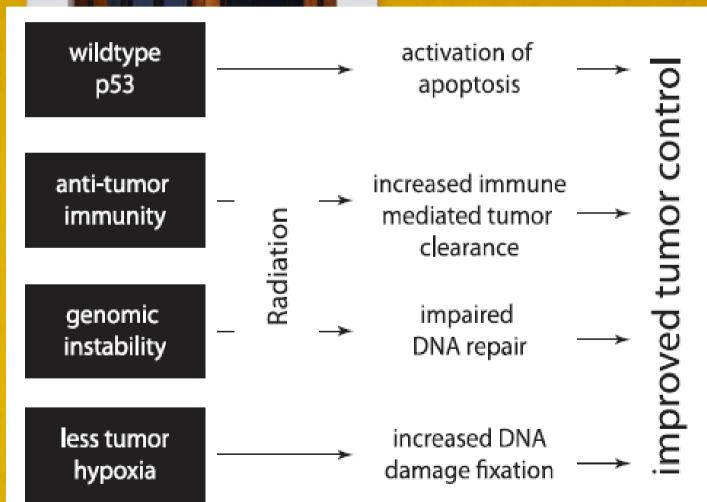
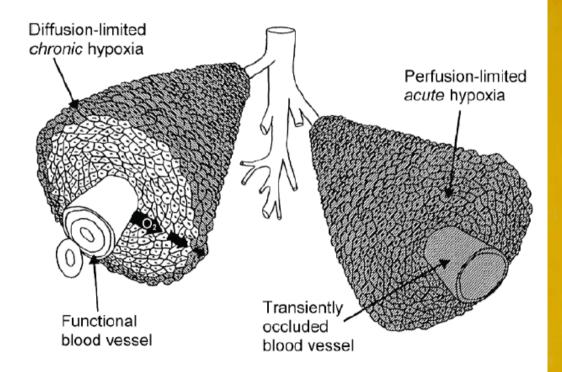

Ongoing trials

Table 3 Ongoing trials for patients with human papillomavirus-positive squamous cell carcinoma of the head and neck

Type n Group/institution			ClinicalTrials.gov identifier	Trial design		
Phase 2	83*	ECOG	NCT01084083	Neoadjuvant chemotherapy and response-adapted radiation (54 or 66-70 Gy) + cetuximab		
Phase 2	50	North Shore Long Island Jewish Health System	NCT01525927	Neoadjuvant TPF and response-adapted radiation (60 Gy) ± concurrent chemotherapy		
Phase 2	50	University of California, Davis	NCT01716195	Neoadjuvant chemotherapy followed by paclitaxel + response-adapted radiation (50 or 60 Gy)		
Phase 2	36	University of Michigan	NCT01663259	Weekly cetuximab + radiation (70 Gy)		
Phase 2	40	University of North Carolina	NCT01530997	Radiation with weekly cisplatin followed by supra-selective neck dissection		
Phase 3	706	RTOG	NCT01302834	Randomized to cetuximab versus cisplatin with concurrent radiation (70 Gy in 6 wk)		
Phase 3	365	Mount Sinai School of Medicine	NCT01706939	Weekly carboplatin/cetuximab + 56 Gy versus weekly carboplatin + 70 Gy		
Phase 2	337	ECOG	Pending	Transoral resection — risk-adapted postoperative RT (0 versus 50 versus 60 versus 66 Gy with weekly cisplatin)		
Phase 3	496	Washington University	NCT01687413	Postoperative radiation (60 Gy) ± weekly cisplatin		

07-11-2017

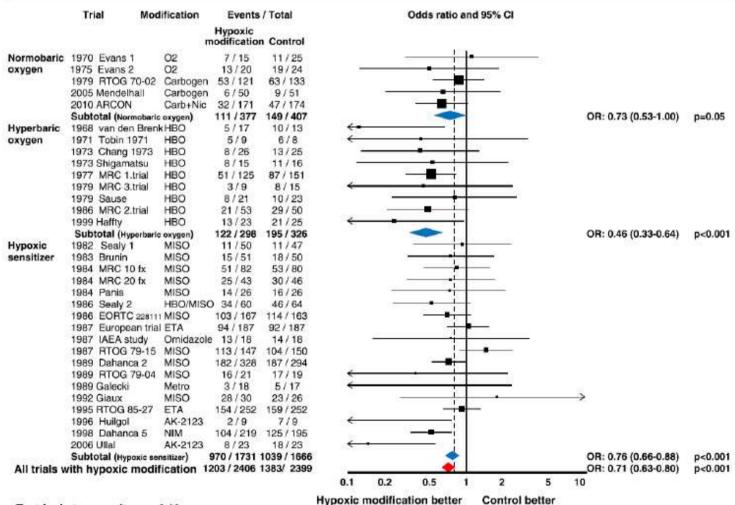
WHYHPV—ve patients do well??


icherry

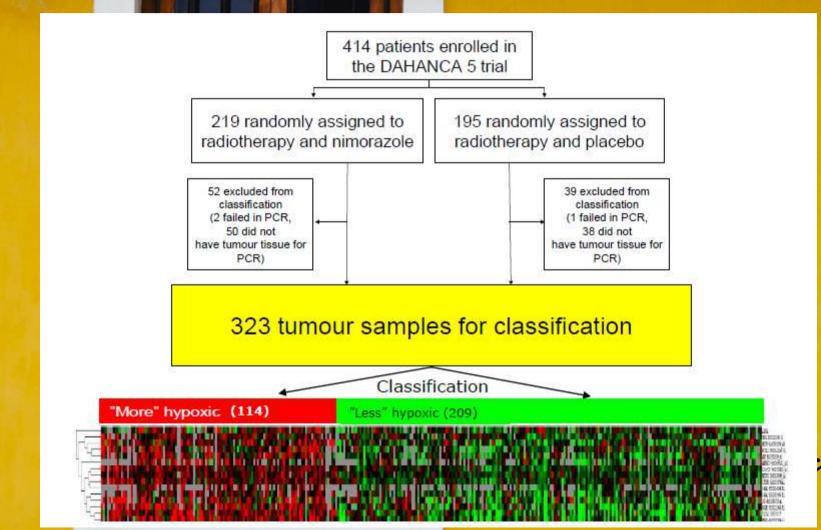
Hypoxia


Thomlinson & Gray 1955

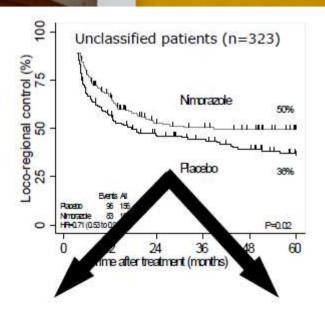
Cord structure in lung cancer (150 µm)

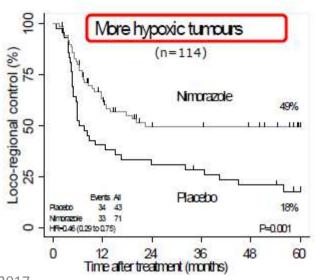

Hypoxic cell sensitizer

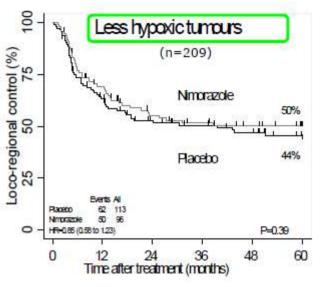
Hypoxic modifier: Overgaard 2011


Meta-analysis of hypoxic modification of radiotherapy in HNSCC

Endpoint: Loco-regional failure


Test for heterogeneity: p = 0.12


Hypoxic Classifier



herry

Effect of hypoxia

erry

7-11-2017

Accelerated fractionated RT+ Cisplatin + Nimorazole

TNM stage (UICC 2002)

Stage 1 :7 Stage 2a : 3 Stage 2b : 11

Stage 20 . 11 Stage 3 :26

Stage 4a : 17 Stage 4b : 7

Patient Demography:

•71 patients were included from jan 1.

