Brachytherapy in Carcinoma Prostate

Dr. D.N. Sharma Professor Department of Radiation Oncology All India Institute of Medical Sciences, New Delhi

Magnitude of the problem

- Prostate cancer relatively uncommon
- Life expectancy : 65 yrs
- Low awareness
- No PSA screening

Incidence

- Third commonest cancer in most PBCRs
- Incidence is rising : ?apparent ?real
- AAR: 7.1 per lakh population
- Majority present in locally advanced/metastatic stages
- Sizeable number of patients do come in early stages

Brachytherapy for Carcinoma Prostate

• As monotherapy : for low risk patients

• As Boost : for intermediate and high risk pts

• As salvage therapy : for recurrent cases

Why Brachytherapy ?

- Conformal treatment
- Short course therapy
- Excellent local control
- Better quality of life
- Preservation of sexual function
- Cost effective

Types of Brachytherapy

• High dose Rate (HDR) Brachytherapy

 Low dose Rate (LDR) Brachytherapy or Seed Brachytherapy

HDR Brachytherapy: Indications

Monotherapy

• Low- and intermediate risk

Boost (combined with EBRT)

- any T with N0 M0
- any PSA
- any Gleason-Score

HDR Brachytherapy: Absolute contraindications

- 1. Preexisting rectal fistula,
- 2. Medically unsuited for anesthesia, and
- 3. No proof of malignancy.

Patient Preparation

Spinal anesthesia

Lithotomy position

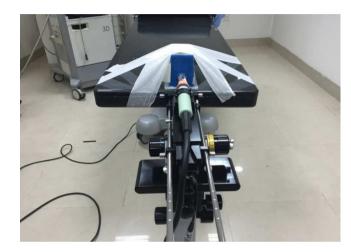
Foley catheter

Procedure

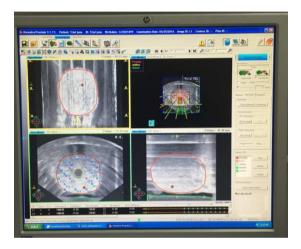
Let the Foley's be high up to avoid balloon rupture

