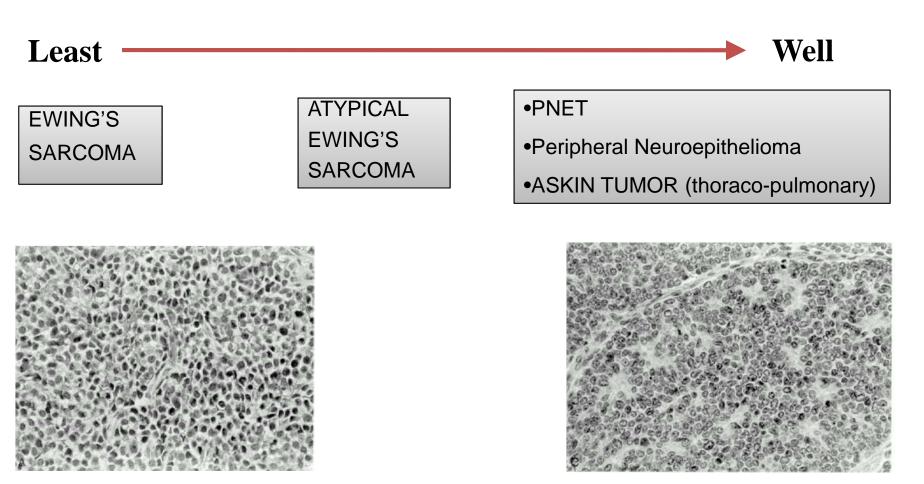
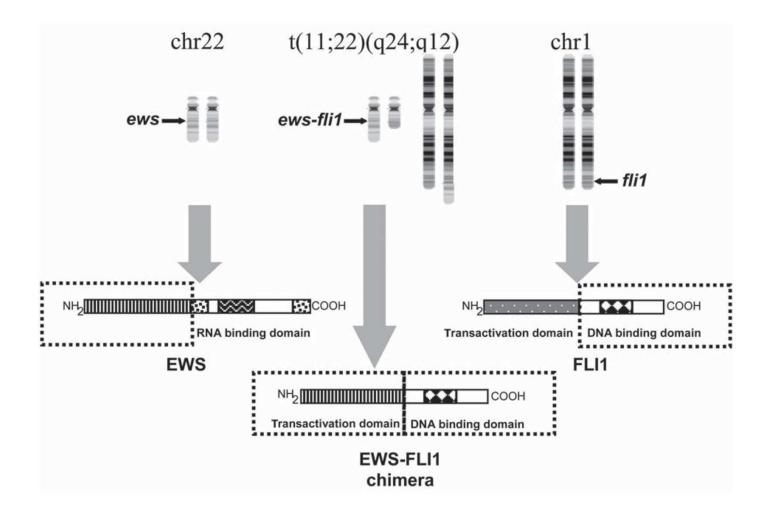
EWINGS SARCOMA

JAMES EWING, 1921

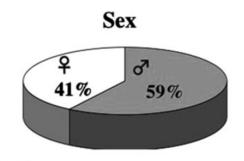


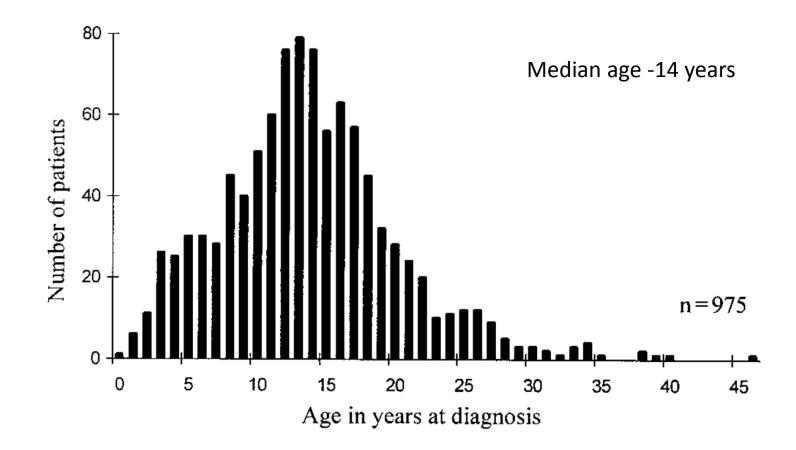
Endothelial origin

14 yr Girl


SPECTRUM OF ESFT

NEURAL DIFFERENTIATION

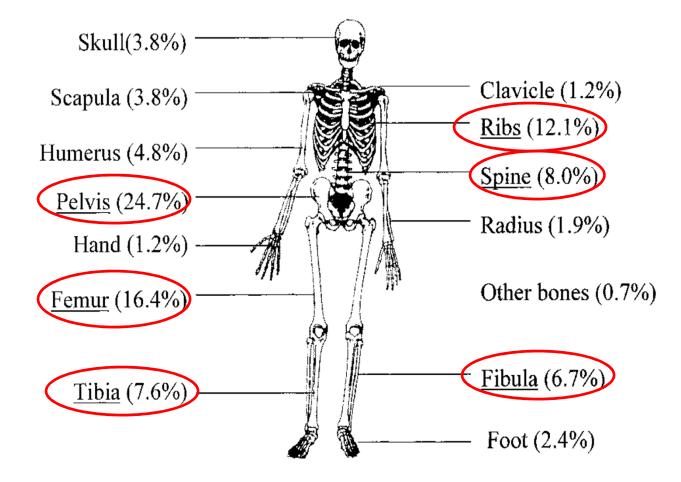

GENETICS


- Most Consistent : Pathognomic of EFT
- 85 % : Reciprocal Translocation t(11;22) (q24;q12)
- o Results EWS-FLI1 gene
- o 5-10 % : Translocation t(21;22)(q21;q12)
- o Results EWS-ERG gene

