Toxicity Considerations in Brain Tumours and Reirradiation in Brain Tumours

Dr Jayant S. Goda, MD, DNB, MRes Dr Rakesh Jalali, MD Dr Tejpal Gupta MD,DNB

Tata Memorial Centre Mumbai

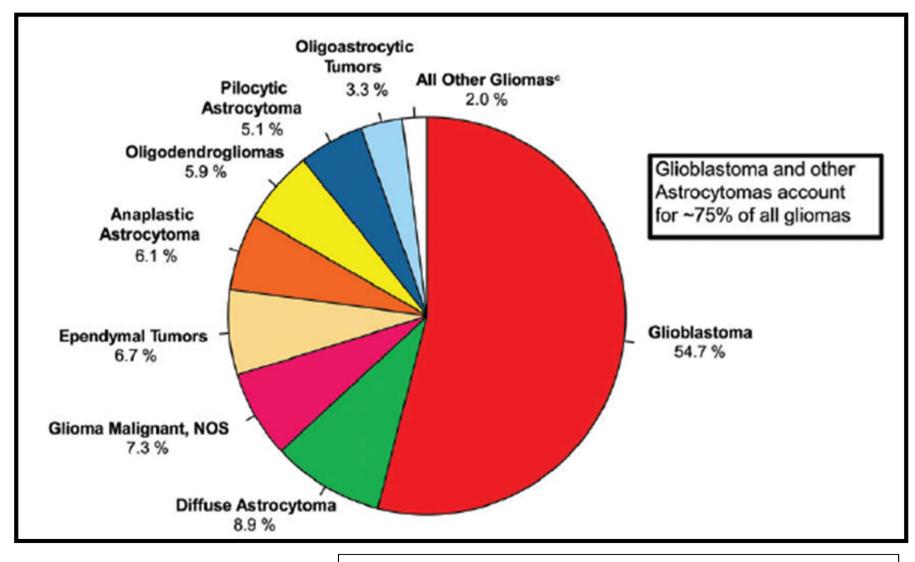
Toxicity Considerations in Brain Tumour Radiation

- Brain: Symptomatic necrosis
- Brain Stem: Necrosis or Cranial neuropathy
- Optic nerves: Optic neuropathy
- Retina: Blindness
- Cochlea: Hearing loss
- Hippocampus & left temporal lobe: neurocognition and memory deficits

Transition from Emami to QUANTEC Cranial Radiation---- Toxicity

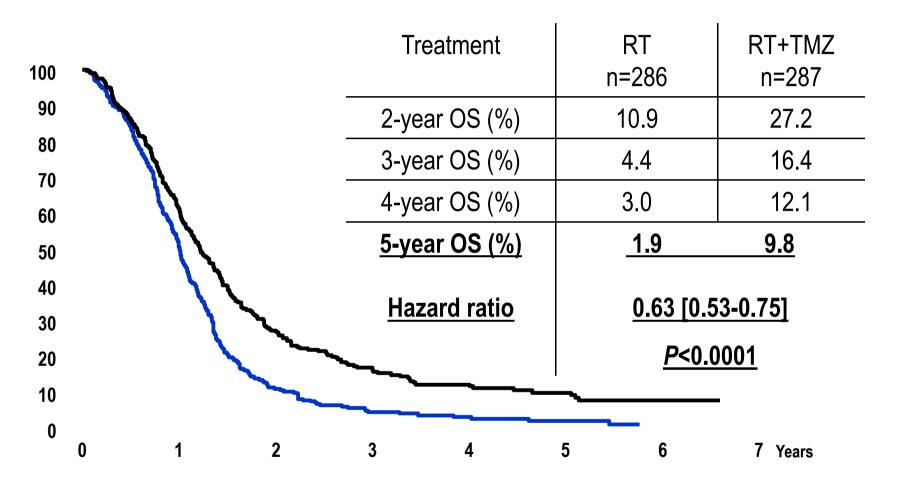
Organ	Endpoint	Rate (%)	Dose-volume parameter	D _{max} (Gy)	D _{mean} (Gy)
Brain	Symptomatic necrosis	<3		<60	
		<5		<65	
Brainstem	Necrosis or cranial neuropathy	<5	D100 <54 Gy		
	· ·	<5	D1–10 cc ≤59 Gy	<64 Point	
Spinal cord	Grade ≥2 myelopathy	<1		50	
Optic nerve &	Optic neuropathy	<3		<55	<50
chiasm		3–7		55-60	
Retina	Blindness	<1		<50	
Cochlea	Hearing loss	<15			≤45

