Landmark trials on advanced technology for cervical cancer

Dr Manur Gururajachar Janaki Ramaiah Medical College Bengaluru 6th August 2017

Learning objectives

- To list the available trials on advanced technology
- To identify the limitations of conventional radiation
- To list the benefits of advanced technology
 - To define the selected role of advanced technology for cervical cancer

man sochano...

More than one lakh women are diagnosed with cervical cancer every year

More than 90% of newly diagnosed patients require radiotherapy

Huge burden of patients per machine and unequal distribution of facilities

Only 25% of Indian population are medically insured

Cost of the 3DCRT treatment is 40% more than that of 2DCRT but still 40% less than that of IMRT

Brachytherapy contributes to the success of radiotherapy for cervical cancer

Standard treatment ...

Concurrent chemoradiation with CDDP infusion... followed by ICBT/ISBT

Mostly 3 DCRT and wherever not available conventional four field technique..

outcome with standard treatment

- Control: 69-78 %
 - Acute GI,gr III-IV:7-16%,49%,81% for pelvic,extended pelvic and adding chemo..RTOG 0116
- Acute haemat..76%
- Acute GU...17%
- Chronic proctitis & cystitis...gr III & IV upto 40% with chemo

Landmark data...

Ana Fernandes-Ots et al. The role of IMRT in Gynaec cancer. Present and Future : RPOR: 18 (2013). 363-370.

comprehensive review

vervical cancer....

- Loiselle et al, The emerging role of IMRT for treatment of cervical cancer: Jou of NCCN:2010:8(12), 1426-34
 O dosimetric evolutionstill in the nascent stage
- IntERTECC over 20 institutes from all over the world, Survey of IMRT practice, Red Jou 81,2S 2011
 O Half of the participants saw only <50 cases a year
 O Majority used IMRT in the last 5 years.

Landmark trials mainly dosimetric....

- Roeske et al. IMRT in patients with gynecologic malignancies. Red Jou 2000;48(5):1613–21.
 O Small bowel
- Mell LK et al. Dosimetric comparison of bone marrow-sparing IMRT vs conformal for cervical cancer. Red Jou 2008;71(5):1504–10.
 O Marrow
- Simpson DR et al. NTCP analysis of acute GI toxicity in cervical cancer undergoing IMRT and CDDP. REd Jou 2012;83(1):e81–6
 O GI toxicity
- Daniel et al, Red Jou,74,2,2009
 O SCR estimation

Bowel	V100	reduced by 50 %
Bladder	V100	reduced by 23 %
Rectum (as an IMRT Boost)	V66	reduced by 22%
Bladder (as an IMRT Boost)	V66	reduced by 19%
Bone marrow (BMS IMRT vs 3DCRT vs AP/PA)	V20	72 vs 97.8 vs 99 % (lesser gr 3 & 4 toxicity)

O Simpson et al suggested that a decrease in V45 bowel by 100 CC reduces the gr 2 toxicity by 50 %
O Mell suggested vol of marrow receiving 10-20 Gy predicts haematological toxicity

Bowel sparing....

Femora...spared

30 Gy sparing iliac crest and 45 Gy colour wash showing adequate coverage with sparing the marrow..

Ramaiah data....Avinash et al

	2DCRT (A) Median	3DCRT (B) Median	IMRT (C) Median	*n value	Statistical Significance (p value)#			
	%	%	%	prenac	(A) - (B)	(A) - (C)	(B) - (C)	
	(IQR)	(IQR)	(IQR)					
V40Gy (%)	98.7	91.2	69.9	<0.001	0.078	<0.001	<0.001	
Bladder	(14.3)	(12.2)	(19.8)			1 and the second		
V40Gy (%)	87.3	100	99.2	<0.001	<0.001	0.477	0.012	
Rectum	(11.7)	(0.8)	(15.3)					
V40Gy (%)	20.05	28.9	22.6	<0.001	<0.001	0.132	<0.001	
Bowel Bag	(14.4)	(20.3)	(12.6)				State of the second	
V20Gy (%)	84.6	93.0	72.04	<0.001	<0.001	<0.001	<0.001	
Bone marrow	(4.8)	(5.7)	(4.5)					
V40GY (%)	68.4	41.0	15.0	<0.001	<0.001	<0.001	0.001	
Left Femur	(13.7)	(19.0)	(12.4)					
V40GY (%)	63.7	35.9	13.5	<0.001	<0.001	<0.001	0.001	
Right Femur	(16.6)	(26.5)	(10.4)					

Table 2: Dose Volume Parameters of Bladder, Rectum, BowelBag, Femur and Bone Marrow in 2DCRT, 3DCRT and IMRTTreatment plans.