2003 to dec 31, 2008

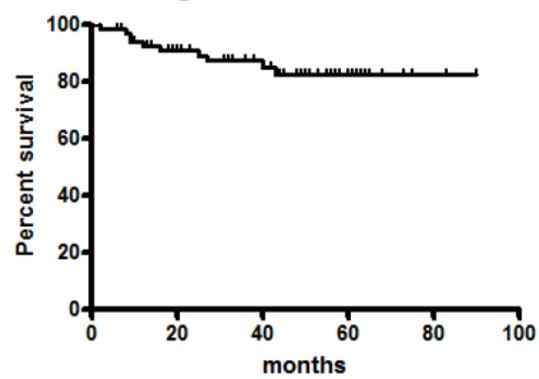
•46 males and 25 females

Median age 49 years (r 17-79)

Histopathology

·Keratinizing high differentiated :

•Keratinizing moderate differentiated: 2


•Keratinizing low differentiated : 11

•Non keratinizing undifferentiated : 46

Non keratinizing differentiated : 10

Other

Locoregional control. Dahanca 14

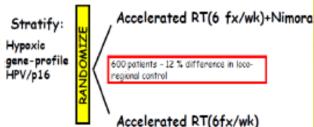
5 Year loregional control 82%

DAHANCA14, Bentzen et al, ESTRO 2011

On going validation studies

IAEA-HypoX

- Randomized phase III; accelerated radiotherapy ± Nimorazole
 - hypoxia gene expression and HPV/p16
 - Eastern Europe, Asia
 - Recruitment opened 2012


Intergroup EORTC - ROG HNCG 1219 DAHANCA

- Randomized phase III; accelerated chemoradiotherapy ± Nimorazole
 - hypoxia gene expression and HPV/p16
 - Europe, Canada
 - Recruitment starting 2013

IAEA-hypoX

ORAL CAVITY, OROPHARYNX, HYPOPHARYNX and LARYNX (except stage I-II glottic)

T1-4,N0-3

typoxia in HPV+

 Hypoxia is present in HPV+ tumors, but resolves within 1 week of treatment in 48% of cases either at the primary site and/or Lymph node(s). Our **Solution** control suggests that 100% intratreatment functional imaging used to selectively delescalate node(s) to 60Gy was confirmed safe using our stringent imaging criteria. Intra-treatment functional imaging warrants further study to determine its ultimate role in de-escalation treatment strategies. Reduction of the dose of radiotherapy to the elective neck in head and neck squamous cell carcinoma; a randomized clinical trial. Effect on late toxicity and tumor control

Daan Nevens a,*, Fréderic Duprez b, Jean Francois Daisne c, Ruveyda Dok d, Ann Belmans e, Mia Voordeckers f, Danielle Van den Weyngaert g, Wilfried De Neve b, Sandra Nuyts a

^a Department of Radiation Oncology, KU Leuven - University of Leuven, University Hospitals Leuven; ^b Department of Radiotherapy, Ghent University Hospital; ^cDepartment of

200 patients were randomized in two groups of elective neck irradiation 50 GyVs 40 Gy by IMRT technique

- Trend towards less dysphagia at 6 months.
- Significant less salivary gland toxicity >= Grade 1 at 6 months(p=0.01) and 18 months(p=0.03)
- No difference of local control at 2 yrs.

ry

Technical advancement

- Set up Uncertainties
- Target Volume Delineation
- Precise Teatment Planning & Delivery
- Locoregional control
- Overall Survival.
- Nutritional status & Quality of life

Pondicherry

Delineation

Grégoire V et al Radiother Oncol 2000;56:135–50.

Grégoire V et al, Radiother Oncol 2003;69:227–36.

Grégoire V et al, Radiother Oncol 2013.

RTOG contouring guideline

www.dahanca.dkndicherry

Priority	OAR	Constraint OAR	Constraint PRV	
"ABSOLUTE"	Brain stem	Dmax ≤ 54Gy	Dmax ≤ 60Gy	
(priority above				
target coverage)	Spinal cord	Dmax ≤ 45Gy	Dmax ≤ 50Gy	
"MUST"	Anterior eye	Dmax ≤30 Gy	Dmax ≤ 35 Gy	
(priority not				
neccesarily above				
target coverage)	Optic chiasm and nerve	Dmax ≤ 54Gy	Dmax ≤ 60Gy	
	Retina	Dmax ≤ 45 Gy	Dmax ≤ 50 Gy	
		Dmean ≤ 45	1401441401015-200001014	
"SHOULD"	Cochlea	and D95% ≤ 55 Gy		
		1) Contralateral parotic	d:	
(good evidence		Dmean ≤ 20 Gy 2) Both	1	
for sparing)	Parotid glands	parotidś: Dmean ≤ 26 (Gy	
		Hotspots should be		
	Mandible	avoided		
"CAN"	Pituitary gland	Dmean < 30 Gy		
(less evidence for	Brain	Dmax ≤ 60Gy		
sparing, or less	Submandibular glands	Dmean ≤ 35Gy		
important	Oral cavity	Dmean ≤ 30Gy (non-		
morbidity or other		involved part)		
uncertainties)	Lips	Dmean ≤ 20Gy	Adopted from	
	Larynx	Dmean ≤ 44 Gy	www.dahanca.dl	
	Thyroid	Dmean < 40 Gy	TTTT TTT GGT GGT GGT GGT GGT GGT GGT GG	
-2017	Oesohagus	Dmean ≤ 30Gy		

Xerostomia


- The consensus has been reached that xerostomia can be substantially reduced by limiting the mean parotid gland dose to <26-30 Gy as a planning criterion.
- By reducing the mean dose to at least one parotid gland, salivary function can be partially preserved, and it improves gradually over time.
- However, the improvement in objective parotid function as measured by salivary flow is not always accompanied with improved patient-reported xerostomia. symptoms reported by patients are more suggestive of its true severity.
- Under stimulated status, 60–65% of saliva is produced by the parotid glands, 20–30% by the submandibular glands (SMGs), and 2–5% by the sublingual glands. non-stimulated state, the SMGs contribute up to 90% of the salivary output

Dysphagia

- Levendag et al reported a 19% increase in the probability of dysphagia with every additional 10 Gy to the superior and middle constrictor muscles.
- Li et al. suggested that in order to reduce the risk of prolonged gastrostomy feeding tube use, the dose constraint should be a mean dose of <55 Gy to the inferior constrictor muscle, and a maximum dose of <60 Gy to the cricopharyngeal inlet.