IMRT, SRS, CT+RT, ALTEREDFRACTIONATION



QUANTEC

organ	endpoint	technique	rate	Dose-volume parameters	Dmax(Gy)	Dmaen(Gy)
Brain	Necrosis	Convention al	5%		72Gy	
		SRS		5-10cc <12Gy		
Brain Stem	Necrosis	Convention al	5%	0.3cc <60Gy		54Gy
		SRS			<12.5Gy	
Optic nerve & chiasm	Optic neuropathy	Convention al		0.3cc <54-60 Gy		<50gy
		SRS				<8Gy
Cochlea	Hearing loss	Convention al				45Gy(35)
		SRS			12-14Gy	


Re-irradiation in brain tumors

Stats about primary brain tumors

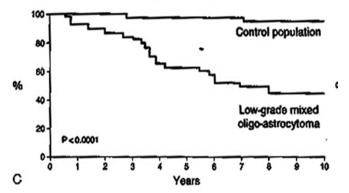
Ostrom et al, CBTRUS 2007-2011, Neuro Oncol 2014

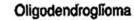
Récurrences: Hallmark in GBM

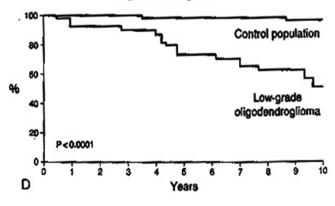

0

Stupp et al NEJM 2005

Stupp et al Lancet Oncol 2009


Recurrences in LGG

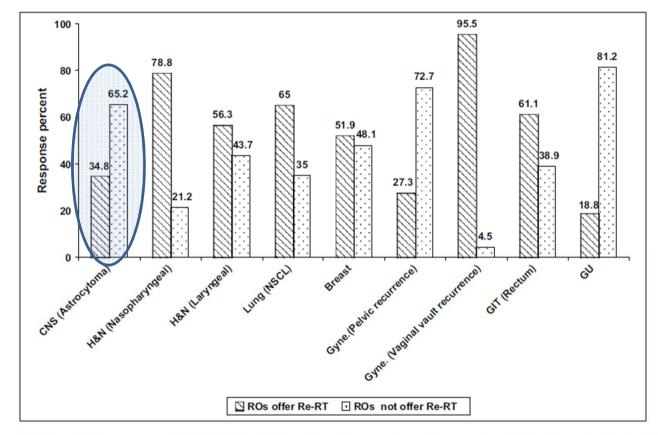

Diffuse Fibrillary Astrocytoma

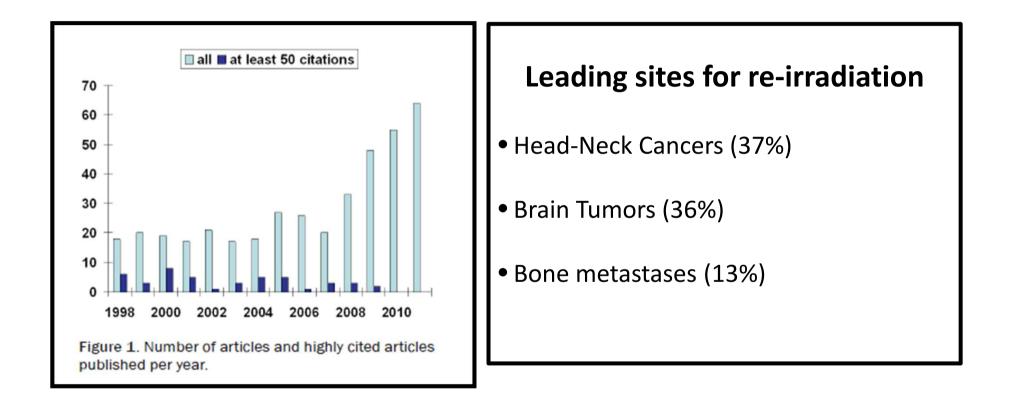


Survival Astrocy	tomas	Oligo-Astros	Oligodendrogliomas
Median (yr)	4.7	7.1	9.8
2-yr (%)	80	89	93
5-yr (%)	46	63	73
10-yr (%)	17	33	49
15-yr (%)	17	17	49

Shaw E, 2000

We are still Hesitant to Reirradiate




Fig. 1. Poll of radiation oncologists' (ROs) opinions for case scenarios of patients referred for reirradiation (Re-RT). *Abbreviations:* CNS = central nervous system; H&N = head and neck; NSCL = non-small-cell lung cancer; gyne = gynecologic; GIT = gastrointestinal; GU = genitourinary.

Joseph,, IJROBP 2008

And Here's Why...

- Patients are complicated.
- planning is complicated.
- Toxicity concerns usually dominate, especially concern for late toxicity.
- Liability is high.
- success rates are thought to be low.
- uncertainty is great.
- Saying "No" is usually the easiest course.

Increasing frequency of reirradiation studies in radiation oncology: systematic review of highly cited articles

Nieder et al, Am J Cancer Res 2013

How to justify re-irradiation in brain tumors?

