Radiobiology and Prognostic factors in Genito Urinary Malignancies

Prof Manoj Gupta IGMC, Shimla 23rd April, 2017

Prognostic Factor

Practically, prognostic markers predict "the natural course of an individual cancer, distinguishing *good outcome* tumors from *poor outcome* tumors, and they guide the decision of whom to treat and/or how aggressively treated"

Predictive Factor

Predictive markers are molecules that "provide upfront information as to whether or not a patient is likely to benefit from a specific therapy" [Duffy

PROSTATE CANCER

Natural Course of the Disease

Natural Course of the Disease

- Clinically Significant
 - Will cause clinical manifestation
 - Will interfere in the life.
 - Likely to die of cancer
- Clinically Insignificant
 - Will not interfere in life
 - Likely to die with cancer and not of cancer

Challenges of prostate cancer

- Goal: Find *clinically significant* cancer at a point when a cure is possible
- Goal: Avoid excessively aggressive treatment in *clinically insignificant* disease
- Examine prognostic factors of diagnosed disease to predict if it will be significant

Prognostic indicators

- Clinico-pathological.
- Biological
- Proliferative Index

Clinico-pathological

- History and Clinical examinations
- Blood test
- Radiology
- Biopsy
 - PSA
 - Stage
 - Grade
 - #positive biopsy cores
 - %biopsy core positive

This helps us predict what cancer may be *significant vs. insignificant*

Age

- Controversial
- Enough evidence suggest patients with more than 65 years of age are more likely to have distant metastasis at 5 years after radical RT
- Younger patients have better outcome after radical prostatectomy.

Volume

- Debatable.
- Difficult to measure
- Higher volume is associated with capsular invasion, seminal vesicle invasion and nodal metastasis.
- In one of the study after radical prostatectomy, rule of 10% was observed
 - 0.5 cc 10% probability capsule invasion
 - 4cc 10% probability SV Invasion
 - 5cc 10% Probability Dist. Met

Zone of Origin

Peripheral Zone • Tumor arising Central Zone Fibromuscular Str from transitional Transition Zone zone are more Seminal Vesicles likely to have Ejaculatory Ducts favorable Urethra Cross-Section pathological Proximal Urethra features than Distal Urethra tumor arising from peripheral Ejaculatory Ducts zone Sagital View

Gleason Grading Based on two predominant histology.

What Does the Grade of the Tumor Predict?

Grade of a tumor is predictive of its likelihood to spread beyond confines of the prostate, affecting curability.

12% of low-grade tumors (2-4) spread beyond prostate in 10 years 33% of medium-grade tumors (5,6) spread beyond prostate in10 years 61% of high-grade tumors (7-10) spread beyond prostate in 10 years

Gleason Grading

Prostate Cancer Gleason Score		Risk of death in 15 years	
	2 - 4	4 - 7 %	
	5	6 - 11%	
	6	18 - 30%	
	7	42 - 70%	

v 8 - 10

Albertson PC, et al. JAMA 1995; 274: 626-631

60 - 87%

Prostate specific antigen (PSA)

- Protein produced by glandular tissue of prostate
- Present in small but measurable quantities in normal, healthy men
 - "normal" range increases with age
- Elevated PSA suggests
 - Benign hypertrophy
 - Recent ejaculation
 - Prostatitis/infection
 - Prostate cancer

Prostate specific antigen (PSA)

- Normal Range 0-4ng/ml
- Age specific PSA

Age

(years)

Recommended Reference Range for Serum PSA (ng/mL)

40–49	0.0-2.5
50–59	0.0–3.5
60–69	0.0–4.5
70–79	0.0–6.5

Prostate specific antigen (PSA)PSA < 4ng/ml</th>?Safe

2004 Study of men: PSA never above 4ng/ml; no abnormal rectal exam

Percent with prostate cancer

PSA level (ng/ml)

26%		3.1 to 4.0
24%	15% of	2.1 to 3.0
17%	Dationts may	1.1 to 2.0
10%	Fallents may	.6 to 1.0
7 %	have Cancer	less than .5

Sources: Cooner WH, Mosley BR, Rutherford CL Dr. et al. Prostate cancer detection in a clinical urological practice by ultrasonography, digital rectal examination and prostate specific antigen. *J Urol.* 1990;143:1146-52. Cited in Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, et al. Krumholtz JS, Carvalhal GF, Ramos CG, et al. Prostate-specific antigen cutoff of 2.6 ng/mL for prostate cancer screening is associated with favorable pathologic tumor features. *Urology*. 2002;60:469-473.