 Pondicherry

Progressive conformation of dose

07-11-2017

Pondicherry

IMRT for head and neck cancer

- Technologically robust means to improve dose delivery:
- Exquisite sharp dose gradients especially in areas of crucial interphase (Tumour Vs normal tissue)
- Delivers optimized non uniform beam intensities to precisely delineated target volumes.
- Improved outcomes for normal tissues.
- Requires immobilisation and set-up issues and knowledge of uncertainties.
- Optimal imaging modality acquisition and registration.
- Clearly identified dose specification and prescription.
- Proper quality assurance.
- Knowledge of pitfalls that exist (poor dilineation, hot and cold spots, deformation, set up uncertainties etc)
 Pondicherry

CLINICAL INVESTIGATION

MULTI-INSTITUTIONAL TRIAL OF ACCELERATED HYPOFRACTIONATED INTENSITY-MODULATED RADIATION THERAPY FOR EARLY-STAGE OROPHARYNGEAL CANCER (RTOG 00-22)

Table 3. Acute toxicity Grade ≥2 for 67 p

	Grade		
	2	3	4
Gastrointestinal	46	31	4
Dysphagia	37	15	0
Mucositis	31	25	1
Esophagitis	3	0	0
Dry mouth	49	0	0
Salivary gland changes	42	0	0
Taste disturbance	16	0	0
Nausea	6	3	0
Vomiting	3	3	0
Dehydration	12	1	0
Anorexia	0	3	3
Other	0	1	0
Skin	21	10	0
Pain	16	4	0
Pulmonary	1	1	0
Blood	0	4	0
Constitutional symptoms	28	0	0
Auditory	1	0	0
Infection febrile neutropenia	1	0	0
Neurology	1	0	0

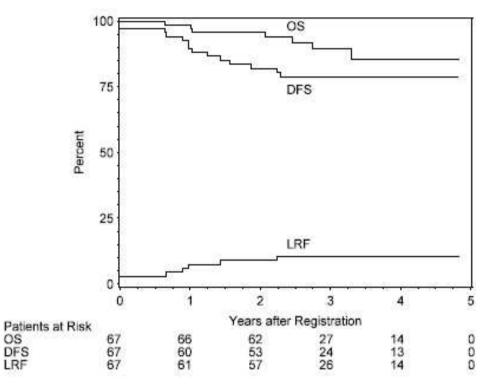
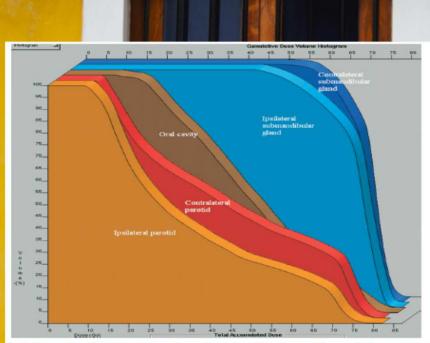
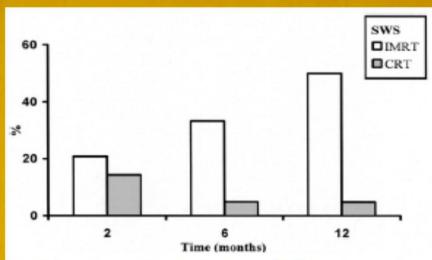
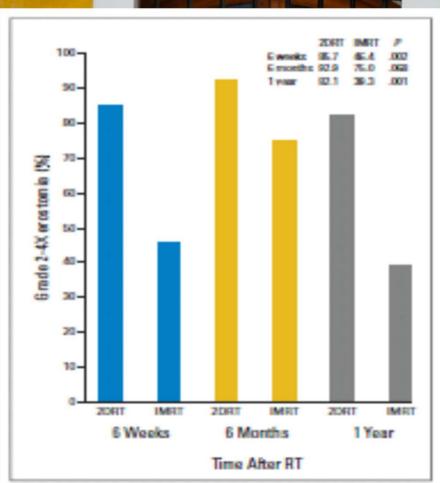



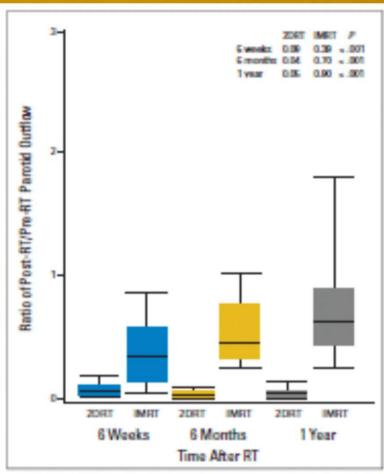
Fig. 1. Kaplan-Meier estimates of overall survival (OS) and disease-free survival (DFS) and cumulative incidence of local-regional failure (LRF).

Eisbruch et al, IJROBP 2009

XEROSTOMIA AND QUALITY OF LIFE AFTER INTENSITY-MODULATED RADIOTHERAPY VS. CONVENTIONAL RADIOTHERAPY FOR EARLY-STAGE NASOPHARYNGEAL CARCINOMA: INITIAL REPORT ON A RANDOMIZED CONTROLLED CLINICAL TRIAL

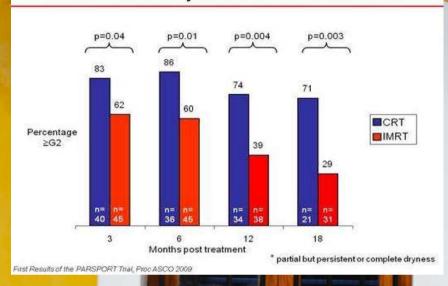
ig. 1. Dose-volume histogram of the salivary glands for an intensity-modulated radiotherapy paties

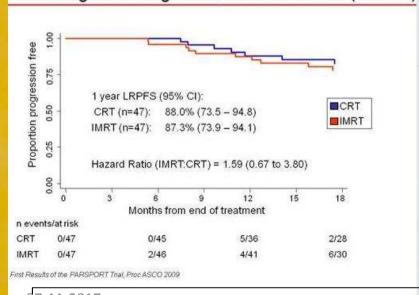




Fig. 2. Intensity-modulated radiotherapy (IMRT) and conventional radiotherapy (CRT) patients (%) who had recovered at least 25% of preradiotherapy stimulated whole salivary (SWS) flow at 2, 6, and 12 months postradiotherapy.

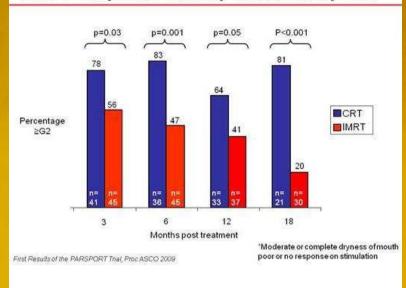
Conclusions: IMRT was significantly better than CRT in terms of parotid sparing and improved QoL for early-stage disease. The findings support the case for assessment of health-related QoL in relation to head-and-neck cancer using a site-specific approach. © 2006 Elsevier Inc.

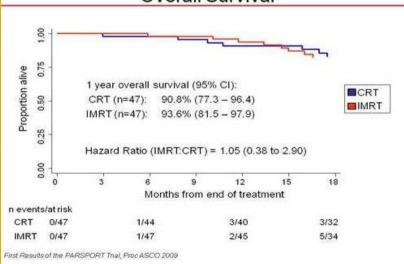
Prospective Randomized Study of Intensity-Modulated Radiotherapy on Salivary Gland Function in Early-Stage Nasopharyngeal Carcinoma Patients


Rg 2. Histogram showing the incidence of Radiation Therapy Oncology Group (RTOG)/Guropean Organisation for the Research and Treatment of Cancer (GORTO) grade 2 to 6 xerostomia in patients treated by two-dimensional radiation therapy (DORT) and intensity-modulated radiation therapy (IMRT).


Rg 2. Changes in fractional attriulated parotid flow rate (SPRR) after twodimensional radiation therapy (SDRT) and intensity-modulated radiation therapy (MRT). Spread of data denoted by box whiskess plot box limits represent 25 and 75 percentiles, line within box median, whisker ends 1 and 59 percentiles; comparison of means denoted in inserts.