LP Needle to Decide the Position of Template

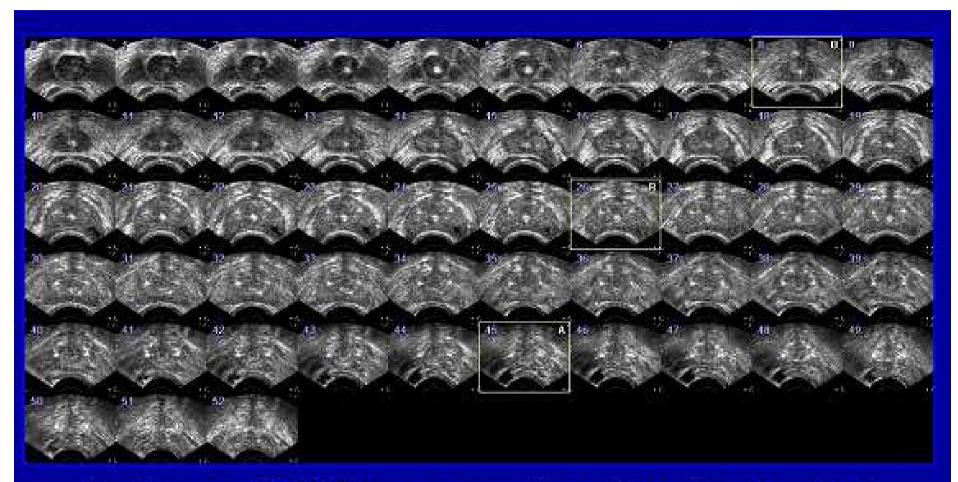
TRUS Imaging

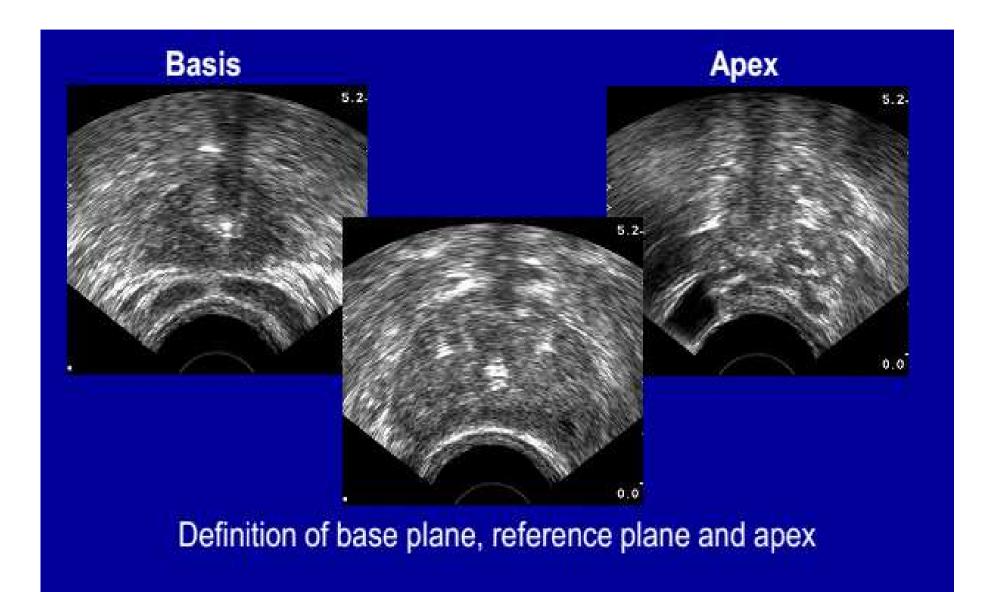


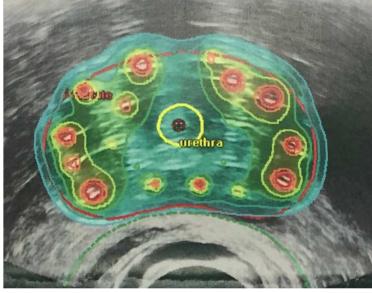
Fixation of probe and template on the stepper

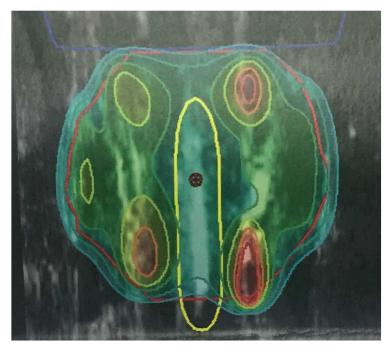

Needle insertion using USG guidance

Phantom Trials to Streamline Workflow Logistics






Continuous TRUS-image-recording with online transfer to the real-time planning system



Prostate Steps contd..

- Needle insertion as per preplan
- Repeat 3D USG with Urethral contrast
- Catheter reconstruction and contouring
- Final plan and evaluation
- Connect for treatment
- Implant removal
- Bladder irrigation for hemostasis

Dosimetry

85.0 % 100.0 % 125.0 % 150.0 % 200.0 % 250.0 %

Pre-implant & Post Implant Care

- Antibiotic on the morning of implant
- Complete bowel preparation with PEGLEC the day prior
- Part preparation
- Post procedure Anti inflammatory, antibiotics & alpha blockers
- Bladder irrigation with normal saline till hematuria subsides
- Foleys out the next day

Institution	Dose fractionation	Bladder	Urethra	Rectum
MSKCC	Boost 7Gyx3 Mono 9.5Gyx4 Salvage 8Gyx4		<120% prescription	$D_{2 \text{ cc}} < 70\%$
UCSF	Boost 15Gyx1 Mono 10.5Gyx3	V ₇₅ < 1 cc	$V_{125} < 1 \text{ cc}, V_{150} = 0 \text{ cc}$	V ₇₅ < 1 cc
WDU	Salvage 8Gyx4*	N	*(dose tunnel whenever possible)	V diff familie
WBH	Boost 10.5Gyx2	No constraint	$V_{100} < 90\%$ of prescription	$V_{75} < 1\%$ of prescription
	Mono 4 × 9.5 Gy (historical)	(intra-op TRUS-based dosi)	$V_{115} < 1\%$ of prescription	
	12-13.5Gyx2 (current)			
	Salvage 7Gyx4 combined with hyperthermia			
ICC	Boost 6Gyx2 ×2 implants	<80% of Rx	<125% of prescription	<80% of Rx to outer wall
GW	Boost 6.5Gyx3	<100% prescription	<110% prescription	mucosa <60%, outer wall <100%
GW		Clob // prescription	CITO & prescription	inacosa (00%, outer wan (100%
T	Mono two sessions of 6.5Gyx3	-l-	D	V (05
Toronto	Boost 15Gyx1	n/a	D ₁₀ < 118% Max < 125%	$V_{80} < 0.5 \text{ cc}$
UCLA-CET	Boost 6Gyx4	90-100% wall	120% combo	Rectal wall 80%
	Mono7.25Gyx6	80% balloon	105% any TUR 110% mono	Rectal wall 80-85%