Prostate specific antigen (PSA)

- PSA > 4 ng/ml ? Always Cancer.
- PSA 4 10 ng/ml 25% will have Prostate ca.
- PSA > 10 ng/ml 50% will have Prostate ca.

Free and total prostate-specific antigen:

Less than 10%

Biopsy indicated

PSA as **Prognostic**

Bone Scans-limited usefulness with PSA<20

"High Risk" Factors for Lymph Node Metastases

Gleason Sum 7, PSA > 10 ng/ml Gleason Sum 6, PSA > 20 ng/ml

These currently utilized "high risk" factors significantly underestimate patients at risk for metastasis.

PSA Velocity

- Rate of rise over time.
- 20% annual increase.
- Absolute increase of 0.75 ng/ml/year.

PSA Velocity Predicts P-Stage, Recurrence & Death

PSA Velocity >2ng/mL significantly associated with:

LN metastases, high stage, high grade, shorter time to recurrence and death Death rate from CaP of 9.2% within 7 years of RP

PSA doubling time (PSADT) as Prognostic factor

www.impactjournals.com/oncoscience

Oncoscience, Vol. 4(1-2), January 2017

Pretreatment prostate specific antigen doubling time as prognostic factor in prostate cancer patients

Gennady M. Zharinov¹, Oleg A. Bogomolov¹, Natalia N. Neklasova¹, Vladimir N. Anisimov²

¹Department of Radiotherapy, The Russian Research Center of Radiology and Surgical Technologies, St. Petersburg, Russia ²Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, St. Petersburg, Russia

Correspondence to: Vladimir N. Anisimov, email: aging@mail.ru

Keywords: prostate-specific antigen, prostate cancer, PSADT, PSA doubling time, education rate

Received: October 27, 2016 Accepted: November 04, 2016 Published: February 24, 2017

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

All Patients

Figure 1: Total survival of local prostate cancer patients dependingon PSADT.

Locally Advanced

gure 2: Total survival of local-advanced prostate cancer patients depending on PSADT.

www.impactjournals.com/oncoscience

Oncoscience, Vol. 4(1-2), January 2017

Metastatic

jure 3: Total survival of generalized (metastatic) prostate cancer patients depending on PSADT.

www.impactjournals.com/oncoscience

Oncoscience, Vol. 4(1-2), January 2017

PSA doubling time (PSADT) as Prognostic factor

Parameters	Number of patients	%	Median PSADT, months (IQR)	p *
Dissemination:				
Local	360	39.4	24.5 (8.0 - 69.7)	
Local-advanced	276	30.3	12.2 (4.3 – 36.6)	
Metastatic	276	30.3	2.4 (1.1 – 7.1)	
Gleason's index:				< 0.00001
< 6	265	36.4	20.8 (7.4 - 63.4)	
7	242	33.2	9.0 (3.0 - 27.3)	
8-10	222	30.5	3.9 (1.3 – 15.4)	
Primary PSA level, ng/ml				
<10.0	193	21.2	36.3 (14.4 – 98.1)	
10.1-30.0	357	39.1	13.2 (4.9 – 39.4)	
30.1-100.0	323	25.4	4.5 (1.9 – 17.5)	
>100.1	130	14.3	1.5 (0.8 – 4.6)	

Table 1: The PSA-doubling time in patients with different rate of prostate cancer dissemination

T Staging

Primary Tumor (T)