Kam et al, J Clin Oncol 2006


LENT SOM Subjective Xerostomia* rates


Loco-Regional Progression Free Survival (LRPFS)

RTOG Subjective Salivary Gland toxicity ≥G2*

Overall Survival

y

PARSPORT: Nutting et al, Lancet Oncol 2010

Significant reduction in acute salivary gland toxicity

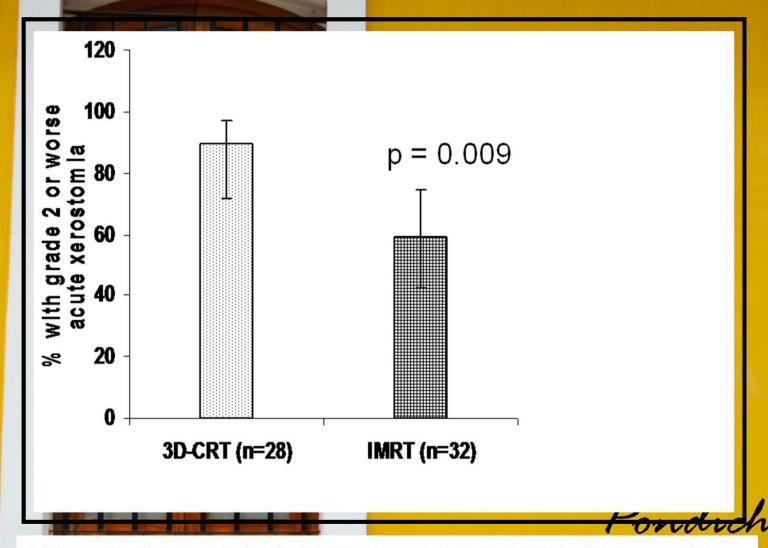


Fig. 2. Proportion of patients with grade 2 or worse acute salivary gland toxicity in 3D-CRT and IMRT arms (error bars represent 95% Cls).

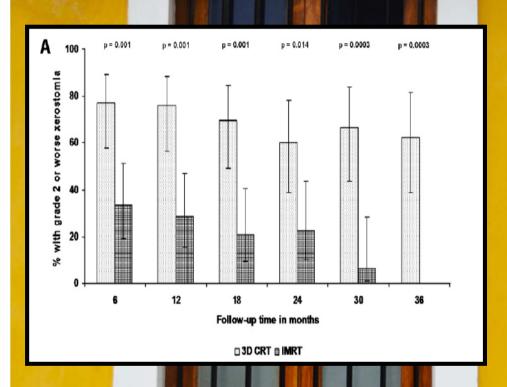
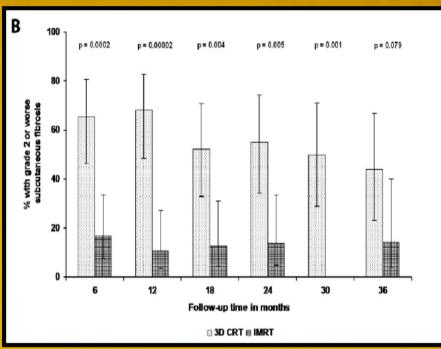
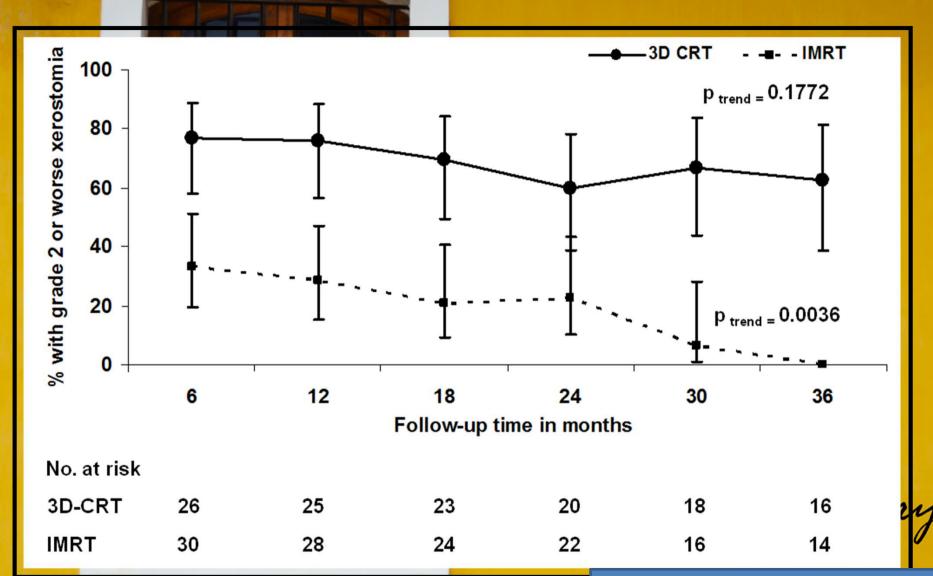
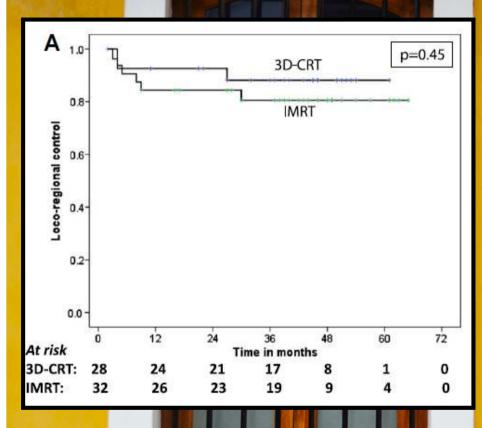

Tejpal Gupta, Radiotherapy Oncol

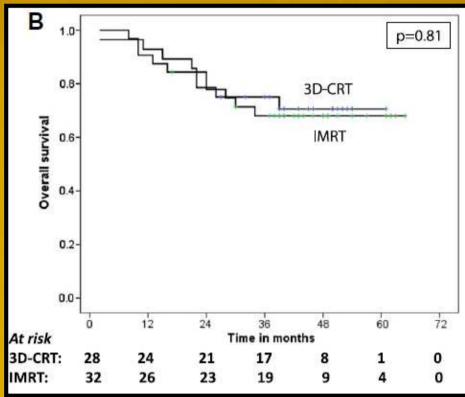
Table 2
Comparison of acute toxicity of radiotherapy between the two arms.

Toxicity	3D-CRT (n = 28)	IMRT $(n = 32)$	p-Value
Acute salivary toxicity			
Grade 0	0 (0%)	1 (3%)	
Grade 1	3 (11%)	12 (38%)	
Grade 2	25 (89%)	19 (59%)	0.03
Acute dermatitis			
Grade 1	1 (3.5%)	2 (6%)	
Grade 2	22 (78.5%)	28 (88%)	
Grade 3	5 (18%)	2 (6%)	0.35
Acute mucositis			
Grade 1	2 (7%)	7 (22%)	
Grade 2	22 (78.5%)	23 (71%)	
Grade 3	4 (14.5%)	2 (6%)	0.20
Acute dysphagia			
Grade 0	1 (3.5%)	1 (3%)	
Grade 1	7 (25%)	12 (37.5%)	
Grade 2	20 (71.5%)	16 (50%)	
Grade 3	0 (0%)	3 (9.5%)	0.21
Weight loss			
No weight loss	2 (7%)	3 (9.5%)	
<10% weight loss	16 (57%)	24 (75%)	
≥10% weight loss	10 (36%)	5 (15.5%)	0.2

cherry

Comparison of late toxicity


Fig. 3. Proportion of patients with grade 2 or worse late xerostomia (A) and subcutaneous fibrosis (B) in either arm at pre-specified intervals (error bars represent 95% CIs). Note the statistically significant p-value favoring IMRT at all time points.

