Molecular Genetics of Paediatric Solid Tumours – aetiology, diagnosis, prognostic & therapeutic implications

D RAGHUNADHARAO MD DM HOMI BHABHA CANCER HOSPITAL & RESEARCH CENTRE VISAKHAPATNAM

Distribution of childhood tumours

Developmental origins

Figure 1. Pediatric solid tumors have diverse developmental origins. Unlike hematologic malignancies and brain tumors, pediatric solid tumors can arise from any of the three germ layers in the embryo. Representative examples are highlighted for each lineage.

Simplified lineage diagram for several mesodermally derived lineages

Hedgehog pathway mutations

Hereditary Syndromes Associated with Childhood Cancer Predisposition

Syndrome	OMIM Entry ^a	Major Tumor Types	Mode of Inheritance	Genes		
Hereditary Gastrointestinal Malignancies						
Adenomatous polyposis of the colon	175100	Colon, thyroid, stomach, intestine, hepatoblastoma	Dominant	APC		
Juvenile polyposis	174900	Gastrointestinal	Dominant	SMAD4/DPC4		
Peutz-Jeghers syndrome	175200	Intestinal, ovarian, pancreatic	Dominant	STK11		

Genitourinary Predispositions...

Simpson-Golabi- Behmel syndrome	312870	Embryonal tumors, Wilms tumor	X-linked	GPC3
Von Hippel- Lindau syndrome	193300	Retinal and central nervous hemangioblastoma, pheochromocytoma, renal cell carcinoma	Dominant	VHL
Beckwith- Wiedemann syndrome	130650	Wilms tumor, hepatoblastoma, adrenal carcinoma, rhabdomyosarcoma	Dominant	CDKN1C/NSD1
Wilms tumor syndrome	194070	Wilms tumor	Dominant	WT1
WAGR syndrome	194072	Wilms tumor, gonadoblastoma	Dominant	WT1
Costello syndrome	218040	Neuroblastoma, rhabdomyosarcoma, bladder carcinoma	Dominant	H-Ras

Central Nervous System Predisposition syndromes

Retinoblastoma	180200	Retinoblastoma, osteosarcoma	Dominant	RB1
Rhabdoid predisposition syndrome	601607	Rhabdoid tumor, medulloblastoma, choroid plexus tumor		SNF5/INI1
Medulloblastoma predisposition	607035	Medulloblastoma	Dominant	SUFU

Timeline of technologies for identification of gene rearrangements

Boo Messahel, Ruth Nash, Iona Jeffrey, Kathy Pritchard-Jones, Sandra Hing

Common Cytogenetic Rearrangements in Solid Tumors of Childhood

Solid Tumor	Cytogenetic Rearrangement	Genes ^a	
Ewing sarcoma	t(11;22) (q24;q12), +8	EWS(22) FLi-1(11)	
Neuroblastoma	del1p32–36, DMs, HSRs, +17q21- qter	N-MYC	
Retinoblastoma	del13q14	Rb	
Wilms tumor	del11p13, t(3;17)	WT1	
Synovial sarcoma	t(X;11) (p11;q11)	SSX(X) SYT(18)	
Osteogenic sarcoma	del13q14	?	
Rhabdomyosarcoma	t(2;13) (q37;q14), t(2;11),3p-,11p-	PAX3(2) FOXO1(13)	
Peripheral neuroepithelioma	t(11;22) (q24;q12), +8	EWS(22) FLi-1(11)	
Astrocytoma	i(17q)	?	
Meningioma	delq22, -22	MN1, NF2, ?	
Atypical teratoid/rhabdoid tumor	delq22.11	SNF 5	
Germ cell tumor	i(12p)		

Table 1. Chromosomal Regions and Genes Proven or Speculated Involved in Neuroblastoma Tumorigenesis