EPIDEMIOLOGY

- 2 nd most common primary osseous malignancy in children
- Incidence is 2.1 / million (U.S.)
- Males > Females
- \circ 65% in the 2nd decade of life
- o Rare in blacks and Asians

Age distribution of Ewing's sarcoma patients registered with CESS and UKCCSG/MRC


S.J. Cotterill et al, JCO: 18;2000, 3108-3114

CLINICAL PRESENTATION

0	Pain	90%
0	Swelling	80%
0	Impaired limb movement	25%
0	Neurological symptoms	10%
0	Fever	5%

o Symptoms of metastatic disease

SITES OF INVOLVEMENT

S.J. Cotterill et al, JCO: 18;2000, 3108-3114

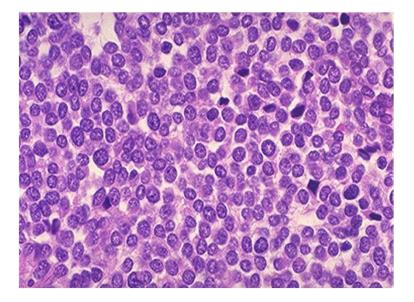
INVESTIGATIONS

Pathology

Biopsy with routine histology Immunohistochemistry Cytogenetics

Laboratory

Routine chemistries, LDH


Radiography

X Ray of the primary CT Scan & MRI of the primary Chest CT Scan Bone scan PET-CT Scan

Bone marrow aspirate and biopsy

BIOPSY

- o Multiple core
- Open Inx biopsy Longitudinal
- o Soft tissue extension

Tissue Processing

- Cytogenetics (Karyotyping)
- Molecular RT-PCR & Immuno-cytochemical studies
- Flow Cytometry DNA ploidy

IMMUNOHISTOCHEMISTRY

• Ewing's sarcomas

MIC2 positive PAS-positive Reticulin negative

• Lymphomas

PAS-negative and Reticulin-positive Positive for leukocyte common antigen and other T and B cell markers

o Embryonal Rhabdomyosarcoma

Positive for Desmin, myoglobin and muscle-specific actins.

o Small-cell metastatic carcinomas & Melanomas

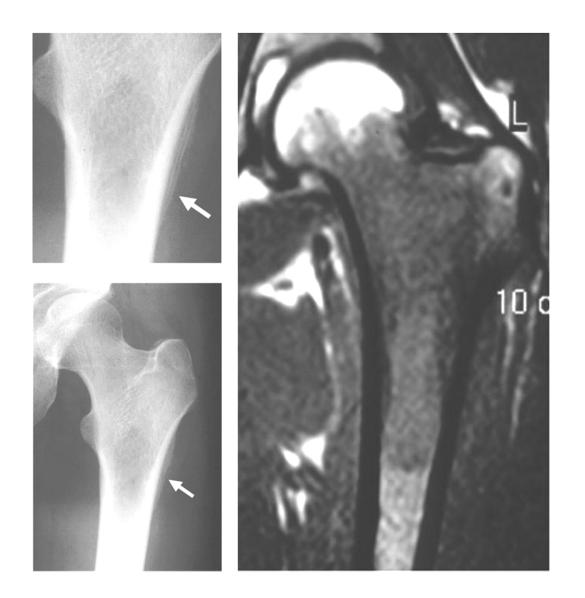
Express detectable Cytokeratin.

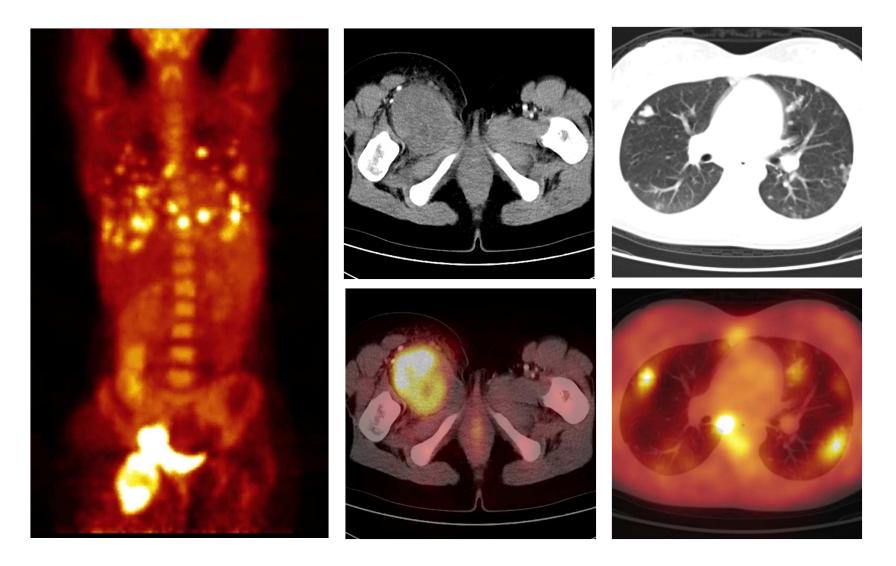
• Primitive Neuroectodermal Tumors (PNET)

Neural differentiation by light microscopy (Homer Wright rosettes in more than 20% of tumor tissue) and immunohistochemical staining for neuron-specific enolase (NSE), S-100, Leu-7