Recovery of salivary function over time

No difference in disease outcomes

Median FU: 40 months (IQR = 26-50 months)

Fig. 4. Kaplan-Meier estimates of loco-regional control (A) and overall survival (B) by randomization arm.

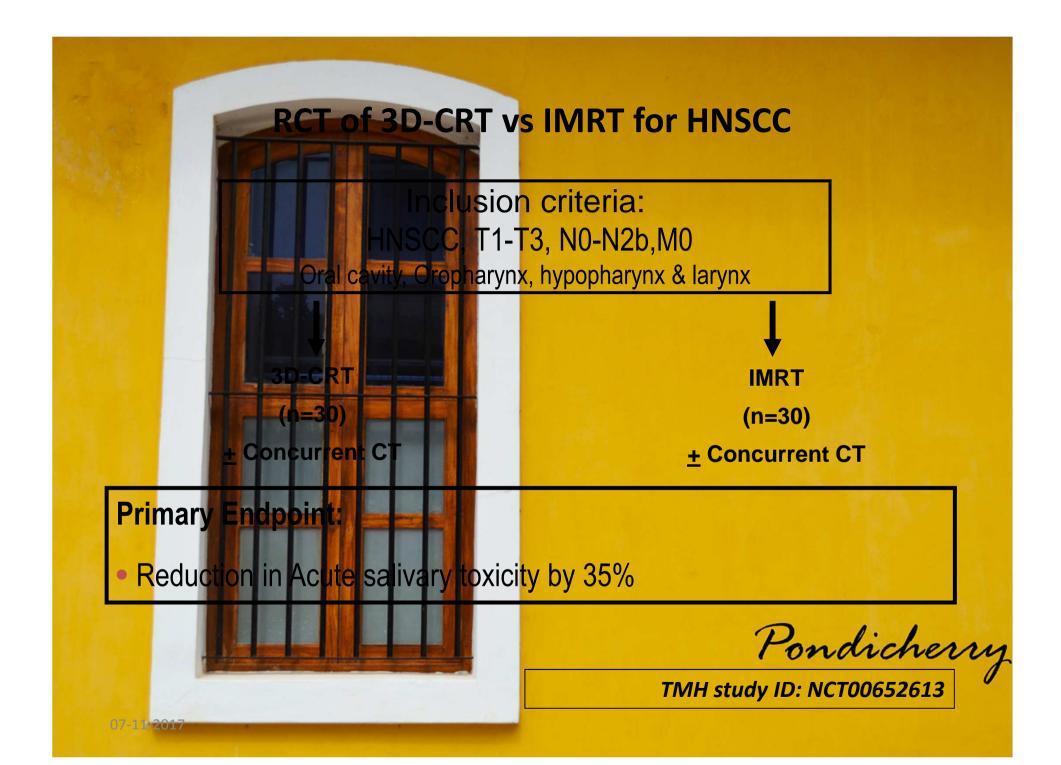
07-11-2017

Tejpal Gupta, Radiotherapy Oncol

Contents lists available at SciVerse ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

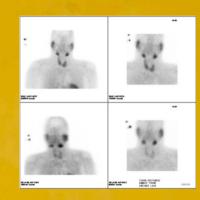

Phase III randomised trial

Three-dimensional conformal radiotherapy (3D-CRT) versus intensity modulated radiation therapy (IMRT) in squamous cell carcinoma of the head and neck: A randomized controlled trial *

Tejpal Gupta^{a,*}, JaiPrakash Agarwal^b, Sandeep Jain^a, Reena Phurailatpam^a, Sadhana Kannan^a, Sarbani Ghosh-Laskar^b, Vedang Murthy^a, Ashwini Budrukkar^b, Ketayun Dinshaw^b, Kumar Prabhash^b, Pankaj Chaturvedi^b, Anil D'Cruz^b

Conclusion: IMRT significantly reduces the incidence and severity of xerostomia compared to 3D-CRT in curative-intent irradiation of HNSCC.

^a Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India; ^b Tata Memorial Hospital (TMH), Tata Memorial Centre, Navi Mumbai, India

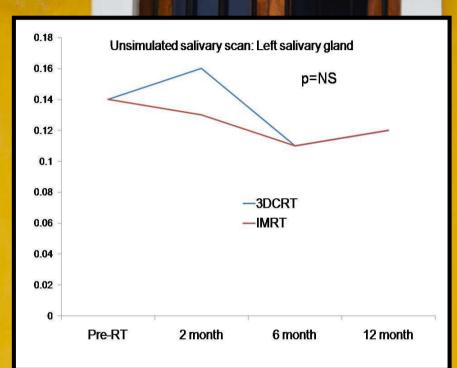

Salivary Function

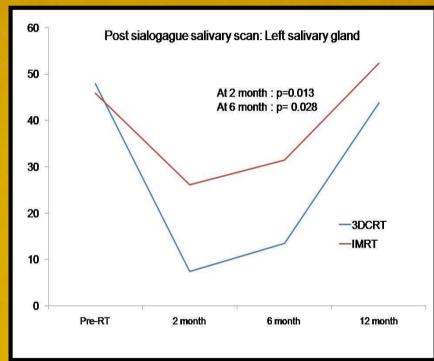
Methods used:

- Xerostomia related QQL analysis: EORTC QLQ H&N35
- Sialometry
- Salivary Scintigraphy

Estimation done:

At pre-RT, 2, 6, 12 months and then yearly evaluation

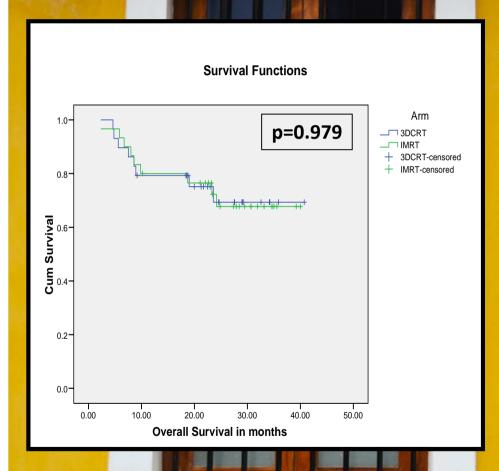



Analysis done:

- Estimation of salivary function by scintigraphy (stimulated & unstimulated)
- Correlation of dose & salivary function
- Correlation of QOL and salivary scan findings

Pondicherry

Impact of RT technique on salivary function: contralateral parotid gland



No significant difference in unstimulated salivary function.

Significant preservation of post-sialogogue function with which expenses the salivary function with the salivary function.