Chromosomal Locus	Gene Name	Gene Type/Function*	
1p36.2-p36.3		Tumor suppressor	
1p13	NGF	Neurotrophin; ligand for NTRK1	
1q23-q31	NTRK1 (TRK-A)	Receptor tyrosine kinase	
2p12-13	MAD	May regulate MYCN	
2p24.1	MYCN	Proto-oncogene	
2p24	DDX1	RNA helicase/oncogene	
3р		Tumor suppressor	
4p		Tumor suppressor	
7q21	PGY1 (MDR1)	Multidrug resistance	
9q22.1	NTRK2 (TRK-B)	Receptor tyrosine kinase	
11p13	CD44	Integrin/metastasis suppression	
11p13	BDNF	Neurotrophin; ligand for NTRK1	
11q23		Tumor suppressor	
12p13	NTF3 (NT-3)	Neurotrophin; ligand for NTRK3	
14q23	MAX	Regulates MYCN	
14q23-qter		Tumor suppressor	
15q24-q25	NTRK3 (TRK-C)	Receptor tyrosine kinase	
16p13.1	MRP	Multidrug resistance	
17q22	NME1	Nucleoside kinase/metastasis suppression	
17q23-qter		Oncogene	
18q21.1	DCC	Tumor suppressor	
18q21.3	BCL2	Apoptosis suppression	
19	NTF4 (NT-4)	Neurotrophin; ligand for NTRK2	

Nmyc interactions

Fig 1. Model of MycN interactions with other proteins. Genomic amplification of *MYCN* leads to increased MycN nuclear protein. Heterodimerization of MycN and Max is favored in the presence of excess MycN (arrows). Transcriptional activation of target genes occurs after interaction of the MycN/Max complex with the promoter region through an E-box motif (CACGTG). In the absence of MycN, it is postulated that the transcriptional repressing protein complexes Max/Max, Max/Mad, and Max/Mxi1 predominate and function to repress transcription.

CGH in neuroblastoma

Fig 2. Comparative genomic hybridization of primary neuroblastomas. Summary of the chromosomal gains (green) and losses (red) present in a representative panel of 29 primary tumors.³⁷ Thick bars represent high level genomic amplification and each thick bar at the *MYCN* locus (2p24) represents the pattern of gain in two distinct cases.

Hypothetical models of neuroblastomas

The small round blue-cell tumours of childhood

Dual-colour fluorescent in-situ hybridisation using two probes spanning the EWS gene locus on chromosome 22 . A split in the green and red signal indicates rearrangement of EWS. This shows high-level amplification Schematic diagram of normal *EWS* on chromosome 22 (green exons), normal *FLI1* on chromosome 11 (blue)

		Gene involved or				
Type of tumor	Chromosomal abnormality	fusion gene	Prevalence	e FISH	RT-PCR*	Prognosis [†]
Rhabdomyosarcoma						
Botryoid	NA	NA	NA	NA	NA	Good
Spindle cell	NA	NA	NA	NA	NA	Good
Embryonal	Gains of 2, 7, 8, 12, 13; losses of 1, 6, 9, 14, and 17 ⁵⁰	IGF2, GOK, PTCH TP53	NA	NA	NA	Good
Alveolar	t(2;13)(q35;q14); t(1;13)(p36;q14)	PAX3-FKHR PAX7-FKHR	75% 10%	Ref.67	Ref.13	Poor [‡]
Undifferentiated	NA	NA	NA	NA	NA	Poor
Non-rhabdomyosarcoma-EV EWS/PNET	VS family t(11;22)(q24;q12)	EWS-FLI-1	85–95%	Ref.108	Ref.109	Good with type I fusion transcripts [‡]
DSRCT Clear cell sarcoma Extraskeletal myxoid chondrosarcoma [§]	t(21;22)(q22;q12) t(7;22)(p22;q12) t(17;22)(q21;q12) t(2;22)(q33;q12) Inversion of 22q t(11;22)(p13;q12) t(12;22)(q13;q12) t(9;22)(q22-23;q11-12)	EWS-ERG EWS-ETV1 EWS-E1AF EWS-FEV EWS-ZSG EWS-ZSG EWS-WT1 EWS-ATF1 EWS-TEC (CHN)	5–10% <1% <1% <1% >95% 90% 75%	NA Ref.110 Ref.111	Ref.24 Ref.37 Ref.43, 96	Poor Poor Good
Extraskeletal mesenchymal	t(9;15)(q22;q21) t(9;17)(q22;q11) der(13;21)(q10;q10)	TCF12-TEC TAF2N-TEC NA	NA 25% NA	Ref.114	Ref.43, 112 Ref.113 NA	Poor