*p value indicates the p value from Friedman test

#p value from post hoc Wilcoxon signed rank test after adjusting for multiple comparisons using Bonferroni adjustment

Landmark trials of dosimetric and clinical...

- Mundt et al. IMRT for gynecologic malignancies.Red jou.2002;52(5):1330–7.
 O Bowel toxicity
- EA Kidd etal, PET simulated IMRT, Red Journal, Volume 77, Number 4, 2010,1085-1091.
 - Change in institutional policy
 - O dose escalation, bowel toxicity
- Chen MF et al. Adjuvant concurrent chemoradiotherapy with IMRT after surgery for high-risk, early stage cervical cancer patients. Cancer J 2008;14:200–206.(54 pts)
- Klopp et al. Pt reported QOL Red Jou,2016,96,S3
- Loren et al.INTERTECC 2,Red Jou.2017::97.3.

Results...

GU gr ll	IMRT vs 4 field	reduced from 91 to 60 %
Chronic GI	IMRT vs 4 field	reduced from 20 to 3 %
Hematological (gr III)	IMRT vs 3 DCRT	24 % for pelvic 28 % for para aortic (similar)

Better sparing of bowel, bladder, rectum, bone marrow (especially as CDDP is also given)Probably translates to a better QOL

IMRT in terms of bone marrow sparing...

- InterTECC $2 \ge$ gr III neutropenia 19.3% vs 40 % (historical comparison), improved QOL at 4 mths
- Korean retrospective study..anaemia (21 vs 40 % and gr I and II 56 vs 79 % for IMRT and conventional respectively)

•

•

Brixley..No significant sparing of iliac crest for doses > 30 Gy

Studied gr II-IV...however gr II is really not worrisome

Landinant thats for chicacy.

No randomised trials...Most are for adjuvant setting..

- Hasselle et al,Red Jou,Clinical outcome of IMRT for cervical cancer,2011:80:1436-1445.
- Zhang G et al. Extended-field IMRT and CDDP for postop cervical cancer with common iliac or para-aortic lymph node metastases: a retrospective review in a single institution. Int J Gynecol Cancer 2012;22(7):1220–5.
- Chen MF et al. Clinical outcome in postop cervical cancer patients treated with CT IMRT: comparison with conventional radiotherapy. Int J Radiat Oncol Biol Phys 2007;67(5):1438–44.
- Chen CC et al. Definitive IMRT/Chemo for locally advanced cervical cancer. Gynecol Oncol 2011;122(1):9–13.

Results....

- No difference compared to 3DCRT as far as local failure, OS and DFS goes.
- Higher distant failure with IMRT...up to 27 %

Suggestion...

- With lesser toxicity, similar outcome, higher distant failure...is there a place for more chemo?
- Molecular biology?

Landmark trials for planning....

- Lim K et al. Consensus guidelines for delineation of CTV for IMRT for the definitive treatment of cervix cancer. Red Jou. 2011;79(2):348–55
- Taylor A et al. Uterine and cervical motion: Implications for radiotherapy target volume definition in gynaecological cancer. Green jou. 2008;88(2):250–7
- Gordon JJ et al. The effect of uterine motion and uterine margins on target and normal tissue doses in IMRT of cervical cancer. Phys Med Biol 2011;56(10):2887–901

Better coverage...

around 62 % coverage superiorly and 49 % posteriorly with conventional Mundt et al...>110 % by 10% of PTV and >115% by 0.2 % Vs 4 field

Better coverage of PTV /dose escalation

undercoverage....of PTV

Ramaiah data....Avinash et al

PTV Coverage	TV Coverage		*n valua	Statistical significance(p			
(%)	2DCRT (A)	3DCRT (B)	IMRT (C)	·p value	(A)-(B)	(A)-(C)	(B)-(C)
					1 / 1 /		
Min-Max	73.10-90.10	98.60-100.00	96.60-100.00				
	(%)	(%)	(%)				
Median (IQR)	82.2%	99.9%	99.3%				
	(9.6)	(0.7)	(1.1)	<0.001	<0.001	<0.001	0.018
Table 1: PTV (Planned Target volume) coverage in 2DCRT, 3DCRT and IMRT.							

*p value indicates the p value from Friedman test

#p value from post hoc Wilcoxon signed rank test after adjusting for multiple comparisons using Bonferroni adjustment

Nesalis...comouning

- Agreement as far as cervix, uterus and nodes are considered.
- No agreement as far as margins, para, vaginal length, dose to OARs and acceptable homogeneity are considered.
- Taylor..uterus moves more than cervix (MRI based)

Suggestion...