Ghosh-Laskar et al (unpublished data)

No difference in overall survival

	Deaths by arm					
	3D-CRT (N=30)	IMRT (N=30)				
Oropharynx	5	6				
Larynx	1	1				
Hypopharynx	2	2				
Total Deaths (n)	8	9				

Median FU: 23.4 months

Range: 2-40 months

Pondicherry
Ghosh-Laskar et al Head Neck 2015

Meta-analysis on IMRT in HNC

Acute >grade 2 xerostomia

-		100					
	IMR1	Γ	2D/3D-	RT		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.1.1 2D-RT vs IMRT							
Kam 2007	13	28	24	28	14.0%	0.54 [0.35, 0.83]	
Nutting 2011	29	38	33	38	18.7%	0.88 [0.71, 1.09]	+
Peng 2012	86	306	178	310	18.9%	0.49 [0.40, 0.60]	-
Pow 2006	19	24	18	21	17.5%	0.92 [0.71, 1.21]	<u>+</u>
Subtotal (95% CI)		396		397	69.1%	0.69 [0.46, 1.03]	•
Total events	147		253				
Heterogeneity: Tau² = 0.1	15; Chi ² =	: 28.71	, df = 3 (P	' < 0.00	001); l ^z =	90%	
Test for overall effect: Z =	= 1.84 (P	= 0.07)					
1.1.2 3D-RT vs IMRT							
Ghosh (unpublished)	15	30	23	30	14.4%	0.65 [0.43, 0.98]	
Gupta 2012	19	32	25	28	16.5%	0.67 [0.49, 0.91]	<u> </u>
Subtotal (95% CI)		62		58	30.9%	0.66 [0.51, 0.85]	▼
Total events	34		48				
Heterogeneity: Tau² = 0.1	00; Chi ² =	0.01,	df=1 (P=	= 0.94);	$I^2 = 0\%$		
Test for overall effect: Z =	= 3.27 (P	= 0.001	I)				
T-4-1 (05% CI)		450		455	400.00	0.0010.50.0.001	<u> </u>
Total (95% CI)		458		455	100.0%	0.68 [0.52, 0.89]	▼
Total events	181		301				
Heterogeneity: Tau² = 0.1	-			' < 0.00	$[01); I^2 = 8$	32% F	0.01 0.1 1 10 100
Test for overall effect: Z =	•		•			-	vours experimental Favours control
Test for subgroup differe	ences: No	ot appli	cable				

Overall significant reduction in acute grade 2 or worse xerostomia

Late ≥grade 2 xerostomia

	IMRT 21		T 2D/3D-RT			Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI	
1.2.1 2D-RT vs IMRT								
Kam 2007	11	28	23	28	15.4%	0.48 [0.29, 0.78]		
Nutting 2011	15	39	25	34	18.6%	0.52 [0.34, 0.82]	-	
Peng 2012	29	306	92	310	24.3%	0.32 [0.22, 0.47]	-	
Pow 2006	12	24	20	21	21.6%	0.53 [0.35, 0.79]	<u> </u>	
Subtotal (95% CI)		397		393	79.8%	0.45 [0.34, 0.59]	•	
Total events	67		160					
Heterogeneity: Tau² = 0.	-	-	-	= 0.19)	; I² = 37%			
Test for overall effect: Z:	= 5.81 (P	< 0.000	001)					
1.2.2 3D-RT vs IMRT								
Ghosh (unpublished)	9	25	15		10.4%	0.55 [0.30, 1.01]		
Gupta 2012	8	26	18	24	9.8%	0.41 [0.22, 0.76]	-	
Subtotal (95% CI)		51		47	20.2%	0.48 [0.31, 0.74]	•	
Total events	17		33					
Heterogeneity: Tau ² = 0.			•	= 0.50)	; I² = 0%			
Test for overall effect: Z:	= 3.35 (P	= 0.000	38)					
Total (95% CI)		448		440	100.0%	0.45 [0.37, 0.55]	•	
Total events	84		193			,,	·	
Heterogeneity: Tau² = 0.		5.24.		= 0.39)	= 5%			
Test for overall effect: Z:				,		0.01 0.1 1 10 100		
	Test for overall effect. Z = 7.94 (F < 0.00001) Test for subgroup differences: Not applicable Favours experimental Favours control							
1001 to an alload allier	J., 140	, appli	V 4010				FRANCIA CA CA	

Unequivocal and consistent evidence of reduced late xerostomia with IMRT

07-11-2017

Loco-regional control

7 15		100					
	IMRT 2D/3D-RT					Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.3.1 Nasopharynx							
Kam 2007	1	28	1	28	4.5%	1.00 [0.06, 16.82]	
Peng 2012	28	306	49	310	29.8%	0.54 [0.33, 0.88]	-
Pow 2006	4	42	12	40	15.5%	0.25 [0.07, 0.84]	-
Subtotal (95% CI)		376		378	49.8%	0.49 [0.31, 0.77]	•
Total events	33		62				
Heterogeneity: Tau ² = 0	.00; Chi² =	1.58,	df = 2 (P :	= 0.45)	; I² = 0%		
Test for overall effect: Z	= 3.08 (P	= 0.003	2)				
1.3.2 Laryngo-pharynx							
Ghosh (unpublished)	8	30	10	30	17.4%	0.73 [0.24, 2.21]	
Gupta 2012	8	32	4	28	14.2%	2.00 [0.53, 7.54]	
Nutting 2011	12	47	7	47	18.6%	1.96 [0.69, 5.52]	 •
Subtotal (95% CI)		109		105	50.2%	1.39 [0.72, 2.69]	-
Total events	28		21				
Heterogeneity: Tau² = 0	.00; Chi * =	2.02,	df = 2 (P :	= 0.36)	; I² = 1%		
Test for overall effect: Z	= 0.98 (P)	= 0.33))				
Total (95% CI)		485		402	100.0%	0.79 [0.42, 1.50]	
· · ·	0.4	400		403	100.070	0.79 [0.42, 1.50]	
Total events	61	4040	83		N. 17 . 540		
Heterogeneity: Tau ² = 0	•			' = U.U <i>T</i>); i= 519	0.0	01 0.1 1 10 100
Test for overall effect: Z		-				Favo	urs experimental Favours control
Test for subgroup differ	ences: No	ot appli	cable				
		Alle			100		Pondicher
							. 0,0000,000

Overall survival

					-		
	IMR	Γ	2D/3D-	RT		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.4.1 Nasopharynx							
Peng 2012	62	306	99	310	71.3%	0.54 [0.38, 0.78]	-
Subtotal (95% CI)		306		310	71.3%	0.54 [0.38, 0.78]	•
Total events	62		99			• , •	
Heterogeneity: Not appli							
Test for overall effect: Z =		_ 0.001	D.				
restion overall effect. Z -	- J.ZO (F	- 0.00	'/				
1.4.2 Laryngo-pharynx							
	_		_				
Ghosh (unpublished)	9	30	8	30	7.6%	1.18 [0.38, 3.63]	
Gupta 2012	10	32	9	28	8.1%	0.96 [0.32, 2.85]	
Nutting 2011	14	47	18	47	13.0%	0.68 [0.29, 1.61]	
Subtotal (95% CI)		109		105	28.7%	0.87 [0.49, 1.55]	•
Total events	33		35				
Heterogeneity: Tau ² = 0.1	00: Chi³≡	. በ 61		= 0.74\r	12 = 0.96		
Test for overall effect: Z=	•			- 0.1 4/,	1 - 070		
Test for overall effect. 2 -	- 0.40 (1	- 0.03)					
Total (95% CI)		415		415	100.0%	0.62 [0.45, 0.85]	•
· · · · ·	95		124		.001010	5.52 [5.15, 5.65]	•
Total events		0.11	134	0.46%	13 0.07		
Heterogeneity: Tau ² = 0.	•			= 0.49);	11= 0%		0.01 0.1 1 10 100
Test for overall effect: Z =	= 3.02 (P	= 0.003	3)			F	avours experimental Favours control
Test for subgroup differe	ences: No	ot appli	cable			<u>'</u>	areare experimental Taroare control

Overall survival better with IMRT (more so in nasopharyngeal cancers)

Largely driven by results of the large nasopharynx trial

rry

Quality-of-life

- 1. QOL results formally reported in only 3 of the 6 RCTs
- 2. Different instruments used in different studies (SF36, EORTC, XQ)
- 3. Difficult to pool & meta-analyze such data
- 4. Global QOL not significantly different between 2D/3D-RT and IMRT
- 5. Most QOL domains either better or similar to conventional RT
- 6. Only fatigue was worse with IMRT (as reported in PARSPORT)
- 7. Xerostomia-specific QOL better preserved with IMRT in all 3 studies
- 8. Patient-reported outcomes & QOL worse than physician-rated outcomes

Which is the best system for Head-Neck IMRT?