Clinical

- TX Primary tumor cannot be assessed
- T0 No evidence of primary tumor
- T1 Clinically inapparent tumor neither palpable nor visible by imaging
- T1a Tumor incidental histologic finding in 5% or less of tissue resected
- T1b Tumor incidental histologic finding in more than 5% of tissue resected
- T1c Tumor identified by needle biopsy (e.g., because of elevated PSA)
- T2 Tumor confined within prostate*
- T2a Tumor involves one-half of one lobe or less
- T2b Tumor involves more than one-half of one lobe but not both lobes
- T2c Tumor involves both lobes
- T3 Tumor extends through the prostate capsule**
- T3a Extracapsular extension (unilateral or bilateral)
- T3b Tumor invades seminal vesicle(s)
- T4 Tumor is fixed or invades adjacent structures other than seminal vesicles such as external sphincter, rectum, bladder, levator muscles, and/or pelvic wall (Figure 41.1)

Recurrence Risk for Clinically Localized Prostate Cancer

Low Risk:

– T1-T2a and Gleason score 2-6 and PSA < 10 ng/ml</p>

- Intermediate Risk:
 - T2b-T2c or Gleason score 7 or PSA 10-20
- High Risk:
 - T3a or Gleason score 8-10 or PSA > 20
- Very High Risk:
 - T3b-T4(locally advanced)

Biological factors

- E-cadherin
 - It is a cohesive protein present on epithelial cells
 - Responsible for cell to cell adhesion
 - Responsible to maintain the tissue architecture

Low level is associated with poor survival

Biological factors

- Microvessel density (MVD)
 - Higher MVD poor survival
- Androgen Receptor (AR)
 - High AR is associated with poor survival
- P53 abnormal Protein
 - Poor prognostic factor
- P27 Suppressor gene
 - Low level with poor survival
- DNA Ploidy
 - Diploid have better survival

Proliferative Index

• Ki-67

- Higher value is associated with poor survival

• S-phase fraction

- Higher value is associated with poor survival

Urinary Bladder

Tumorigenesis & Progression

Superficial Bladder Tumour

- Number of Lesions
- Size
- T Stage (Ta or T1)
- CIS (Yes or No)
- Grade
- Prior Recurrence Rate

EORTC Scoring System

Factor	Recurrence	Progression
Number of tumours		
Single	0	0
2–7	3	3
≥8	6	3
Tumour diameter		
<3 cm	0	0
≥3 cm	3	3
Prior recurrence rate		
Primary tumour	0	0
≤1 recurrence/year	2	2
>1 recurrence/year	4	2
Category		
Та	0	0
T1	1	4
CIS		
No	0	0
Yes	1	6
Grade		
G1	0	0
G2	1	0
G3	2	5
Total score	0–17	0–23

Sylvester RJ, van der Meijden APM, Oosterlinck W, et al. EORTC trials. Eur Urol 2006;49:466–77.
EORTC Scoring System

Recurrence score	Recurrence risk group	Probability of recurrence at 5 yr (95% CI)
0	Low risk	31% (24–37%)
1-4	Intermediate risk	46% (42-49%)
5–9		62% (58-65%)
10–17	High risk	78% (73–84%)

Sylvester RJ, van der Meijden APM, Oosterlinck W, et al. EORTC trials. Eur Urol 2006;49:466–77.

Prognostic Factors

- Age Older age is poor prognostic factor
- Gender Females do bad
- Size of the Primary 3cm or > 3 cm
- Positive Surgical margin Poor prognostic factor

Invasive Bladder Cancer

- T Stage
- Lymph nodes involvements
- LVI
- Performance Status
- Obstructive Uropathy
- Grade

TNM Staging

Invade pelvic walls

T Stage

Seung Hyun Jeon, et al : Long-term Follow-up of Radical Cystectomy for Bladder Cancer Cancer Research and Treatment 2005;37(1)

T Stage

International Braz J Urol Vol. 32 (1): 35-42, January - February, 2006

T Stage

Outcomes after Radical Surgery in contemporary series -1

					ə-yr	s Survival (%)
Series	Year	No.Pts	pT0-rate	Operative mortality	pT2	pT3	pT4
Roehrborn	1991	280		2.1	63	36	24
Pagano	1991	261	9	1.8	57	15	21
Wishnow	1992	188	5	1.1	79	46	33
Waehre	1993	227	25		61	36	29
Vieweg	1999	686			58	22	15
Stein	2001	633	6	3	72	48	33
Dalbagni	2001	284	10.7		59	25	29
Studer	2003	507		4.5	74	52	36
Grossman	2003	154	15	0.6	75		24
				Average	66%	35%	27%