Current dose fractionation schedules

Initial Results of HDR Brachytherapy in Prostate Cancer: AIIMS Experience

DN Sharma, KP Haresh

Department of Radiation Oncology,

All India Institute of Medical Sciences, New Delhi

BRACHYTHERAPY An International Multidisciplinary Journal	RSS Feeds 🛐 Mobile
Articles & Issues - For Authors - Journal Info - Subscribe ABS More Periodicals -	
All Content Search Advanced Search	

Next Article >

Combined HDR Brachytherapy and External Beam Radiotherapy Vs External Beam Radiotherapy Alone By IMRT in Localized Prostate Cancer; Interim Analysis of Acute Genitourinary and Gastrointestinal Toxicity and Biological Dose Volume Parameters From a Prospective Randomized Control Trial

May-June, 2015 Volume 14, Supplement 1, Page S53

< Previous Article

<u>A. Manikandan</u>, MD (Resident), <u>M.A. Laviraj</u> (Senior Medical Physicist), <u>K.P. Haresh</u>, MD, DNB, <u>D.N. Sharma</u>, MD, <u>S. Gupta</u>, MD, <u>S. Mallick</u>, MD, <u>P.K. Julka</u>, MD, <u>G.K. Rath</u>, MD, FAMS Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India PSOR13 Presentation Time: 9:48 AM Article Tools

 PDF (45 KB)

 Email Article

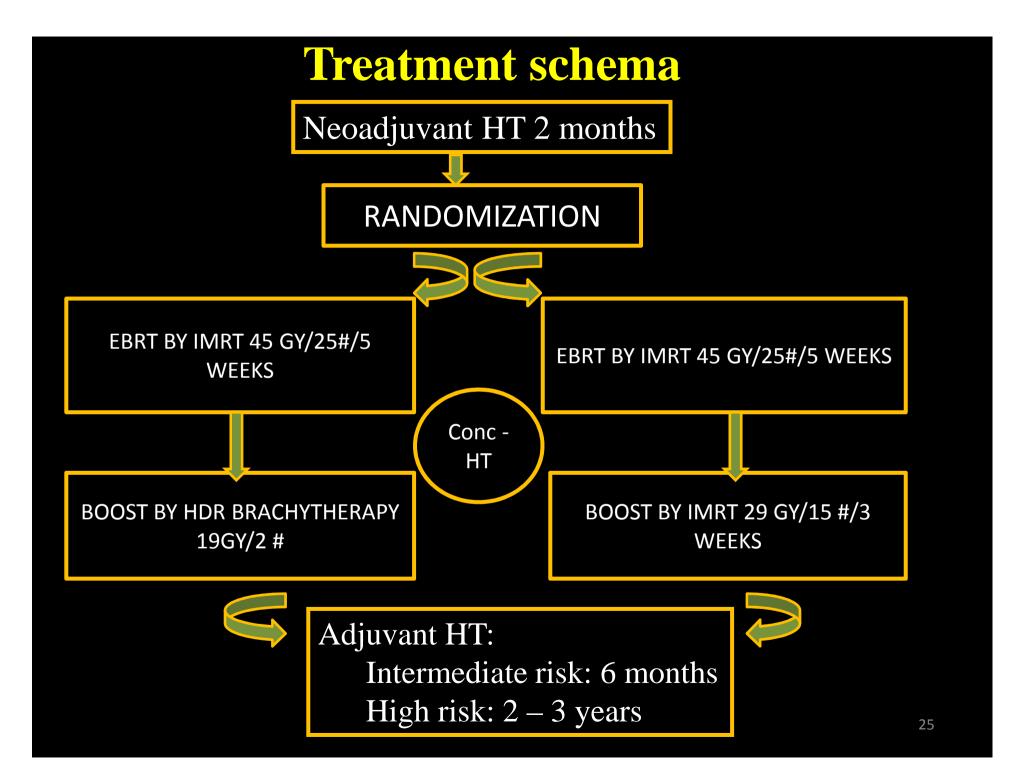
 Add to My Reading List

 Export Citation

 Create Citation Alert

 Cited by in Scopus (0)