Diaphyseal Tumour

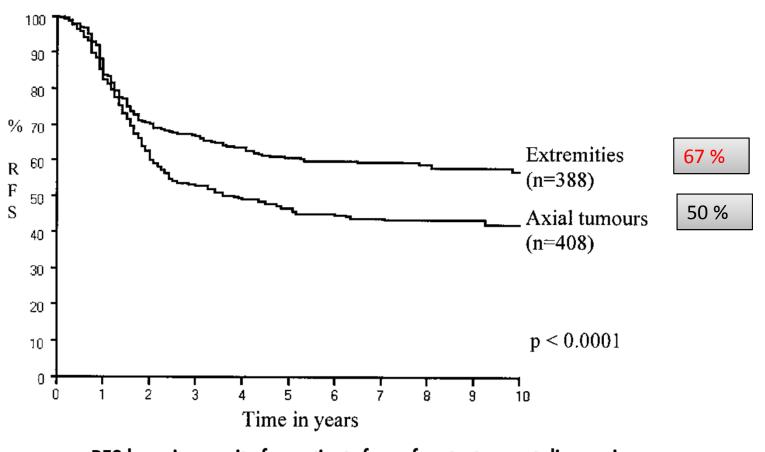
Periosteal Lamellation (circular)


Soft Tissue Component


MRI

- o Intraossous extension
- o Soft tissue extension
- o Skip lesions
- Relation to adjacent structures, vessels , nerves
- o Intra-medullary extent
- o Multi-planar reconstruction

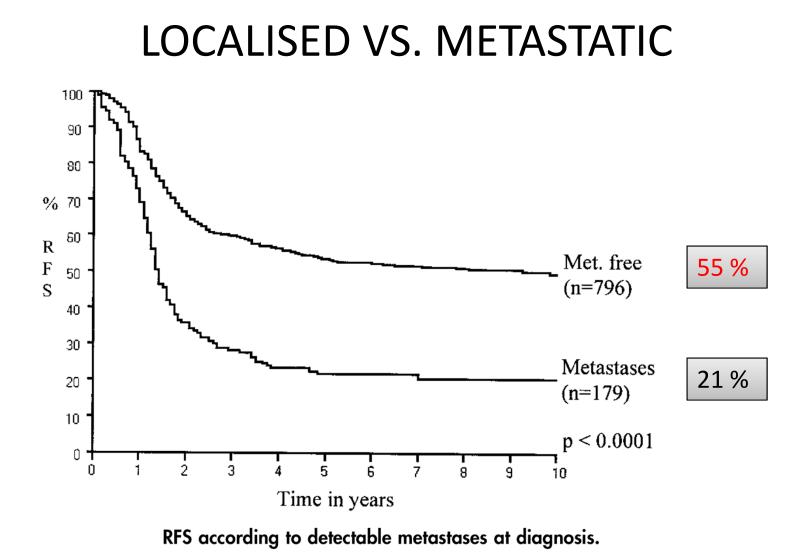
EXTENT OF LESION


PET SCAN

PROGNOSTIC FACTORS

- o Site
- Stage: localised / metastatic
- o Size
- o Age
- Molecular prognostic factors
- Response to chemotherapy (Necrosis)
- Minimal residual disease

SITE


RFS by primary site for patients free of metastases at diagnosis.

S.J. Cotterill et al, JCO: 18;2000, 3108-3114

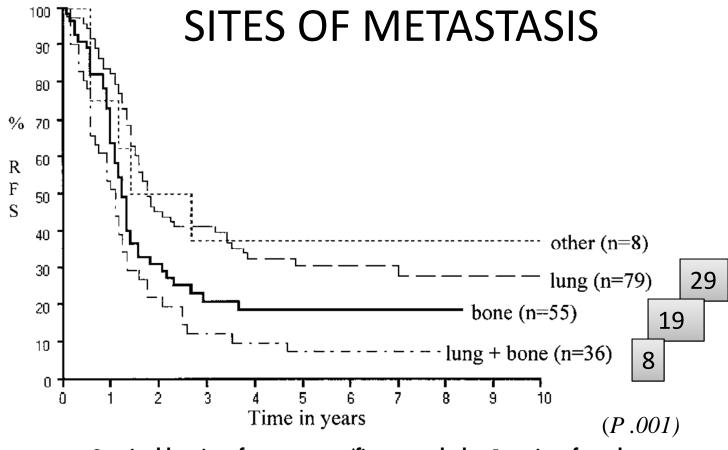

-7			
Site	No. of Patients	5-Year RFS (%)	95% Cl (%)
Axial sites			2
Pelvis	179	46	38-54
Rib	97	53	42-63
Spine	58	58	45-72
Scapula	38	41	25-56
Skull	20	68	43-93
Clavicle	14	32	4-61
Sternum	2	50*	—
Total	408	40	31-51
Extremities			
Femur	139	58	49-66
Humerus	49	78	66-90
Tibia	82	63	52-74
Fibula	78	55	44-67
Foot	24	51	29-72
Ulna	7	71*	_
Radius	7	86*	-
Hand	2	100*	-
Total	388	61	56-66
All sites combined	796	56	52-59

 Table 3.
 RFS by Primary Site in Patients Without Metastases at Diagnosis

S.J. Cotterill et al, JCO: 18;2000, 3108-3114

S.J. Cotterill et al, JCO: 18;2000, 3108-3114

Survival by site of metastases (figure excludes 1 patient for whom site of metastasis was not specified).