5-yrs OS for pT0 (95% Cl): 83.5% (78.1-87.7)

Herr HW, J Urol 2007 and Jacobs BL, CA Cancer J Clin 2010, Tilki D, J Urol 2010

1 7073

Lymph node metastasis

Seung Hyun Jeon, et al : Long-term Follow-up of Radical Cystectomy for Bladder Cancer Cancer Research and Treatment 2005;37(1)

Lymph node metastasis

Number of nodal metastasis
Extra nodal extension

International Braz J Urol Vol. 32 (1): 35-42, January - February, 2006

LVI

A. Recurrence Free Survival

				Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI Year	IV, Random, 95% Cl
Matsumoto	0.3075	0.4437	5.5%	1.36 [0.57, 3.25] 2008	
Canter	0.0198	0.0099	17.8%	1.02 [1.00, 1.04] 2008	•
Streeper	0.8961	0.3557	7.3%	2.45 [1.22, 4.92] 2009	
Shariat	0.3556	0.0619	17.1%	1.43 [1.26, 1.61] 2010	
Hugen	0.5988	0.2569	10.2%	1.82 [1.10, 3.01] 2010	
Kauffman	0.6729	0.5401	4.1%	1.96 [0.68, 5.65] 2011	
Park(a)	1.0145	0.5981	3.5%	2.76 [0.85, 8.91] 2011	
Park(b) (N+)	0.0383	0.2966	8.9%	1.04 [0.58, 1.86] 2011	
Park(b) (N-)	1.183	0.2721	9.7%	3.26 [1.91, 5.56] 2011	
Afonso	0.2359	0.3239	8.2%	1.27 [0.67, 2.39] 2013	
Lotan	0.8629	0.3472	7.5%	2.37 [1.20, 4.68] 2013	
Total (95% CI)			100.0%	1.61 [1.26, 2.06]	•
Heterogeneity: Tau ² =	0.09; Chi ² = 68.12, df	f = 10 (P	< 0.00001); l ² = 85%	
Test for overall effect:	Z = 3.78 (P = 0.0002))		55 H (2) 828865382633	Favours positive LVI Favours negative LVI

Meta-Analysis of LVI in Invasive Bladder Cancer February 2014 | Volume 9 | Issue 2 | e89259

LVI

B.Cancer Specific Survival

				Hazard Ratio		Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	Year	IV. Random, 95% CI
Turkolmez	0.8329	0.3319	4.6%	2.30 [1.20, 4.41]	2007	8
Matsumoto	0.7227	0.47	2.9%	2.06 [0.82, 5.18]	2008	
Canter	0.0296	0.01	10.1%	1.03 [1.01, 1.05]	2008	•
Fairey	0.3507	0.1738	7.6%	1.42 [1.01, 2.00]	2009	
Streeper	1.0367	0.3221	4.7%	2.82 [1.50, 5.30]	2009	
Manoharan	0.2927	0.2322	6.3%	1.34 [0.85, 2.11]	2010	
Palmieri	1.0473	0.2205	6.6%	2.85 [1.85, 4.39]	2010	
Kim	0.4253	0.2104	6.8%	1.53 [1.01, 2.31]	2010	-
Ku	0.9341	0.287	5.3%	2.54 [1.45, 4.47]	2010	
Shariat	0.3736	0.0679	9.6%	1.45 [1.27, 1.66]	2010	*
Park(b) (N-)	0.7227	0.3123	4.9%	2.06 [1.12, 3.80]	2011	
Park(b) (N+)	-0.008	0.3295	4.6%	0.99 [0.52, 1.89]	2011	1. 1. 1. 1. 1.
Otto	0.392	0.0821	9.4%	1.48 [1.26, 1.74]	2012	*
Gondo	0.771	0.3513	4.3%	2.16 [1.09, 4.30]	2012	
Eisenberg	0.3365	0.123	8.7%	1.40 [1.10, 1.78]	2013	-
Lotan	1.0296	0.3954	3.7%	2.80 [1.29, 6.08]	2013	
Total (95% CI)			100.0%	1.67 [1.38, 2.01]		•
Heterogeneity: Tau ² =	0.09; Chi ² = 118.81,	df = 15 (F	<pre>> < 0.0000</pre>)1); l ² = 87%		
Test for overall effect:	Z = 5.35 (P < 0.0000	1)		0.724 9000 1992/19939		0.01 0.1 1 10 100 Favours positive LVI Favours negative LVI