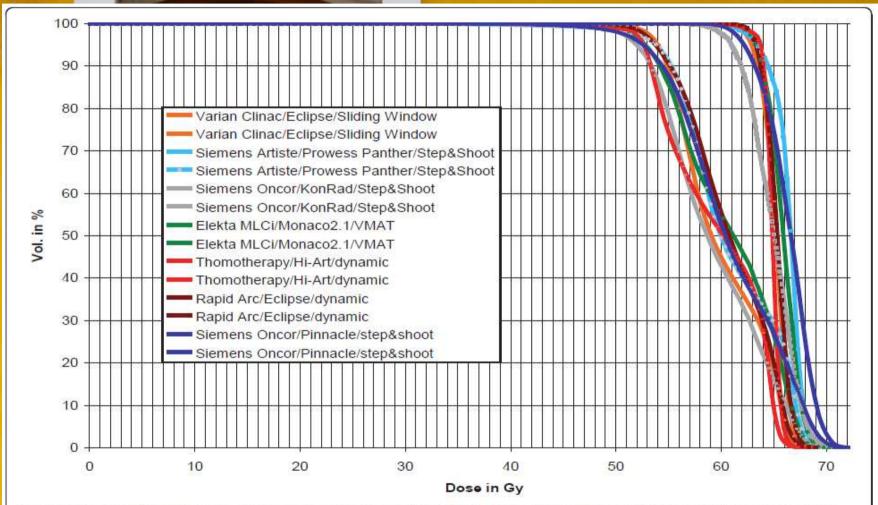


Figure 1 The prescribed doses are 55.8 Gy to the low dose region and 65.1Gy to the high dose region. The PTV2 is a subset of PTV1.

Is there any 'impact' of IMRT on QOL?

Study	Mean parotid dose in gray (Gy)			Benefit from I	Benefit from IMRT			
	IMRT		RT	Xerosto mia	Functional	Qol			
			Conventional	Conformal					
Pow [15] Mean (SD; range)	Ipsilateral Contralateral	42 Gy (4.7; 31.3-51.2) 41.3 Gy (5.4; 33.1-51.8)	n.a	20	2	Yes	No		
Vergeer [17]	Ipsilateral	28.7 Gy (11.9)	Bilateral	-	Yes	Yes	Yes		
Mean (SD)	Contralateral	23.3 Gy (11.2)	43.0 Gy				11100000		
Jabbari [11]	Ipsilateral	50 Gy (38.7-67.8)	Bilateral	-	Yesa	20	Yes		
Mean (Range)	Contralateral	21.8 Gy (14-35.5)	55.0 Gy		-7.77		- 22		
Fang [9]	n.a		n.a	na	_	Yes ^b	Ye		
Fang [8]	Right	47.64 Gy (23.42-63.55)	_	Bilateral	-	No ^c	No		
Mean (Range)	Left	46.84 Gy (21.44-64.37)		60.0 Gy					
	Bilateral	33.7 Gy		0.000					
	Mean dose < 30 Gy:								
Graff [10] Mean	For one or both parotids in 6 For both parotids in 23.8% of Mean dose < 26 Gy:	f patients	n.a	-	¥	Yes	No		
	For one or both parotids in 3								
McMillan [13]	Right	38.4 Gy (29.6-46.1)		-	2	-	-		
Mean (range)	Left	40.4 Gy (29.7-53.4)							
Scrimger [16]	Total Parotid Volume	27.1 Gy (16.5)	-	-	-	-	1		
Mean (SD)	Spared Parotid Volume	18.4 Gy (10.5)							
Lin [12]	n,a			2	~		_		
Parliament [14] Mean (Range)	Right spared parotid volume Left spared parotid volume Total Parotid Volume	22.8 Gy (17.8–27.8) 20.9 Gy (17.9–24) 30.0 Gy (26.9–33.1)		-	-	-	-		
Nutting [ASCO 2009] Mean	Ipsilateral Contralateral	45 Gy 26 Gy	Ipsilateral 60 Gy Contralateral 60 Gy	7.	Yes		n.a		

Scott-Brown M et al, Radiother Oncol 2010

The Role of IMRT in Head & Neck Cancer: Guideline Recommendations

B. O'Sullivan, R.B. Rumble, P. Warde, and members of the IMRT Indications Expert Panel

RECOMMENDATIONS AND KEY EVIDENCE

If the reduction of xerostomia and improved quality of life are the main outcomes of interest, then IMRT is the recommended treatment for all nasopharyngeal, oropharyngeal, hypopharyngeal, laryngeal, oral cavity, and unknown primary cancers where lymph node regions requiring inclusion in the treatment volume would result in irreparable damage to salivary function if 2D EBRT or 3D EBRT were used due to their inability to maintain salivary doses within their tolerance limits (<26 Gy mean dose). The data provided are applicable to locally advanced disease but are equally applicable to early-stage disease and rare sites (e.g. salivary gland tumours) requiring RT that would otherwise damage these normal structures. In addition, these principles hold for skin malignancy where advantages in sparing normal tissue while achieving target coverage are also relevant.

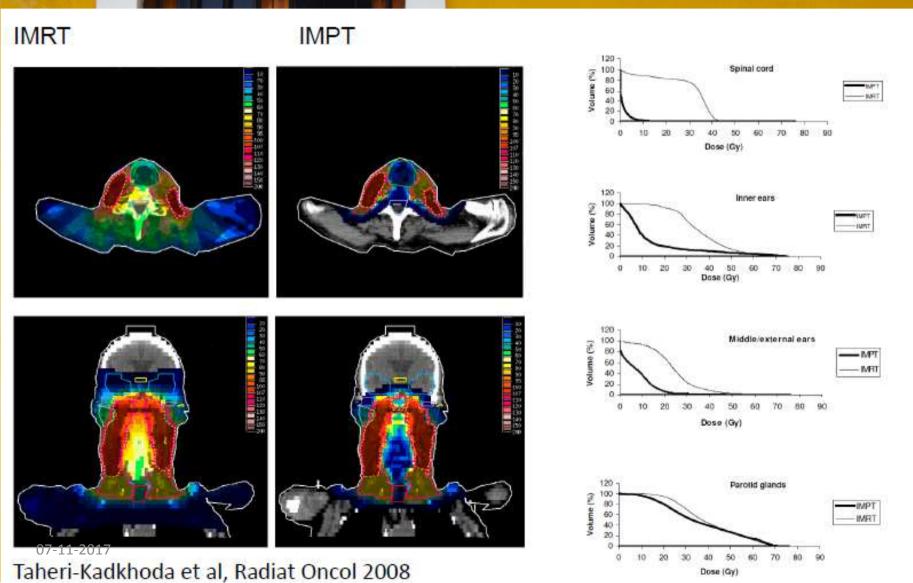
If treatment-related outcomes (local control, overall survival) are the main outcomes of interest, there are no randomized data to support or refute a recommendation of IMRT over 2D EBRT or 3D EBRT in any head and neck site. However, NPC should ordinarily be treated with IMRT based on treatment-related outcomes as should nasal and paranasal sinus cancer.