S.J. Cotterill et al, JCO: 18;2000, 3108-3114

RESPONSE TO CHEMOTHERAPY

Huvos Grading System

Grade	Necrosis %	5 yr EFS %	Responders %
I	<50	0	19
I	50 -90	37	22
III	90-99	84	18
IV	100	84	42

POG-CCG (Modified Huvos System)

Grade	Necrosis (%)	OS – 3 yrs (%)
I	0	30
II	A – 1 to 10 B – 11 to 90	30
III	91-99	49
IV	100	73

TREATMENT

- o Multi-disciplinary treatment
- o Current standard treatment
 - Primary induction chemotherapy
 - Local therapy (Surgery / radiotherapy)
 - o Maintenance chemotherapy

CHEMOTHERAPY

- 1960 Sutow & Pinkel: Cyclophosphamide 3/4 response
- 1966 Jenkin: N2 mustard 3/3 response
- 1968 Hustu: Combination V+C & RT- sustained resp-5 pt
- 1976 Jaffee: Improved survival VAC vs. Single agent
- 1976 Rosen MSKCC: RT + VACD Long term survival
- 1990 Nesbitt: VACD vs. VAC Improved EFS & LC

Study	Reference	Schedule	Patients	5-year EFS	p value ^a	Comments
IESS studies						
IESS-I (1973–1978)	Nesbit et al. [68]	VAC	342	24%	VAC vs. VAC + WLI, .001	Value of D
		VAC+WLI		44%	VAC vs. VACD, .001	Benefit of WLI?
		VACD		60%	VAC+WLI vs. VACD, .05	
IESS-II (1978–1982)	Burgert et al. [69]	VACD-HD	214	68%	.03	Value of aggressive cytoreduction
		VACD-MD		48%		
First POG–CCG, INT-0091 (1988–1993)	Grier et al. [75]	VACD	200	54%	.005	Value of combination IE in localized disease, no benefit in metastatic disease
		VACD+IE	198	69%		
Second POG– CCG <mark>(1995–1998)</mark>	Granowetter et al. [98]	VCD + IE <mark>48</mark> weeks	492	75% (3 yrs)	.57	No benefit of dose-time compression
		VCD+IE <mark>30</mark>		76% (3 yrs)		

Treatment results in selected clinical studies of localized Ewing's sarcoma

Paulussen et al. The Oncologist 2006;11:503–519

Study	Reference	Schedule	Patients	5-year EFS	p value ^a	Comments
CESS studies					-	
CESS-81 (1981–1985)	Jürgens et al. [67]	VACD	93	<100 ml, 80%; ≥100 ml 31% (both 3 yrs)		Tumor volume (< or ≥100 ml) and histo- logical response are prognostic factors
				Viable tumor <10%, 79%; >10%, 31% (both 3 yrs)		
CESS-86 (1986–1991)	Paulussen et al. [73]	<100 ml (SR): VACD	301	52% (10 yrs)		Intensive treatment with I for high-risk patients. Tumor volume (< or ≥200 ml) and histologic response as prognostic factor
		≥100 ml (HR): VAID		51% (10 yrs)		

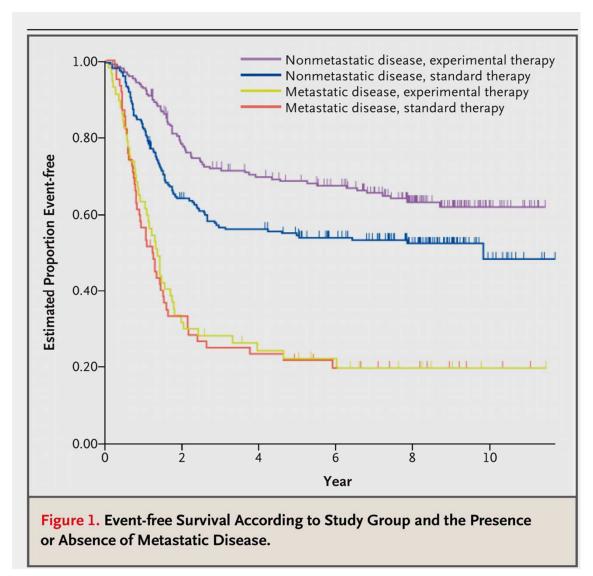
Paulussen et al. The Oncologist 2006;11:503–519

COMPARISION OF VACD vs. VACD + IE

Non metastatic (398)

Randomise

200 – standard therapy VACD 198 – experimental therapy VACD alt I+E


Metastatic (120)

Randomise

62 – standard arm 58 – experimental arm

Primary End-point: Event free survival

Holcombe E. et al N Engl J Med 2003;348:694-701

Without Mets The 5 year EFS Exper group - 69 % Standard - 54 %

With Mets The 5 year EFS Exper - 22 ± 5 % Standard - 22 ± 6 %

Holcombe E. et al N Engl J Med 2003;348:694-701

RESULTS

- Addition of I+E to VACD improved outcomes in patients with Non-metastatic
 Ewing's sarcoma BUT not with Metastatic disease
- Improvement was greatest with large primary tumors or primary tumors of the pelvis