Rationale of reirradiation in brain tumors

• Large majority of brain tumors still remain localized at recurrence (within 2cm)

RT is an *effective local treatment* for brain tumors (provides good local control)

• Recurrent brain tumors are associated with significant morbidity & mortality

ReRT has some proven efficacy (symptom relief & prolongation of survival)

• Alternative options if any are neither very effective, nor very affording

Limited benefit of chemotherapy (TMZ) or targeted therapy (Bevacizumab) alone

Despite significant advances in neurosurgery, radiotherapy, chemotherapy, and targeted therapy, outcomes of recurrent brain tumors continue to remain dismal

Common brain tumors types where reirradiation is offered at recurrence/progression

• Recurrent high-grade glioma

Most common indication & by far most widely studied

• Recurrent ependymoma

Tumor type where reirradiation probably is most effective

• Recurrent medulloblastoma

Emerging role of reirradiation as salvage therapy

Techniques of reirradiation in brain tumors

- Conventional Radiation Therapy (CRT)
- Fractionated Stereotactic Radiation Therapy (FSRT)
- Stereotactic Radio-Surgery (SRS)
- Intensity Modulated Radiation Therapy (IMRT)

•Brachytherapy

•Proton Therapy

IMRT either conventionally fractionated or hypofractionated with imageguidance has become increasingly popular in recent times

Fractionation at reirradiation in brain tumors

• Conventionally fractionation radiation therapy (CFRT)

Standard **1.8-2Gy per fraction**, 5 fractions per week over 4-6 weeks

• Hypofractionated Radiation Therapy (HypoRT)

Large dose (>2.5-3Gy) per fraction, 3-5 fractions per week over 2-5 weeks

• Stereotactic Radio-Surgery (SRS)

Large dose typically >12-15Gy given as a single fraction

• Hyperfractionated Radiation Therapy (HFRT)