 Request Permissions

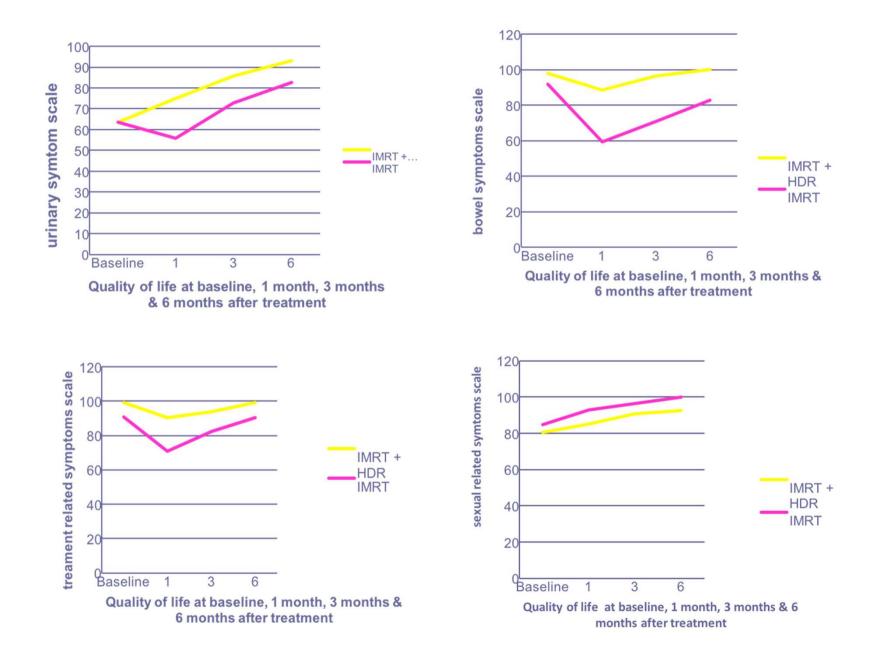

 Order Reprints (100 minimum order)

Access this article on ScienceDirect)

AIMS & OBJECTIVES

1.Feasibility of combining Brachytherapy boost after EBRT (IMRT)

- 2. To compare dosimetric parameters for PTV between IMRT & Brachytherapy arm
- 3. To compare dosimetric parameters for OAR (bladder & rectum)


RESULTS

- > Total: 30 patients: Median follow up: 8.5 months
- Median age: 68 years: Stage distribution:T2b -T3b
- Median Gleason: 7 (Range 6-8)
- Mean S.PSA :34.9ng/ml
- Intermediate risk 9 (30%) High risk 21 (70%)
- The median prostate volume: 49.2mL(26.2-63.5)
- The major symptoms of acute GU toxicity were dysuria, increase in urinary frequency or nocturia
- > The major symptoms of acute GI toxicity were diarrhea and tenesmus

BOOST PHASE	BRACHY ARM	IMRT ARM	р
EQD2 for 95% of PTV (a/b: 1.5Gy)	45.7Gy	28.4Gy	0.001
EQD2 for Dmean to PTV (a/b: 1.5Gy)	46.5Gy	29.3Gy	0.001
EQD2 for Dmean of Rectum	7.4Gy	13.5Gy	0.001
EQD2 for 33% of Rectum	6.8Gy	17.4Gy	0.001
EQD2 for Dmean of Bladder	5.4Gy	12.8Gy	0.001
EQD2 for 1cc of Bladder	16.7Gy	27.9Gy	0.001

Toxicity	Symptoms	Arm 1 (%)	Arm 2 (%)	Ρ
Acute	Dysuria	33	40	0.591
genitourinary	Frequency	40	46	0.279
≥ grade 2	Hematuria	6	0	0.264
Acute	Diarrhea	20	33	0.137
gastrointestinal	Tenesmus	6	13	0.345
≥ grade 2				
Any late genitourinary ≥ grade 2		33	46	0.280
Any late gastrointe	estinal≥grade 2	6	20	0.139