LOCAL THERAPY FOR ESFT: EVOLUTION

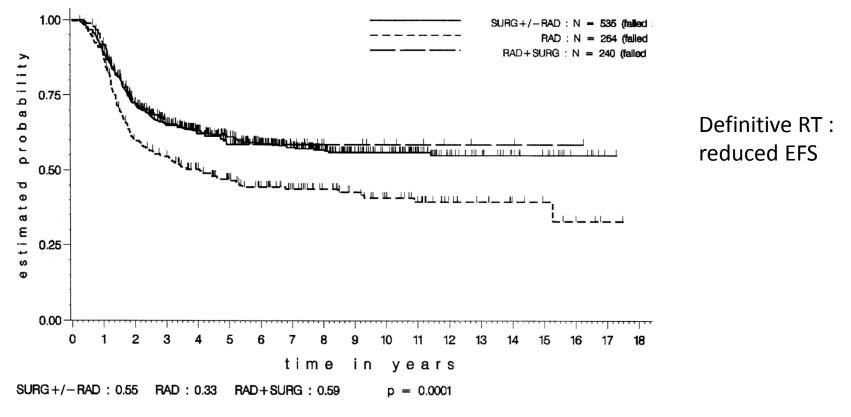
- o 1970s: limited imaging
 - Most patients received radiation therapy
 - Field encompassed the entire medullary cavity of the bone and all soft tissue extensions
 - o Dose: 5500-6500Gy
- o 1980s: Neoadjuvant chemotherapy/ improved imaging
 - Smaller field size: 3 cm margin in current trials
 - Improved technique/better machinery
 - o Dose: 4500-6500Gy
 - New surgical options available
 - o Prosthesis

Sx vs. XRT: RETROSPECTIVE REVIEWS

 Patients who undergo primary surgery have a better prognosis than patients who receive XRT

> (Pritchard et al. Mayo 1912-1968, 1975 and Wilkins Mayo 1969-1982, 1986) Selection bias: patients with smaller tumors and better prognostic sites are more likely to have surgery

- Patients who receive surgery/XRT have better prognosis than XRT alone (Sailer, MGH 1988)
 - 92% survival with surgery vs. 37% survival without surgery, significant on univariate analysis


	Definitive RT	Preoperative RT	Surgery with or without postoperative RT	Surgery without postoperative RT	Surgery with postoperative RT
CESS 81, CESS 86, EICESS 92	70/266 (26.3)	13/246 (5.3)	41/546 (7.5)	10/242 (4.1)	31/304 (10.2)
CESS 86, EICESS 92	50/222 (22.5)	11/239 (4.6)	29/452 (6.4)	5/192 (2.6)	24/260 (9.2)
Central	44/188 (23.4)	10/118 (8.5)	36/251 (14.3)	6/71 (8.5)	30/180 (16.7)
Proximal	14/46 (30.4)	0/59(0)	2/138 (1.4)	1/77 (1.3)	1/61 (1.6)
Distal	12/32 (37.5)	3/69 (4.3)	3/157 (1.9)	3/94 (3.1)	0/63 (0)
Tumor volume (cm ³)					
<100	17/93 (18.3)	2/85 (2.4)	12/172 (6.9)	5/82 (6.1)	7/90 (7.8)
≥100	39/137 (28.5)	10/150 (6.7)	21/314 (6.6)	3/133 (2.3)	18/181 (9.9)
Radical resection	_	0/4 (0)	1/68 (1.4)	1/63 (1.6)	0/5 (0)
Wide resection	_	8/165 (4.8)	19/318 (5.9)	6/145 (4.1)	13/173 (7.5)
Marginal resection	_	0/30(0)	4/70 (5.7)	1/18 (5.6)	3/52 (5.8)
Intralesional resection	_	1/14 (7.1)	11/51 (21.5)	2/7 (28.6)	9/44 (20.5)
Good histologic response after		, , ,			
initial chemotherapy	_	_	14/282 (4.9)	3/154(2)	11/128 (8.6)
Poor histologic response	_	_	11/150 (7.3)	3/46 (6.5)	8/104 (7.7)

Local and combined local and systemic relapses according to local therapy modality

	Definitive RT	Preoperative RT	Surgery with or without postoperative RT	Surgery without postoperative RT	Surgery with postoperative RT
Extremity tumor (cm ³)					
<100	10/36 (27.7)	1/56 (1.7)	3/110 (2.7)	3/64 (4.6)	0/46(0)
≥100	11/31 (35.4)	2/67 (2.9)	1/159 (0.6)	0/88(0)	1/71 (1.4)
Central tumor (cm ³)					
<100	7/57 (12.3)	1/29 (3.4)	9/62 (14.5)	2/18 (11.1)	7/44 (15.9)
≥100	28/106 (26.4)	8/83 (9.6)	20/155 (12.9)	3/45 (6.6)	17/110 (15.4)
Wide resection and good histologic response	_	_	6/190 (3.1)	1/101 (1)	5/89 (5.6)
Wide resection and poor histologic response	_	_	6/84 (7.1)	3/25 (12)	3/59 (5.0)

Local and combined local and systemic relapses according to combined tumor or treatment characteristics

LOCAL THERAPY IN LOCALIZED EWING TUMORS: RESULTS OF 1058 PATIENTS TREATED IN THE CESS 81, CESS 86, AND EICESS 92 TRIALS

. EFS according to local therapy in CESS 81, CESS 86, and EICESS 92.