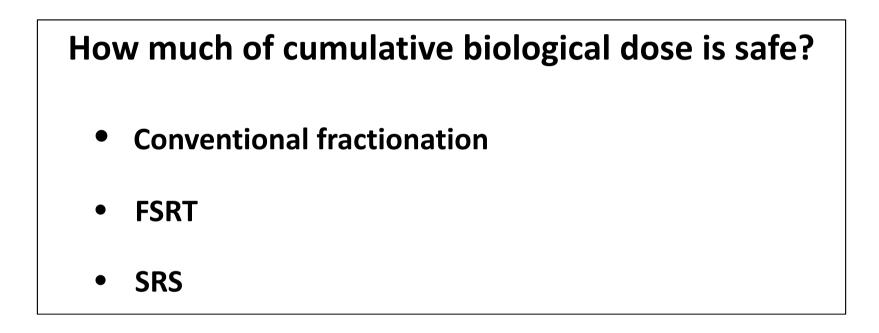
Small dose (1-1.2Gy per fraction), 2 #s daily (6 hrs apart) over 5-6 weeks

Factors affecting tolerance of brain to reirradiation

• Cumulative biological dose of radiation to the brain

Lesser the cumulative dose, better the tolerance

• Time interval from initial course of RT to reirradiation


Longer the time interval, better the tolerance

Volume of reirradiation

Smaller the volume(s) of irradiation, better the tolerance

Concurrent systemic therapy during reirradition

Chemotherapy potentially increases biological dose

Assumptions and Calculations

- Low repair capacity of brain tissue assumed ($\alpha/\beta=2$)
- Linear Quadratic (LQ) model used for radiobiology calculations
- BED=nd(1+d/[α/β]); d=dose/fx, n=number of fx, α/β =tissue repair capacity
- Converted to equivalent dose in 2Gy fractions (EQD2) for easy understanding
- Cumulative BED calculated as BED (cumulative) = BED (RT1) + BED (RT2)

Int. J. Radiation Oncology Biol. Phys., Vol. 70, No. 5, pp. 1350–1360, 2008 Copyright © 2008 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/08/\$-see front matter

doi:10.1016/j.ijrobp.2007.08.015

CLINICAL INVESTIGATION

Brain

REIRRADIATION TOLERANCE OF THE HUMAN BRAIN

RAMONA MAYER, M.D., M.Sc.,* AND PETER SMINIA, PH.D.[†]

*Department of Therapeutic Radiology and Oncology, Medical University of Graz, Graz, Austria; and [†]Department of Radiation Oncology, Division Radiobiology, VU University Medical Center, Amsterdam, The Netherlands

Purpose: To give an overview of current available clinical data on reirradiation of glioma with respect to the tolerance dose of normal brain tissue.

Methods and Materials: Clinical brain reirradiation studies from January 1996 to December 2006 were considered on radiation-induced late adverse effects—*i.e.*, brain tissue necrosis. The studies were analyzed by using the linear quadratic model to derive information on the cumulative biologic effective tolerance dose (BED_{cumulative}) and equivalent doses in 2-Gy fractions (normalized total doses, NTD_{cumulative}) for the healthy human brain.

<u>Results:</u> The NTD_{cumulative} in conventional reirradiation series (NTD_{cumulative} of 81.6–101.9 Gy) were generally lower than in fractionated stereotactic radiotherapy (FSRT) (NTD_{cumulative} of 90–133.9 Gy.) or LINAC-based stereotactic radiosurgery series (NTD_{cumulative} of 111.6–137.2 Gy). No correlation between the time interval between the initial and reirradiation course and the incidence of radionecrosis was noted. The analysis showed the prescribed NTD_{cumulative} to increase with decreasing treatment volume, which is allowed by modern conformal radiation techniques.

Conclusion: Radiation-induced normal brain tissue necrosis is found to occur at NTD_{cumulative} >100 Gy. The applied reirradiation dose and NTD_{cumulative} increases with a change in irradiation technique from conventional to radiosurgery re-treatment, without increasing the probability of normal brain necrosis. Taken together, modern conformal treatment options, because of their limited volume of normal brain tissue exposure, allow brain reirradiation for palliative treatment of recurrent high grade glioma with an acceptable probability of radionecrosis. © 2008 Elsevier Inc.

Reirradiation, Tolerance dose, Brain, Late side effects, Normalized total dose.