QLQ PR-25 subscales	Mean difference (Arm 1 [*])	Mean difference (Arm 2 [#])	Р
(differences between			
arms)			
Urinary scale 1 month	11.3	-7.8	0.072
Urinary scale 3 months	22	9.1	0.157
Urinary scale 6 months	29.4	19.1	0.121
Bowel scale 1 month	-9.5	-32.6	0.001
Bowel scale 3 months	-1.4	-21	0.005
Bowel scale 6 months	2.1	-8.9	0.018
Treatment related scale 1	-8.5	-19.9	0.160
month			
Treatment related scale 3	-5.2	-8.3	0.580
months			
Treatment related scale 6	20	-20	0.941
months			
Sexual scale 1 month	4.4	8.2	0.196
Sexual scale 3 months	10.2	11.8	0.818
Sexual scale 6 months	11.9	15.2	0.556

Study Conclusion

- HDR BT produced a more conformal plan & provides higher mean dose to prostate
- Doses to the OAR are lower than IMRT
- Brachytherapy is effective in achieving dose escalation
- > No difference in bladder & bowel toxicity
- >QOL (bowel symptom scale) better in brachytherapy
- Longer follow-up is needed to evaluate the efficacy

Seed Brachytherapy in Carcinoma Prostate

Permanent prostate implant

- Mainly monotherapy
- May be used as boost
- Salvage of recurrent tumors

Brief history

- 1917: Young HH used Radium-226 implants thru bladder, urethra, rectum
- 1970s: Whitmore and Hilaris, retropubic implantation of I-125
- 1980s: Holm and Pederson, transrectal ultrasonography guided I-125 implantation

5027

Chart of rectal treatments given in

Patient selection

I-125/Pb-103 Mono-therapy:

- cT1 ~ T2b
- PSA < 10
- GS: 2 6
- T1-T2 / GS < 7 / PSA < 10,

BRACHYTHERAPY

Brachytherapy 11 (2012) 6-19

American Brachytherapy Society consensus guidelines for transrectal ultrasound-guided permanent prostate brachytherapy
 Brian J. Davis^{1,*}, Eric M. Horwitz², W. Robert Lee³, Juanita M. Crook⁴, Richard G. Stock⁵, Gregory S. Merrick⁶, Wayne M. Butler⁶, Peter D. Grimm⁷, Nelson N. Stone⁸, Louis Potters⁹, Anthony L. Zietman¹⁰, Michael J. Zelefsky¹¹

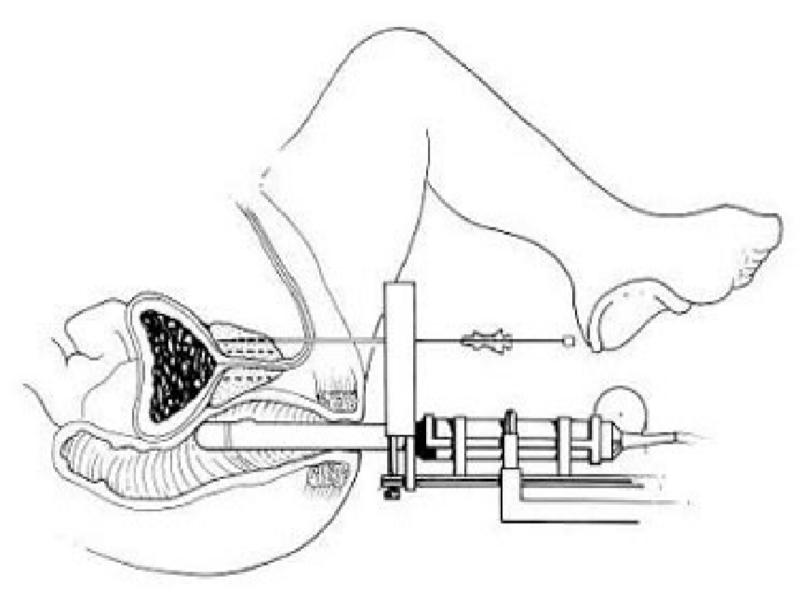
Suggested treatment schema for low-, intermediate-, and high-risk disease for PPB