ANDREAS SCHUCK, et al ; IJROBP, 55(1),168–177, 2003

LOCAL THERAPY & EFS

Study	% 5yr EFS					local therapy in %		
	all	Sx	Sx+RT	RT	Sx	Sx+RT	RT	
======================================					34	_	===== 34	
CESS 86	$61 \pm 7\%$	$62 \pm 15\%$	$63 \pm 10\%$	$58{\scriptstyle~\pm15\%}$	22	53	25	
EICESS 92	$64 \pm 6\%$	$72{\scriptstyle~\pm13\%}$	$66 \pm 7\%$	$46{\scriptstyle~\pm~13\%}$	15	65	20	

RADIOTHERAPY - INDICATIONS

Definitive Radiotherapy

Location (Unfavourable): Axial, Pelvic with involvement of adjacent joints

Intralesional resection expected

Post-op adjuvant Radiotherapy

Gross or microscopic positive margin

Poor histological response to chemo

Pre Treatment Fracture/ Hematoma/ Tissue Violation

TARGET VOLUME

Phase I (Large volume) (45Gy/ 25#/ 5wks):

Pre-chemotherapy tumor volume on MRI + 1.5-3 cm longitudinal margin

Appropriate modifications into cavities or the lung

Phase II (Boost) (10.8Gy/ 6#/ 2wks):

Post-operative/ Post - CTh gross residual disease + 1.5–2 cm margins

Int. J. Radiation Oncology Biol. Phys., Vol. 42, No. 1, pp. 125–135, 1998 Copyright © 1998 Elsevier Science Inc. Printed in the USA. All rights reserved 0360-3016/98 \$19.00 + .00

PII S0360-3016(98)00191-6

• Clinical Investigation

A MULTIDISCIPLINARY STUDY INVESTIGATING RADIOTHERAPY IN EWING'S SARCOMA: END RESULTS OF POG #8346

SARAH S. DONALDSON, M.D.,* MARGARET TORREY, M.D.,* MICHAEL P. LINK, M.D.,* ARVIN GLICKSMAN, M.D.,[†] LOUIS GILULA, M.D.,[‡] FRAN LAURIE, B.S.,[†] JOHN MANNING, M.D.,[§] JAMES NEFF, M.D.,^{||} WILLIAM REINUS, M.D.,[‡] ELIZABETH THOMPSON, M.D.,[#] JONATHAN J. SHUSTER, PH.D.[¶]

- 178 eligible patients
- ■141 (79%) had localized disease and 37 (21%) had metastatic disease
- 37 of the localized patients underwent resection of whom 16 (43%) required postoperative radiotherapy
- Remaining 104 localized patients were eligible for randomization to receive radiotherapy

- 94 patients received radiotherapy.
- Forty patients were randomized to receive
- o either Whole bone (n = 20) vs. Involved field (n = 20) RT
- Outcome by treatment field

0	5-year EFS: Whole bone	37%
	Involved Field	39%

• Conclusion: Tailored Portals for Radiotherapy in Ewing's Sarcoma

POST-OP ADJUVANT RADIOTHERAPY

Surg .margins	Necrosis 100 %	Necrosis <100 %	Boost
Negative	NO RT	45 Gy	
Close (< 1cm)	45 Gy	50 Gy	5.4 Gy
Micro R1	45 Gy	50 Gy	5.4 Gy
Gross R2	50 Gy	55 Gy	5.4-10-8

TIMING OF POST-OPERATIVE RADIATION

In an analysis of patients receiving PORT in the CESS 86 and EICESS trials,

Schuck et al

No significant difference in the local control and survival who received RT within 60 days of surgery or later.

Dunst J et al

Improved local control in CESS 86 over CESS 81 timing of RT was brought forward from the 18th week to the 10th week

Schuck A,. Strahlenther Onkol 2002;178:25–31.

Dunst J, Results of CESS 81 and CESS 86. Cancer 1991;67:2818–2825

DOES PORT ACTUALLY BENEFIT PATIENTS WITH POOR RESPONSE TO CHEMOTHERAPY?

The EICESS 92 – first cooperative group include poor histologic response (<90% necrosis) as an indication for PORT even with clear surgical margins.

Reduction in local failures (5% vs. 12%) in the poor responders if they received PORT

Schuck A: Results of 1058 patients treated in the CESS 81, CESS 86, and EICESS 92 trials. IJROBP 2003;55:168–177.

TABLE IV.	Summary of	Recommendations on	Post-Operative RT
-----------	------------	--------------------	--------------------------

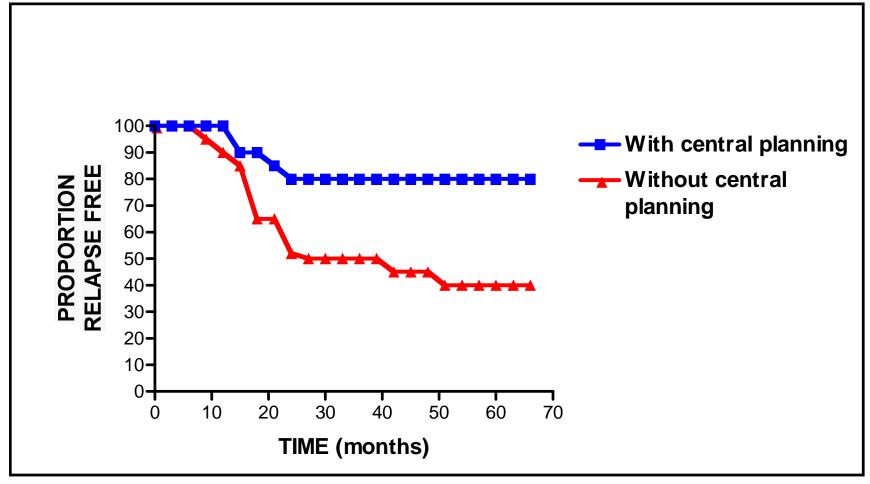
Indications	Gross or microscopic positive margins
	Clear margins but poor histopathological response to chemotherapy (necrosis <90% is the suggested minimum threshold, but <95–99% may be used based on institutional practice)
Timing	Within 6–8 weeks of surgery (though there is no evidence to suggest that a further delay leads to inferior outcomes)
Dose	45 Gy to the pre-chemotherapy volume
	10.8 Gy boost to areas of gross tumor residual
Fractionation	Standard daily fractionation of 1.8 Gy per fraction
	Hyperfractionated RT (with equivalent total dose) may be used to reduce long term side effects
Target volume	Initial phase (45 Gy): pre-chemotherapy tumor volume on MRI with 1.5–2 cm margins. Appropriate modifications should be made in tumors expanding into cavities or the lung
	Boost phase (10.8 Gy): post-operative gross residual disease with 1.5-2 cm margins