Seminal publication on reirradiation tolerance of the human brain

includes data from 21 studies of CNS reirradiation from 1996-2006

Cancers 2012, 4, 379-399; doi:10.3390/cancers4020379

OPEN ACCESS

cancers

ISSN 2072-6694 www.mdpi.com/journal/cancers

Review

External Beam Radiotherapy of Recurrent Glioma: Radiation Tolerance of the Human Brain

```
Peter Sminia <sup>1,†,±</sup> and Ramona Mayer <sup>2,†</sup>
```

¹ Department of Radiation Oncology, Radiobiology Section, VU University Medical Center, De Boelelaan 1117, P.O. Box 7057, Amsterdam, The Netherlands

² EBG MedAustron GmbH., Viktor Kaplan-Strasse 2, A-2700, Wiener Neustadt, Austria; E-Mail: ramona.mayer@medaustron.at (R.M.)

Updated publication from the same authors includes a total of 30 studies of reirradiation in brain tumors (published data till 2011)

Studies of Reirradiation using Conventional RT

Authors		First o	ourse		Interva	l Re-in	radiation		Cumulative	Survival	Toxicit	y
Ref.; ymbol]	n/Grade	Total dose (Gy)	Fraction size (Gy)	EQD2 (Gy)	(mo)	Total dose (Gy)	Fraction size (Gy)	EQD2 (Gy)	EQD2 (Gy)	(mo)	Acute	Late
					m	adian						
Kim et al. [9; 0]	7 GM 13 AA/LG	59.4	1.8	56.4	38	36	1.8	34.2	90.6	9	No severe	No severe
Hayat et al.	21 Glioma	45	2.25	47.8	31	30	2.5	33.8	\$1.6	22	No severe	23
[10;0]							+ Lonnastine					
Arcicasa et al.	24 HG	60	2	60	14	34.5	1.5	30.2	90.2	13.7	No severe	23
[11:0]							+ Lonmstine				n = 4 Gr.3/4 hematol.	
Nieder et al.	21 GM	58.5	1.3 (bid)	48.3	20	45.5 (n = 19)	1.3 (bid)	37.6	\$5.8	\$.5	9% neurol. tox.	6% necrosis
[12;-;-]	11 AA/other					45 (n = 13)	1.5 (bid)	39.4	\$7.7			
Veninga et al.	29 Astrocytoma	50-60	2	55	33	46	2	46	98.8	6.9	1 severe	l clinical necrosis
[13; = ; o]	10 OD			52	55			51.3	101.9	27.5	edema	l cognitive decline EQD2 cum >102 Gy
Henke ct al.	29 GM	59	2	59	18	20 (n = 19)	5	35	94	10.2	No severe	No severe
[14:0:0]						20 (n = 10)	4	30	89			
	2 AA/LG					25 (n = 2)	5	43.8	102.8			
Niyazi et al.	22 GM	60	2	60	n.a.	36	2	36	96	187 days * with	Gr. 4 wound dehiscence (n = 1)	No clin. necrosis
[15;□]	8 AA						+ Betracizumab in 20 pts.			367 days without	Gr. 3 deep vein thrombosis (n = 1)	Radionecrosi on imaging (n = 2)
	TMZ in 16 pts									Bevacizumab	Gr. 2 Hypertension (n = 1)	(/