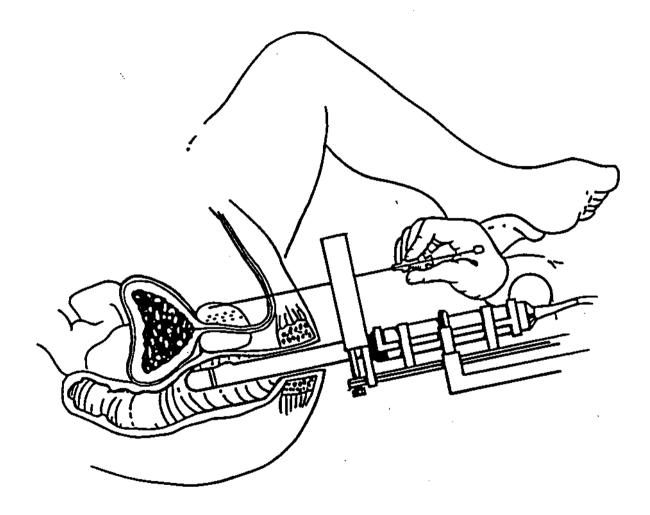
Risk group per NCCN	Brachytherapy alone?	Combined with EBRT?	Combined with androgen deprivation?
Low	Yes	Not favored	Not favored
Intermediate	Optional	Optional	Optional
High	No	Yes	Favored

Relative contraindications

- Severe urinary irritative/obstructive symptomatology
- Extensive TURP defect
- Substantial median lobe hyperplasia
- Prostate dimensions larger than the grid (>60 mm in width & >50mm in height)
- Severe pubic arch interference
- Gross seminal vesicle involvement
- Prior pelvic radiotherapy
- Inflammatory bowel disease
- Pathologic involvement of pelvic lymph nodes

Absolute contraindications to TRUS-guided PPB


Limited life expectancy Unacceptable operative risks Distant metastases Absence of rectum such that TRUS guidance is precluded Large TURP defects, which preclude seed placement and acceptable radiation dosimetry Ataxia telangiectasia


Radionuclide	Half-life (d)	Average energy (keV)	Year introduced	Typical monotherapy seed strength	
				(mCi)	(U)
¹²⁵ I	59.4	28.4	1965	0.3-0.6	0.4-0.8
¹⁰³ Pd ¹³¹ Cs	17.0	20.7	1986	1.1 - 2.2	1.4-2.8
¹³¹ Cs	9.7	30.4	2004	2.5-3.9	1.6-2.5

Radionuclides for permanent prostate brachytherapy

¹²⁵ I			
Monotherapy	140-160 Gy		
Combination			
EBRT	41.4-50.4 Gy (1.8 Gy/d ^a)		
PPB dose	108-110 Gy		
¹⁰³ Pd			
Monotherapy	110-125 Gy		
Combination			
EBRT	41.4-50.4 Gy (1.8 Gy/d ^a)		
PPB dose	90-100 Gy		

Implant procedure

STEPS:

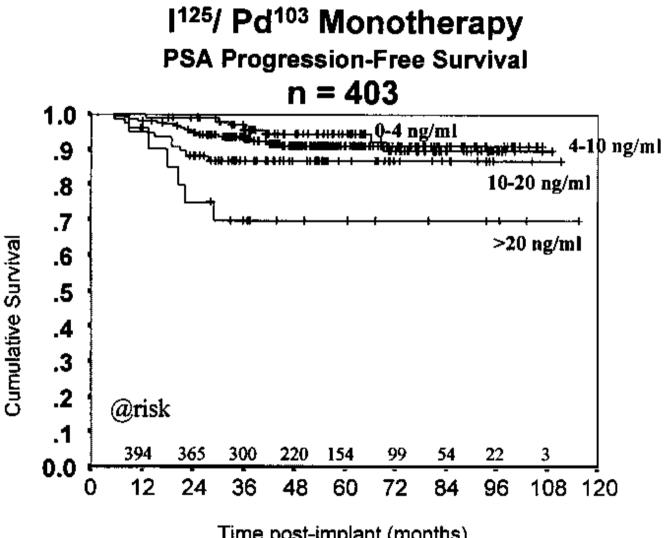
<u>Planning-</u>TRUS guided volume study—computer preplan

Brachytherapy procedure-TRUS guided trans perineal needle-..