Table 1. Summary of Genetic/Molecular Lesions in Pediatric Soft Tissue Tumors

chondrosarcoma

Algorithm highlighting diagnostic contribution by molecular genetic study

Chang and Shidham JMD August 2003, Vol. 3 No. 3

*Requires proper clinical and morphological correlation. Performed with molecular diagnostic techniques using frozen tissue (preferred), cytology smears, or formalin-fixed paraffin-embedded tissue. "No diagnostic immunohistochemistry markers available for aiding in diagnosis.

Ewing sarcoma

t(11;22) Translocation in Ewing's Sarcoma

a Primitive cells arranged in formless sheets b CD99 strong perimembranous

staining

c Dual colour FISH with break-apart EWS probe Figure 4 Differential diagnosis of a soft-tissue sarcoma by reverse transcriptase-PCR. Amplification of the expected size transcript for EWS-FLI1 (A), SYT-SSX (B). PAX3-FKHR (C), a...

Alveolar rhabdomyosarcoma. Note the discohesive nature of the primitive rhabdomyoblasts lining fibrovascular septae. When present, giant cells are a helpful feature in distinguishing ARMS from embryonal rhabdomyosarcoma

Bruce R. Pawel Recent advances in the molecular diagnosis of paediatric soft tissue sarcomas Diagnostic Histopathology, Volume 17, Issue 1, 2011, 25 - 35

Figure 3 a Ewing sarcoma. Primitive cells arranged in formless sheets (haematoxylin & amp; eosin). b CD99 strong perimembranous staining in Ewing sarcoma. c Dual colour FISH with break-apart EWS probe, performed on interphase nuclei in a case of Ewing... Bruce R. Pawel

Recent advances in the molecular diagnosis of paediatric soft tissue sarcomas

Diagnostic Histopathology, Volume 17, Issue 1, 2011, 25 - 35

Figure 5 a Desmoplastic small round cell tumour. b Infantile fibrosarcoma. c Clear cell sarcoma. d Low-grade fibromyxoid sarcoma, with large fibrous rosette (all haematoxylin & amp; eosin).

Bruce R. Pawel

Recent advances in the molecular diagnosis of paediatric soft tissue sarcomas

Diagnostic Histopathology, Volume 17, Issue 1, 2011, 25 - 35

Figure 6 Synovial sarcoma. a Biphasic pattern with glands and spindled cells (haematoxylin & amp; eosin). b Immunohistochemistry for INI1 in synovial sarcoma, with endothelial cells serving as positive internal controls. Tumour cells demonstrate weak to...

Bruce R. Pawel

Recent advances in the molecular diagnosis of paediatric soft tissue sarcomas

Diagnostic Histopathology, Volume 17, Issue 1, 2011, 25 - 35

Figure 7 Malignant rhabdoid tumour. a Typical rhabdoid cells with eccentric eosinophilic globular cytoplasmic inclusions, vesicular nuclei and prominent nucleoli (haematoxylin & amp; eosin). b Immunohistochemistry for INI1, showing absence of nuclear st...