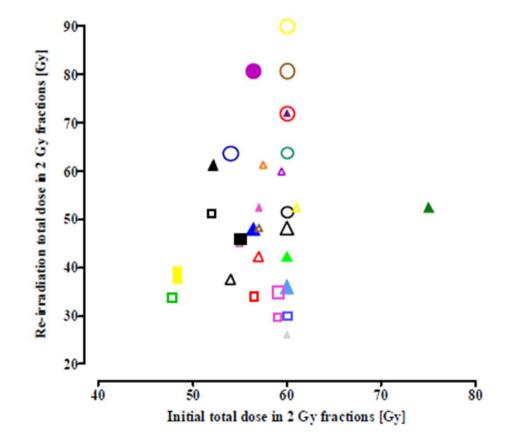
EQD2 cumulative: 81Gy-103 Gy

Studies of reirradiation using FSRT

		Tirst	erue:		Interval		Re-irradi	ation		Cumulative	Survival	1	Toxicity
Authors [Ref.;symbol]	a/Grade	Total doze (Cy)	Fraction Size (Cy)	EQD2 (Cy)	(me)	Total deze (Cy)	Traction Size (Cy)	EQD2 (Gy)	Volume (cc)	EQD2 (Gy)	(mo)	Acute	Late
					()	median					E.		
Shepherd et al.	29 AA	55		52.2	29	35	51	61.3	24	113.5	п	No severe	12% "clinical" necrosis
dose escalation	4 AO/Ep												6% necrosis
[16; ▲] Cho et al.	3 LG 15 GM	60	1.8	57	19	37.5	2.51	42.2	25	99.2	12	8%	1 clinical necrosis
[17; ∆]	10 grade III												No path. necrosis
Hudes <i>et al.</i> [18; Δ]	19 GM	60		57	3	24,30,35	3-3.5	48.2 max	13	105.2 max	10.5	No severe	No necrosis
dose escalation Lederman et al.	1 AA 88 GM	60	1.8	56.4	63	24	61	48	32.7	104.4	7	No severe	8% necrosis
[19; 1]	88 GM	60	1.8	30.4	6.0	24	+ Paclitaxel	-5	327	104.4	9.4 (+Chemo)	No severe	2% mixed tum/necrosis
Voynov et al.	5 GM	59.7	1.8-2	~57	6.3	30	51	52.5	34.7	~109.5	10.1	na	10% necrosis
[20, ▲]	5 AA												10% mixed tum/necrosis 40% "clinical" necrosis
Grosu et al.	35 GM	60	1.8-3	57-75	16	30	51	52.5	18	109.5-127.5	6	No severe	13% mixed tum/necrosis
[21; ▲]	9 AA						(+TMZ n = 29)				11 (+Chemo)		