ry

Report Date: January 12, 2011

Summary interpretation

- IMRT significantly reduces incidence of ≥grade 2 xerostomia (both acute & late)
- 2. Benefit is more pronounced and consistent for late xerostomia (1-year)
- 3. Benefit is regardless of the site or technique of conventional radiotherapy
- 4. Significant reduction in xerostomia does not translate into better global QOL
- 5. However, xerostomia-related domains better preserved or recovered with IMRT
- 6. IMRT may not improve locg-regional control compared to 2D/3D-RT
- 7. Improvement in loco-regional control & survival maybe dependent upon site
- 8. Patients with nasopharyngeal cancers stand to benefit most with IMRT
- 9. IMRT likely to be more cost-effective than 2D/3D-RT (cost Recondisastery


Proton therapy

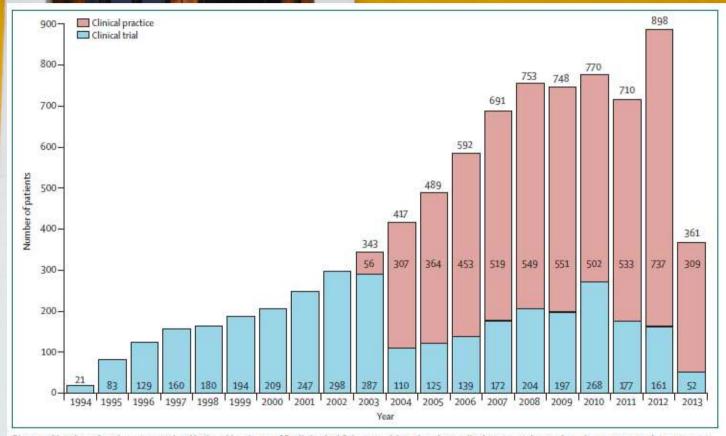
Study	N Sit	e Treatment	Outcome	Toxicity	Conclusion
Oropharynx Slater et al (2005) prospective, nonrandomized	29 Stage II/IV oropharyr cancer	Accelerated proton- igeal photon RT 75.9 CGE in 45 fractions.	5-y LRC 84% 5-y DFS 65%	Aggressive nutritional and anesthetic support needed, 3 patients with late grade 3 toxicity.	Protons used as concomitant boost with photons allows for an accelerated treatment with more tolerable toxicity profile
Other head and neck si					
Zenda et al (2011), prospective nonrandomized	14 Mucosal me of head a	A CONTRACTOR OF THE PROPERTY O	3-y LC 86% 3-y OS 58%	21% had grade 3 acute mucositis, 2 patients had decreased visual acuity	
Tokuuye et al (2004), retrospective review	33 Head and ne cancers, n resected		5-y LC 74% 5-y PFS 29% 5-y OS 44%	18% treatment-related acute and late toxicity >grade 3	PBR offers high control rates compared with conventional in unresectable head and neck cancer, but late toxicities were seen in high-dose areas perhaps because of large fraction size

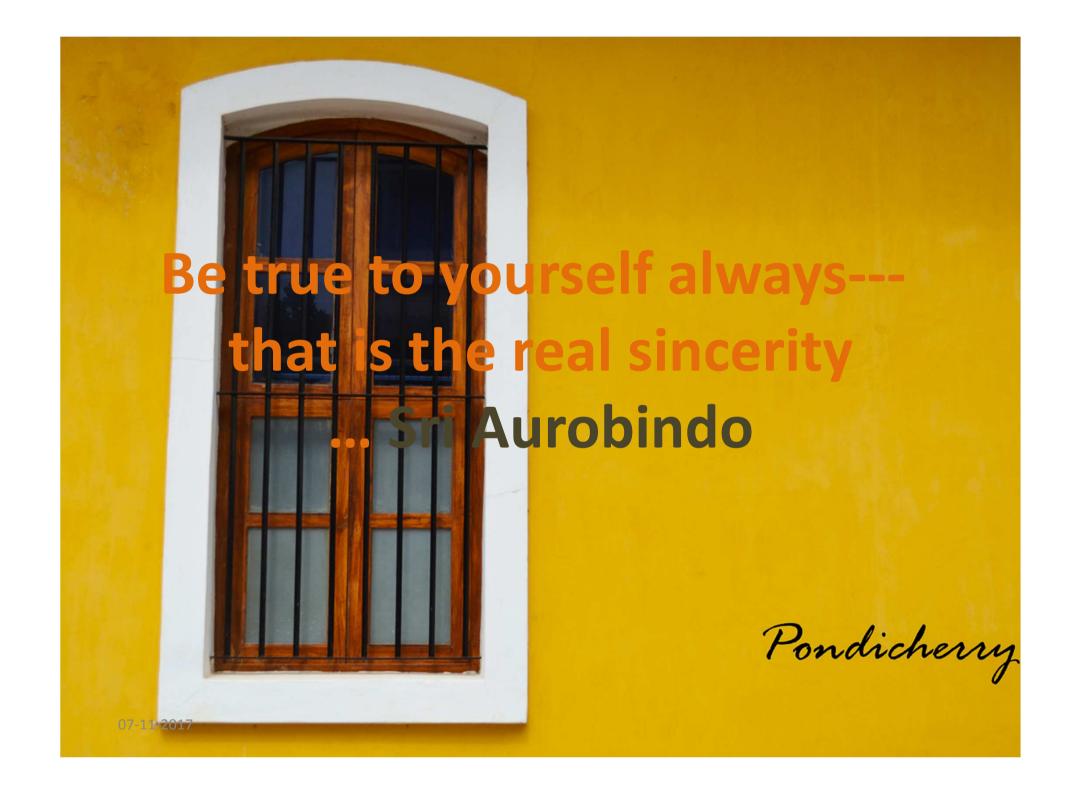
Abbreviations: BID = twice daily; CGE = cobalt-Gray-equivalent; cis-etop = cisplatin-etoposide; CNS = central nervous system; CR = complete response; CSF = cerebrospinal fluid; CSS = chordoma-specific survival; DFS = disease-free survival; DM = distant metastasis; DVH = dose-volume histogram; EBRT = external beam radiation therapy; Gy = Gray; IMPT = intensity modulated proton therapy; LC = local control; MRI = magnetic resonance imaging; OS = overall survival; PBR = proton beam radiation; PFS = progression-free survival; RT = radiation therapy.

y

Proton (IMPT)

eavy ion therapy




Figure 2: Number of patients treated at National Institute of Radiological Sciences with carbon ion radiotherapy each year from June, 1994, to August, 2013

Pondicherry

Mostly used for mucosal melanoma and adenoid cystic carcinoma.

Take home message

- Efficacy RT-CH > RT alone.
- Efficacy of H F or AF > RT alone.
- Efficacy of EGFR inh-RT> RT alone.
- Efficacy of EGFR inh-RT-CH < RT-CH.
- Efficacy Ind-CH+RT (in responders)= TL+RT
- Efficacy of Ind CH(TPF)> Ind-CH (PF)
- Efficacy Ind CH+RT-CH= RT-CT (except Npx)
- Early and late Tox RT+...> RT alone. Pondicherry

Pondicherry