Laskar S. Pediatr Blood Cancer 2008;51:575–580

MANAGEMENT OF PULMONARY METASTASES

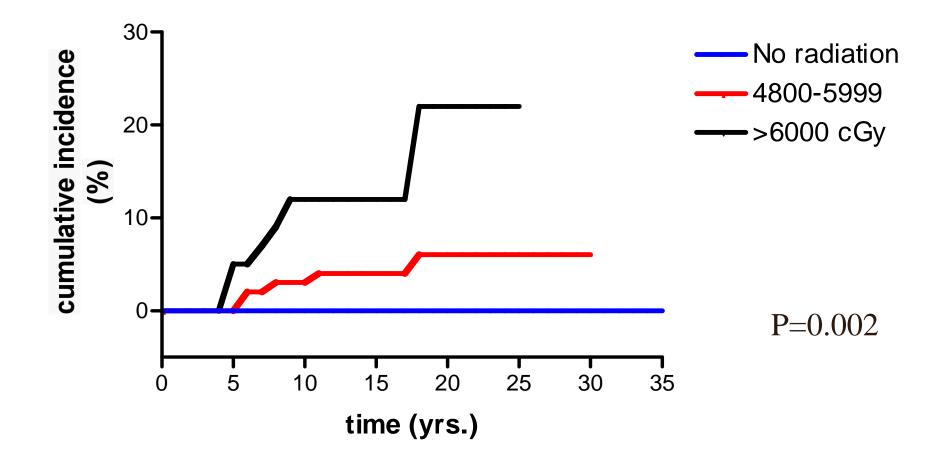
- Whole Lung Irradiation
 - Biologic effect observed in randomized trials following 1500-1800 rads in nonmetastatic patients in IESS-1
 - 5 yr. RFS
 - VACA 60%>
 VAC + Pulm XRT 44%
 VAC 24%

(Nesbit 1990)

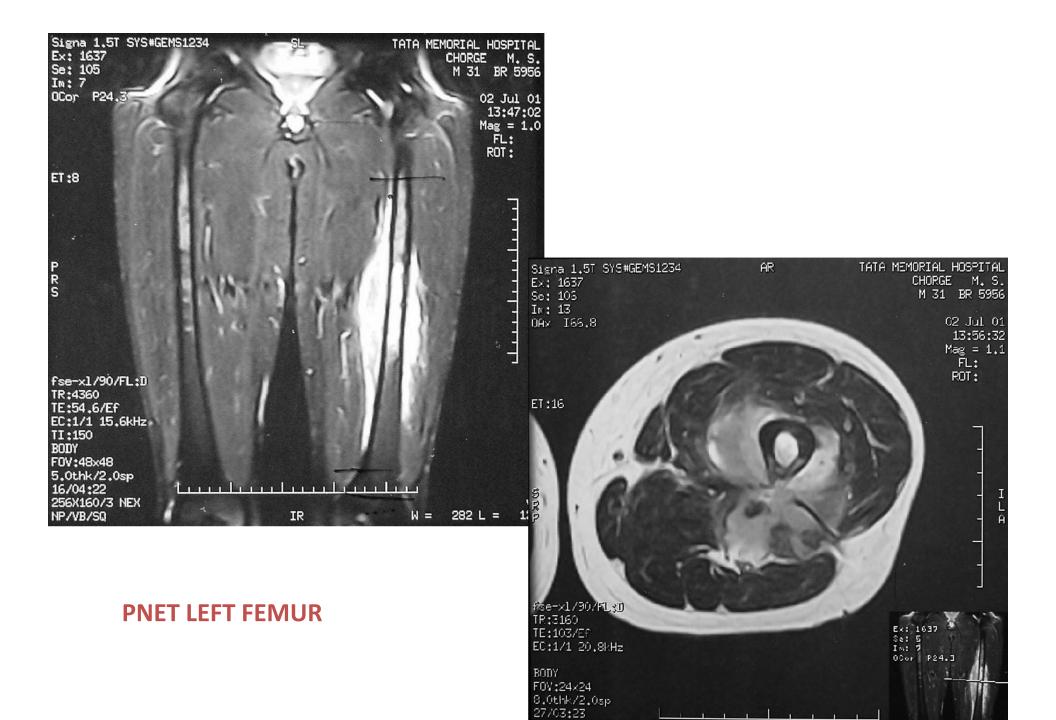

- Dose response effect reported between 12-21Gy (Dunst, 1993) using historical, non-randomized analyses
- Retrospective Analysis of CESS 81,CESS 86,CESS 92 (Paulssen, JCO 1998)
 - Improved survival in patients with metastatic disease who receive whole lung irradiation
 - Independent prognostic factor in Cox analysis but not logistic regression analysis
- Long term morbidity not well defined
- Standard treatment arm on current EuroEwing's Trial for patients with pulmonary metastases