- O GTV to CTV 1.5-2 Cm, CTV to PTV 0.7 cm with soft tissue verification on all days.
- O Best is to have empty rectum and full bladder on all days

Large tu shrinkage...

• Chen et al, Red Jou vol 87,2S 2013

O repeat CT scan at mid treatment

O Reduction in size by 42 %

Suggestion... Needs to be replanned

Risk of second cancer...

- Hall EJ, Wuu CS. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 2003;56(1):83–8. 36.
- Hall EJ. Intensity-modulated radiation therapy protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 2006;65(1):1–7
- Daniel et al,Second cancer risk estimation.Red Jou,74,2,2009.

Smaller area of high dose and larger area of smaller dose...

(common in large areas of smaller dose than small areas of larger dose)

dosimetric,CT based estimation

- Effective dose X tissue weighting factor, models for risk calculation
- Compared 3DCRT(4 beams), IM 6 MV(9 beams) and IM 18 MV(9 beams)- kept upper and lower borders same
- 0%,2% and 12 % for 3DCRT,6 MV and 18 MV respectively
- Large volume, higher MU,head leakage,collimator scatter,secondary neutrons (>10 MV)

Although theoretical, possibility is still there, everything needs to be looked into and weighed against the expected benefit.

Can IMRT Replace Brachy ?

Wahab et al et al, AGIMRT (Applicator guided IMRT), dosimetric, mean percent tumor volume getting the prescription dose was higher for the AGIMRT (90 vs 58, p = 0.005)
 conceptual advantages?

Roeske, Mundt et al...

 only upto 77-80 Gy can be delivered with IMRT, with increased rectal toxicity

IMRT vs Brachy....

DVH....

Other aspects of planning...

- Simulation related...not possible in prone and with immobilization, frog leg position..
- Longer time, higher MU
- Problems of inverse planning Vs human planner
- Stringent QA/expertise/cost
- Relatively lesser dose from EBRT (mostly from brachy)

used...

- . Postop
- gross nodes pelvic & para aortic
- cases medically unfit for brachy
- Vault ca
- . IBS
- residual and recurrent

Post op

Portelance L et al. Post-op IMRT with chemotherapy for patients with cervical Carcinoma/RTOG 0418 phase II study. Red jou. 2009;75(3):S640–1.

Extended field

Small Jr W et al. EF RT and ICBT with cisplatin and amifostine for cervical cancer with positive lymph nodes: results of arm II of (RTOG) 0116. Int J Gynecol Cancer 2011;21(7):1266–75.

Pelvic nodal boost.....

Previously treated

University of Chicago...

•

	IMRT	Conventional	P value
Gr II enteritis	60%	91 %	0.002
Gr I	34%	75%	0.001
Rarely needed medication	75%	35%	0.001
GU gr II	10%	20%	0.22
GI symp at 20 mths F/u	11.1%	50%	
≥Gr II haematological	31%	60%	

Dose escalation....MD Anderson...

For gross nodes..

Pelvic nodes upto 64 Gy, 2.2 Gy/Fr,50 Gy to microscopic disease

FDG-avid

Para aortic upto 70 Gv 5 years NED FDG-avid lymph nodes

3DCRT vs IMRT....

Going forward...

- Sagae,Small et al.Advances & concepts in cervical cancer trials.A roadmap for the future. Int Jou Gynae Ca 2016,26(1):199-207
- GCIG ... Gynaec cancer Inter Group formation from all over the world
- Collaborate, identify the problems, fund, QA and do trials in next 2-3 years.

Ongoing...

NCI 10-269,LN +ve cervical cancer,

Protons/3 DCRT/IMRT

Side effects,QOL,Survival

To Sum Up...

- Trials with longer follow up are slowly coming up
- Dosimetric studies have shown theoretical benefits
- Clinical benefits in terms of reduced enteritis are apparent
- NOT A SUBSTITUTE for brachytherapy
- Beneficial in selected cases.. Postop, gross nodes, para aortic, cases medically unfit for brachy, Vault ca, IBS, residual and recurrent lesions

whenever IMRT is done . . .

- Make sure your QA is precise
- use adequate margins
- Respect the OARs, evaluate the plan

systematically

• If margins are inadequate, do IGRT on all days

Learning objectives

- To list the available trials on advanced technology
- To identify the limitations of conventional radiation
- To list the benefits of advanced technology
 - To define the selected role of advanced technology for cervical cancer

Any queries???