Meta-Analysis of LVI in Invasive Bladder Cancer

February 2014 | Volume 9 | Issue 2 | e89259

LVI

C. Over all Survival

				Hazard Ratio			Ha	azard Ratio	>	
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	Year		IV. Ra	andom, 95	% CI	
Canter	0.0488	0.0098	21.4%	1.05 [1.03, 1.07]	2008					
Fairey	0.3148	0.1505	18.8%	1.37 [1.02, 1.84]	2009			-		
Stephenson	0.47	0.2936	14.1%	1.60 [0.90, 2.84]	2010			-		
Ku	0.9014	0.281	14.5%	2.46 [1.42, 4.27]	2010					
Kauffman	0.7129	0.616	6.5%	2.04 [0.61, 6.82]	2011			St. 0.40	-	
Park(a)	1.9012	0.9018	3.6%	6.69 [1.14, 39.20]	2011			-		
Font	1.8116	0.4883	8.8%	6.12 [2.35, 15.94]	2011				*	
Afonso	0.567	0.3442	12.5%	1.76 [0.90, 3.46]	2013					
Total (95% CI)			100.0%	1.84 [1.27, 2.66]				•		
Heterogeneity: Tau ² =	0.17; Chi ² = 34.89, df	f = 7 (P <	: 0.0001);	l ² = 80%		H	1			
Test for overall effect:	Z = 3.25 (P = 0.001)	a	2022,2020,2020,2020,2020,2020,2020,202			0.01 Favou	0.1 Irs positive	1 LVI Favo	10 urs negat	100 tive LVI

Meta-Analysis of LVI in Invasive Bladder Cancer

February 2014 | Volume 9 | Issue 2 | e89259

Performance Status

Specially for patients treated by Bladder Preservation Treatment

I. J. Radiation Oncology

Biology

Physics

Volume 46, Number 2, 2000

Presence of Obstructive Uropathy

Specially for patients treated by Bladder Preservation Treatment

I. J. Radiation Oncology

Biology

Physics

Volume 46, Number 2, 2000

Grade of the Tumour

Biomarkers

p53

Probability of remaining recurrence-free in bladder cancer with respect to p53 IHC status

Esrig D et al. N Engl J Med 1994

P53/p21/Rb

Probability of recurrence-free survival in 164 bladder cancer patients, who underwent radical cystectomy, based on alterations in **p53**, **p21**, and/or **Rb** expression (as detected by IHC)

Mitra AP, J Clin Oncol 2006 Chatterjee SJ, J Clin Oncol 2004

Gene Signatures

Generation of a predictive expression signature in urothelial carcinoma

Over expression of growth factors

EGFR is overexpressed in 31-48% high-grade muscle invasive disease (*Lipponen P, Br J Cancer 1994, Villares JP, World J Urol 2007*)

VEGF and VEGFR2 are overexpressed and VEGFR2 correlates with tumor stage

 HER2/neu: only 5% of TCC patients eligible to anti-HER2 treatment
 Latif Z, Eur J Cancer 2001
 Laè M, Ann Oncol 2010

Human RAS (HRAS): activating mutations have been recognized in 30-40% of TCCs, expecially superficial tumors. Dinney CP, Cancer Cell 2004

Testicular Cancers

Management Decision in Stage I

Active Surveillance

Treatment

Age of the Patients

Specially applicable to Seminoma stage 1

Journal of Clinical Oncology, Vol 20, No 22 (November 15), 2002: pp 4448-4452

0022-5347'97/1575-1705\$03.00/0 The Journal of Urology Copyright 4: 1997 by American Urological Association, Inc.

Vol. 157, 1705–1710, May 1997 Printed in U.S.A.

Size of the Tumour

Journal of Clinical Oncology, Vol 20, No 22 (November 15), 2002: pp 4448-4452

Size of the Tumour

0022-5347'97/1575-1705803.00/0 The Journal of Urology Copyright 4: 1997 by American Urological Association, Inc.