Bruce R. Pawel

Recent advances in the molecular diagnosis of paediatric soft tissue sarcomas

Diagnostic Histopathology, Volume 17, Issue 1, 2011, 25 - 35

Using molecular tools to prognosticate

	Туре 1	Type 2A	Type 2B
MYCN	Normal	Normal	Amplified
DNA ploidy	Hyperdiploid or near triploid	Near diploid or near tetraploid	Near diploid or near tetraploid
17q gain	Rare	Common	Common
11q, 14q LOH	Rare	Common	Rare
1p LOH	Rare	Rare	Common
NTRK1 expression	High	Low or absent	Low or absent
NTRK2 expression	Truncated	Low or absent	High (full length)
NTRK3 expression	High	Low or absent	Low or absent
Age	<1 year*	>1 year*	1–5 years*
INSS	1, 2-4S*	3, 4*	3, 4
5-year survival (%)	95	40-50	25

LOH=loss of heterozygosity; INSS=international neuroblastoma staging system; *In most cases.

Identifying the target & drug discovery

- 226 children with high risk neuroblastoma who had at least achieved a PR to multiple earlier treatments
- GD2 surface protein as target: Dinutuximab binds to cell surface GD2 and induces cell lysis of GD2 expressing cells through antibodydependent cell-mediated cytotoxicity (ADCC) and complementdependent cytotoxicity (CDC)
- Randomised to 13cisRA versus Dinutuximab+RA+GM-CSF+IL-2 (combination)
- 3- years post therapy:
 - 63% on combination were alive and free of tumor growth or recurrence, compared to 46% of subjects treated with RA alone
 - Updated analysis of survival, 73% of subjects who received the combination were alive compared with 58% of those receiving RA alone

Ewing's sarcoma: approaches to targeting

Jully & Rajkumar Indian J Med Paediatr Oncol. 2012 Oct-Dec; 33(4): 195–202

ES: t(11:22) EWS-FLI1

Insulin-like growth factor 1 receptor monoclonal antibodies against Ewing's sarcoma

Drug	Manufacturer	Current status
R1507	Roche	PC
CP-751,871 (figitumumab)	Pfizer	PC
AMG-479	Amgen	С
SCH-717454 (robatumumab)	Schering-Plough	PC*
IMC-A12 (cixutumumab)	Imclone	A+
MK-0646	Merck	A+
BIIB022	Biogen Idec	А
AVE-1642	Sanofi-Aventis	А

Small-molecule inhibitors of insulin-like growth factor 1 receptor

Drug	Manufacturer	Current status
OSI-906	OSI Pharmaceuticals	In vivo and in vitro activity in EWS, some activity in chondrosarcoma
BMS-554417	Bristol-Myers Squibb	In vitro activity against EWS
XL-228	Exelixis	A multitargeted protein kinase inhibitor targeting IGF1R, FGFR1-3, the Aurora kinases, and the ABL, ALK, and SRC family kinases
INSM-18	Insmed and UCSF	Orally bioavailable small molecule tyrosine kinase inhibitor that has demonstrated selective inhibition of IGF1R and human epidermal growth factor receptor (Her2/Neu).
GSK1904529A and GSK1838705A	GlaxoSmithKline	In vitro activity in EWS cell lines

WT1: Functional motifs and interactions

The 4 molecular subtypes of medulloblastoma

Molecular	Approximate percent of	Typical patient	Typical Histology	Cytogenetic	Molecular markers	Clinical strategy
Subtype	patients	age		markers		
WNT	10%	Older	Classic	Monosomy 6	Beta-catenin	Reduction in therapy
		childhood				
SHH	25%	Infant and	Desmoplastic or	9q loss	SFRP1[<u>47</u>]or GAB1[<u>50</u>]	SHH pathway inhibitors
		Adult	Classic			
Group C	30%	Childhood	Classic or	Isochromosome	MYC activation in 50% of	Intensified therapy, novel
			Anaplastic	17q	this subtype	therapeutics
Group D	35%	Childhood	Classic or	Isochromosome	Unknown	Research focus needed
			Anaplastic	17q		

Curr Opin Pediatr. 2012 Feb; 24(1): 33–39

Summary: molecular genetics in childhood solid tumours

- Identifying the molecular pathway helps characterise the tumour
- Allows precision diagnosis, segregates prognostic groups, identifies treatment algorithms
- Helps drive in silico, in vitro identification of druggable targets
- Helps chose agents for targeting childhood solid tumours

Every failure is a stepping stone to success