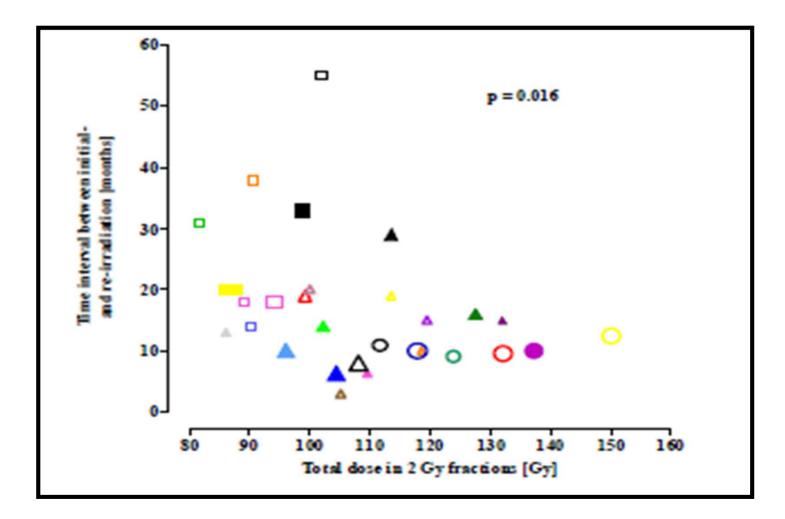
EQD2 cumulative: 99Gy-127Gy

Studies of reirradiation using SRS

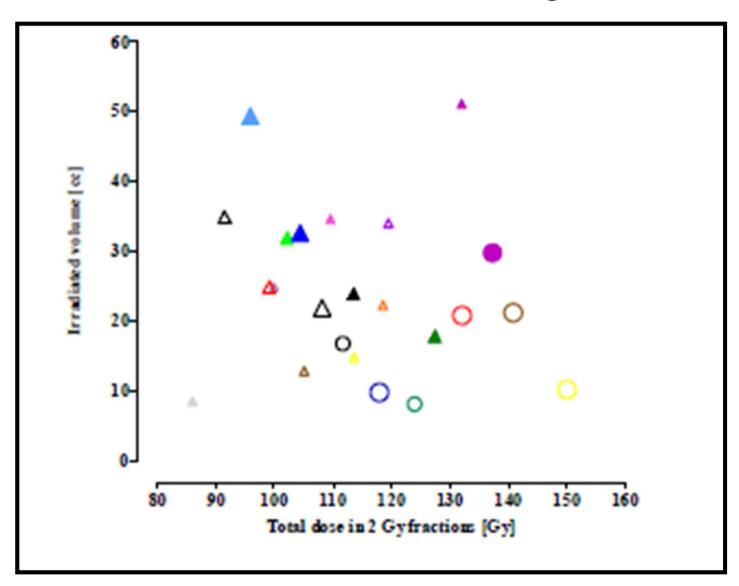

Table 3. Clinical data on brain re-irradiation by stereotactic radiosurgery: physical dose and equivalent total dose in 2 Gy fractions (EQD2), survival and toxicity.

Authors		F	irst course		Interval	Re	irradiatio		Cumulative	Survival	To:	nicity
[Ref. No; symbol]	n/Grade	Total doze (Gy)	Fraction Size (Gy)	EQD2 (Gy)	(200)	Total dose = fraction size (Gy)	EQD2 (Gy)	Volume (cc)	EQD2 (Gy)	(mo)	Acute	Late
						median						
Chamberlain et al.	5 GM	60 + CT	2	60	11	13.4	51.6	17	111.6	8	7 increased intra-	l Hypersonnolence
[32; 0]	15 Astro										cranial pressure 1 Death with 24 h	
Van Kampen et al. [33; <mark>O]</mark>	27 GM	60	2	60	9.6	16	72	21	132	9	No severe	No necrosis
Cho et al	27 GM	60	1.8	56.4	10	17	\$0.5	30	137.2	11	41% transient progr.	17% necrosis
[17; •]	19 AA										of neurological	13% "clinical" necrosis
Combs et al. [34; O]	32 GM	54	2	54	10	15	63.8	10	117.8	10	symptoms No severe	No necrosis
Patel et al.	26 GM	5060 +CT		~60	12.5	18	90	10.4	~150	8.4	No severe	l necrosis
[31; <mark>0</mark>]	?											1 mixed tumor/necrosis
Biswas et al. [35;0]	18 GM	$60 \pm CT$	1,8-2	60	9.1	15	63.8	8.4	123.8	5.3	no > grade 2	No necrosis
Pouratian et al.	26 GM	60	2	~60	n.a.	17	\$0.5	21.3	140.8	9.4	no significant toxicity	no necrosis
Gamma knife [36; O]												

EQD2 cumulative: 111Gy-150 Gy


How much does initial dose matter for one to reirradiate the brain again?

Correlation of the Initial dose and Re-irradiation dose


How soon can one irradiate the brain again?

Inverse Correlation between time interval between two courses of irradiation and cumulative biological dose

Does volume at Reirradiation matter?

Significant inverse correlation between volume at reirradiation and cumulative biological dose

Summary of Reirradiation tolerance of human brain

Re-irradiation procedure	EQD2 _{cumulative} [Gy]	Time interval between initial radiotherapy and re-irradiation [months]	Mean treatment volume [cc]
Conventional radiotherapy	92.6 ± 6.8 (81.6-102.8)	29.9 ± 14.1 (14-55)	No data
Fractionated stereotactic radiotherapy	109.9 ± 13.8 (86.1–133.9)	16.7 ± 11.1 (3-48)	27.6 ± 11.9 (8.7-51.1)
Stereotactic radiosurgery	130.5 ± 13.5 (111.6 to ~150)	10.4 ± 1.2 (9.1–12.5)	16.9 ± 7.9 (8.4–30)

Sminia & Mayer 2012, eCancers 2012

Can you prognosticate reliably?