Vol. 157, 1705–1710, May 1997 Printed in U.S.A.

Invasion of Rete Testis

Specially applicable to Seminoma Stage 1

Journal of Clinical Oncology, Vol 20, No 22 (November 15), 2002: pp 4448-4452

Lympho Vascular Invasion

Specially applicable to Non-seminoma Stage 1

0022-5347'97/1575-1705803.00/0 The Journal of Urology Copyright 4: 1997 by American Urological Association, Inc.

Vol. 157, 1705–1710, May 1997 Printed in U.S.A.

Lympho Vascular Invasion

Specially applicable to Non-seminoma Stage 1

TABLE 2.	Association of Histologic Characteristic With
	Occurrence of Metastasis

		cha	With racteristics		Withou characteris	t stics
	Histologic characteristic	No.	% Metastases	No.	% Metastases	$\frac{P}{(X^2 \text{ Test})}$
C	Embryonal carcinoma Endodermai sinus	81	35	12	0	0.05
E	mbryon	al	His	tc	logy	
	Seminoma Vascular invasion	30 11	20 46	63 82	32 26	0.35
	Lymphatic invasion Vascular and/or	26	62	67	18	<0.01
	lymphatic invasion	32	53	61	18	<0.01

STAGE I MIXED GERM CELL TUMORS · Dunphy et al. CANCER September 15 1988

Stage II and above (Seminoma)

Only site of metastasis is important

- Non-pulmonary visceral metastasis (eg. liver):
 - Absent: good prognostic group
 - Present: intermediate prognostic group
- Seminoma with metastasis in lymph nodes and lung is in good prognostic group
- Seminoma never in poor prognostic group

Stage II and above (Non-seminoma)

- Prognostic grouping is based on
 - Site of primary tumour
 - Site of metastasis
 - Serum marker levels
- Mediastinal primary or non-pulmonary visceral metastasis, or very high serum markers: poor prognosis group
- Otherwise good/intermediate based on serum marker levels

Serum Tumour Markers

- Alphafeto Protein (AFP)
- Human Chorionic Gonadothropin (HCG)

• Lactase Dehydrogenase (LDH)

Required	Seru	um tumor markers (S)					
for staging	SX	Marker studies not available or not performed					
	S 0	Marker study levels within normal limits					
	S 1	LDH < 1.5 × N* and hCG (mIu/ml) <5,000 and AFP (ng/ml) <1,000					
	S2	LDH 1.5–10×N or hCG (mIu/ml) 5,000–50,000 or AFP (ng/ml) 1,000–10,000					
	S3	LDH > 10 × N or hCG (mIu/ml) > 50,000 or AFP (ng/ml) > 10,000					

Advanced Tumours

Risk Status	Nonseminoma	Seminoma
Good Risk	Testicular or retroperitoneal primary tumor	Any primary site
	and	and
	No nonpulmonary visceral metastasis	No nonpulmonary visceral metastases
	and	and
	Post-orchiectomy markers all of:	Normal AFP
	AFP < 1,000 ng/mL	Any hCG
	hCG < 5,000 iu/L	Any LDH
	LDH < 1.5 x upper limit of normal	
Intermediate Risk	Testicular or retroperitoneal primary tumor and	Any primary site
	No nonpulmonary visceral metastasis	and Nonpulmonary visceral metastases and
	And	Normal AFP
	Post-orchiectomy markers any of:	Any hCG
	AFP 1,00 - 10,000 ng/mL	Any LDH
	hCG = 5,000 - 50,000 iu/L	
	LDH = 1.5 - 10 x upper limit of normal	
Poor Risk	Mediastinal primary tumor	No poor risk classification for seminoma
	or	
	Nonpulmonary visceral metastasis	
	or	
	Post-orchiectomy markers any of:	
	AFP > 10,000 ng/mL	
	hCG > 50,000 iu/L	
	LDH > 10 x upper limit of normal	

Advanced Tumours

Prognostic Group	Такова буро	5 Year Progression Free Survival (%)	5 Toar Survival (%)
Good	Seminoma (90%)	82	86
	Non-seminoma (56%)	89	92
	Seminoma (10%)	67	72
intermediate	Non-seminoma (28%)	75	80
Deserve	Seminoma (None)		
Poor	Non-seminoma (16%)	41	48

Radiobiology

contribution by single hit (Linear) kill becomes equal to double hit (Quadratic) kill.
α/β Ratio defines "curviness" of survival curve Based on α/β ratio, the body tissues have been divided into two category.