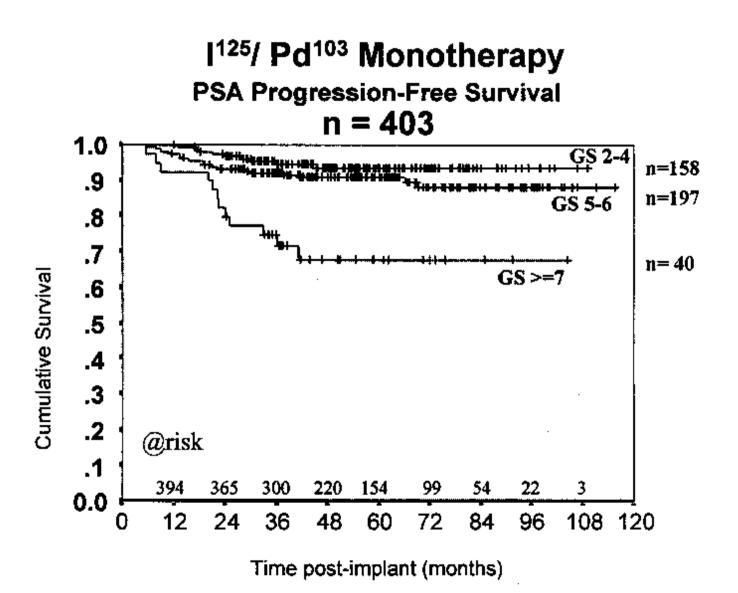
peripheral loading..

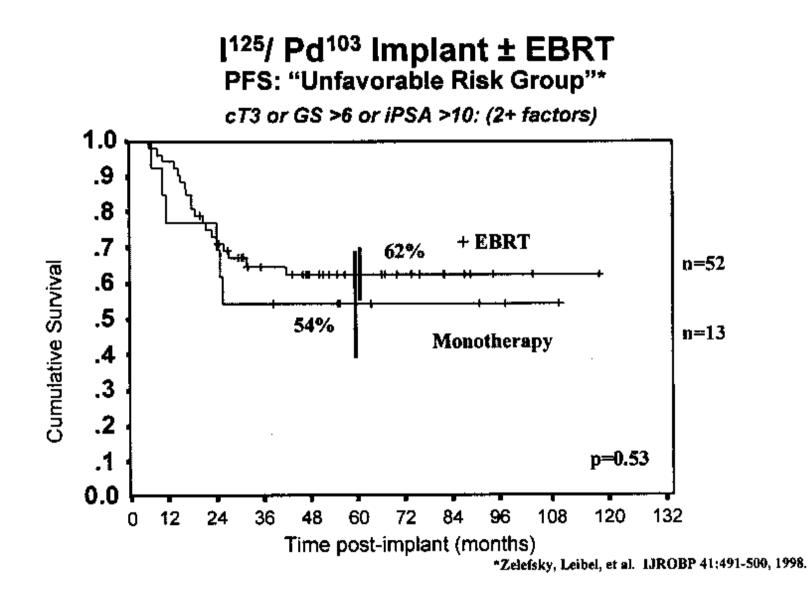
seeds placed along the tract from base to apex.

Post implant evaluation-by CT scan



Prostate: D_{90} (in Gy and percent) V_{100} and V_{150} (in percent)


Urethra: UV_{150} (in volume) UV_5 , UV_{30} (percent)


Rectum: RV_{100} (in volume)

Aim to keep UV5<150% and UV30<125% in the preplan

Time post-implant (months)

Acute Symptoms

- Dysuria (often)
- Hematuria (common)
- Perineal hematoma (significant < 3 %)
- Obstruction (5-12%)
- Perineal Pain (< 5%)
- Diarrhea (< 10%)

Delayed Complications

- Chronic cystitis (3-7 %)
- Incontinence (1% for non-TURP, 25-42% for TURP)
- Rectal ulceration (< 1 %)
- Urethral necrosis (< 1 %)
- Erectile dysfunction (> 70y/o, 20-25%; < 70y/o, 10-15%)

Conclusion

- Brachytherapy is an important treatment for carcinoma prostate
- Can be used for monotherapy for low risk patients and boost for intermediate/high risk patients
- Provides excellent local control
- Preservation of sexual function