WHOLE LUNG RT (LUNG BATH) FOR LUNG METS

o Analysis EI-CESS 92 trial


Lung Mets (5 year EFS):
 WLI EFS 47%
 Without WLI 24%

RADIATION PLANNING OF CRITICAL IMPORTANCE IN THE TREATMENT OF EWING'S SARCOMA (CESS-81)



Sauer et al., Radiotherapy and oncology, 1987

SECOND MALIGNANCIES AFTER RADIOTHERAPY

Adapted from Kuttesch, JCO, 1997

256X160/3 NEX

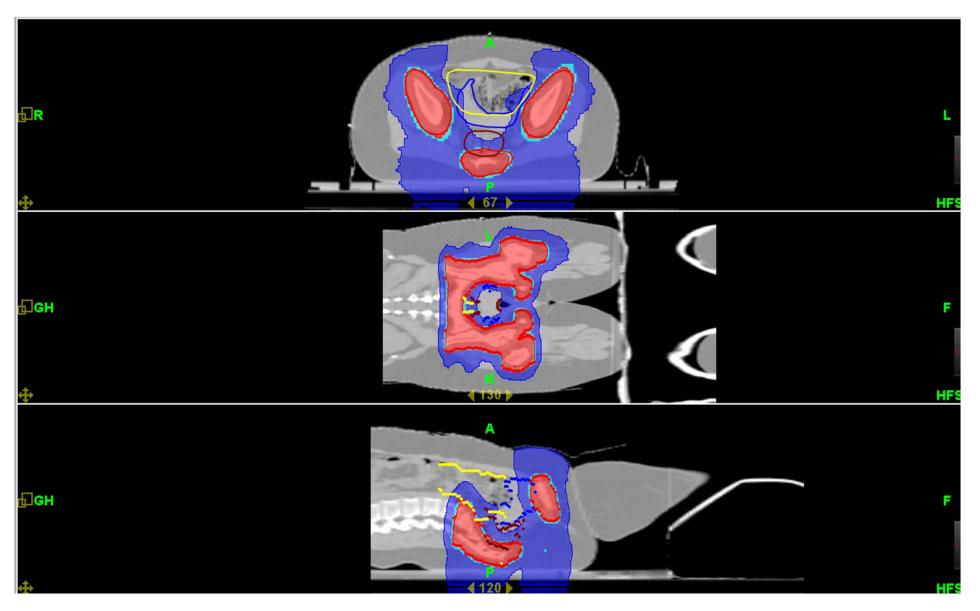
NP/VB

M =

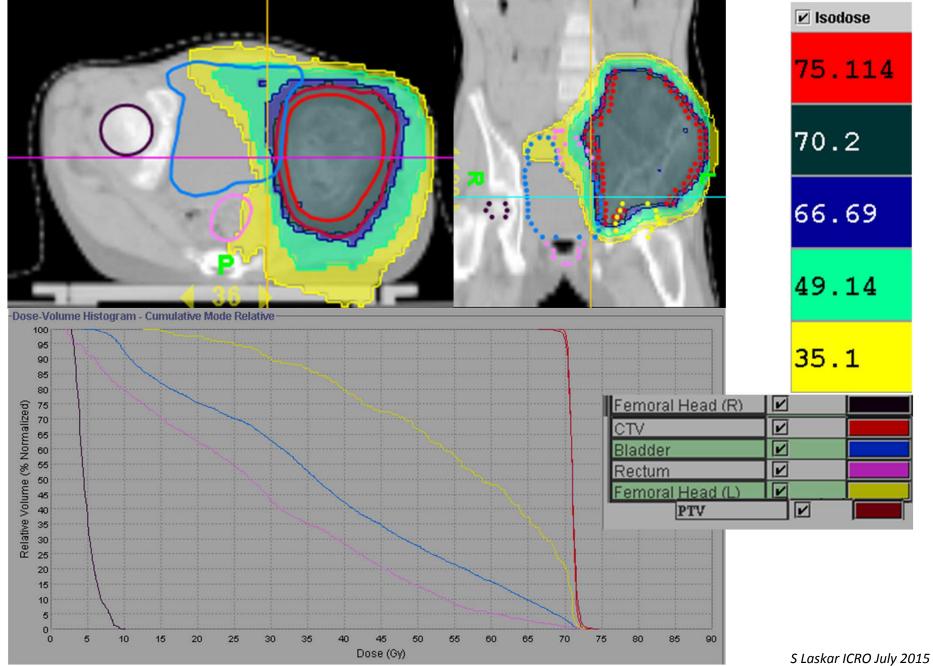
W = 701 L =

PL

375 L


141

RT PORTAL MARKED ON PATIENT


RT SIMULATION FILM

RT DOSE: 45-55Gy 🚞

NORMAL TISSUE SPARING USING ADVANCED TECHNIQUES

RT DOSE ESCALATION USING ADVANCED TECHNIQUES

SUMMARY & CONCLUSIONS

- Ewing's sarcoma is best managed with multimodality approach comprising multiagent chemotherapy & local therapy (Surgery/ Radiotherapy).
- Organ & function preserving surgery remains the standard local therapy wherever feasible with negative surgical margins.
- Radiation therapy forms an important component of therapy for achieving optimal local control
- Definitive radiation therapy in patients with surgically inoperable disease can result in good local controls with the use of optimal dose & technique
- Adverse effects of radiation can be reduced significantly using modern radiotherapy techniques like 3D-CRT, IMRT, & Proton beam therapy.