Calculated α/β ratios for some tissues

TABLE 22.1. Ratio of Linear to Quadratic Terms From Multifraction Experiments

Reactions	α/β, Gy		
Early Skin Jejunum Colon Testis Callus	Average 10	9–12 6–10 10–11 12–13 9–10	
Spinal cord Kidney Lung Bladder	Average 3	1.7–4.9 1.0–2.4 2.0–6.3 3.1–7	

Calculated α/β ratios for some tumors

Tumors	
Head and neck: nasopharynx	16 (–11; 43) Gy
Vocal cord	~13 Gy
Buccal mucosa	~6.6 (2.9; ∞) Gy
Tonsil Average	10 7.2 (3.6; ∞) Gy
Larynx	14.5 (4.9; 24) Gy
Lung: squamous cell carcinoma	~50-90 Gy
Cervix: squamous cell carcinoma	>13.9 Gy
Skin	
Squamous cell carcinoma	8.5 (4.5; 11.3) Gy
Melanoma	0.6 (-1.1; 2.5) Gy
Esophagus	4.9 (1.5; 17) Gy
Liposarcoma	0.4 (-1.4; 5.4) Gy

ondon, 2009, Hodder Amold.

Radiobiology of Prostate Cancer

	a/b Ratio	95% CI
Low dose rate brachytherapy	1.5 Gy	0.8-2.2
	1.49 Gy	1.25-1.76
EBRT + HD Brachytherapy	1.2 Gy	0.03-4.1

Brenner IJROBP 1999 43 1095 / 2002 52 6 : Fowler IJROBP 2001 50 1024

Phase III Trial of Conventional or Hypofractionated High Dose Intensity Modulated Radiotherapy in Prostate Cancer (CHHIP)

Hypothesis: alpha/beta ratio in ca prostate may be low (1.5)

Conventional	74Gy	37F	7.4w
Hypofractionated	60Gy	20F	4w
Hypofractionated	57Gy	19F	3.8w

Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial

Lancet Oncol 2016; 17: 1047-60

60 Gy in 20F74 Gy in 37F57 Gy in 19FBED = 180BED = 173BED = 171

Interpretation Hypofractionated radiotherapy using 60 Gy in 20 fractions is non-inferior to conventional fractionation using 74 Gy in 37 fractions and is recommended as a new standard of care for external-beam radiotherapy of localised prostate cancer.

Hypoxia

Hypoxia assessment using Pimonidazole immunostaining in prostate carcinoma. Carnell IJROBP 2006 65 91

- (a) Pimonidazole uptake is seen within isolated malignant cells (<5%) : score 1+.
- (b) Pimonidazole uptake scored 2+ is seen within 5%–15% of malignant cells surrounding a small area of necrosis.
- (c) 4+ pimonidazole uptake
 within both the nuclear and
 cytoplasmic compartments

Pimonidazole binding present in 92%(32/37) Ca

Correlation of 3+ staining with high Gleason score (p=0.04)

Hypoxia increases androgen receptor activity in prostate cancer cells.

Park, S.-Y. et al. Cancer Res 2006;66:5121-5129

Patients with higher Gleason Score Treated with HT and RT will have better outcome

Conformal Radiotherapy with or without 3-6 months androgen suppression

1) Laverdiere JUROL 171 1137 2004, 2) D'Amico JAMA 292 821 2004 3) Pilepich IJROBP 2001 (50) 1243, 4)Denham Lancet Oncol 2005 6 841

	RT	RT + LH	RT +LHRHa	
7y PSA failure free survival	42%	66%	p≤0.01	
5y PSA failure free survival	38%	52/56%	p≤0.002	
5y survival free of salvage	57%	82%	p=0.002	
5y survival free of salvage	63%	68/78%	p<0.03	
8y Cause Sp survival	69%	77%	p=0.05	

Greetings From Shimla