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Efficacy of Fractionated Stereotactic Reirradiation in Recurrent Gliomas: Long-Term Results in 172 Patients Treated in a Single Institution

Stephanie E. Combs, Christoph Thilmann, Lutz Edler, Jürgen Debus, and Daniela Schulz-Ertner

CHARACTERISTIC	WHO GRADE II	WHO GRADE III	WHO GRADE IV (GBM)	
No. of patients	71	42	59	
Median age at primary diagnosis	35 years	39 years	54 years	
Histopathological diagnosis	-Astrocytoma : 57 -Oligoastrocytoma : 7 -Oligodendroglioma : 7	-Astrocytoma : 24 -Oligoastrocytoma : 8 -Oligodendroglioma : 10	GBM	
Total resection : 54	Neurosurgical treatm (31.4 %) Subtotal resea	U	y : 40 (23.3 %)	
Median F	RT Dose received for prima	ary RT : 60 Gy (conventiona	al #)	

Results

CHARACTERISTIC	WHO GRADE II	WHO GRADE III	WHO GRADE IV (GBM)
At final analysis	S: No. of patients	alive : 22 No. of	patients dead : 150
Median F / U after FSRT	23 months	13 months	7 months
Median OS after primary diagnosis	111 months	50 months	21 months
Median OS after re- RT	22 months	16 months	8 months
PFS after Re-RT	12 months	8 months	5 months
Toxicities after Re-RT - alopecia - headaches - nausea/vomiting - skin erythema			

- radiation-induced necrosis (1 patient)

Heidelberg Prognostic Score for Reirradiation in Gliomas (N=233)

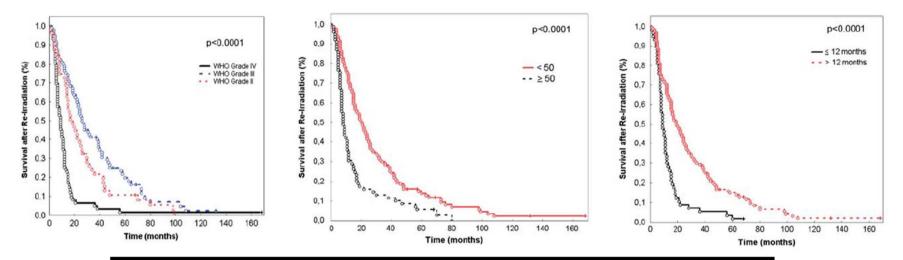
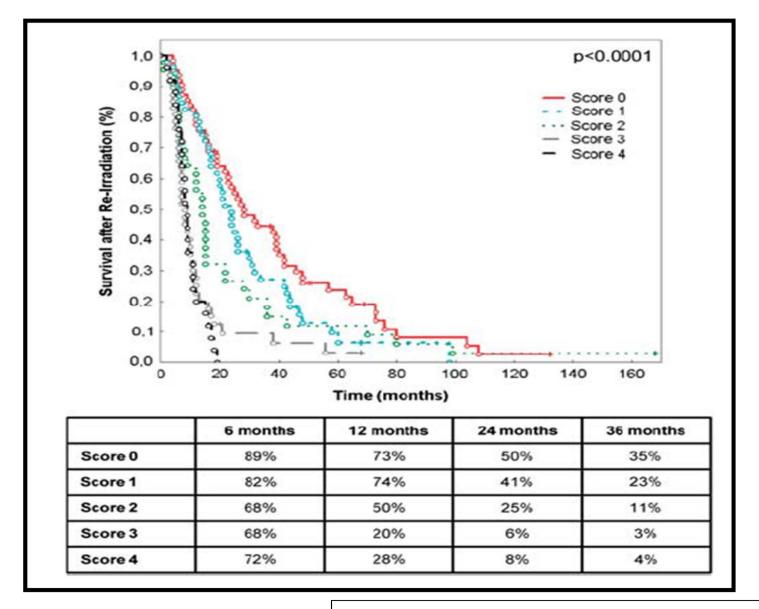
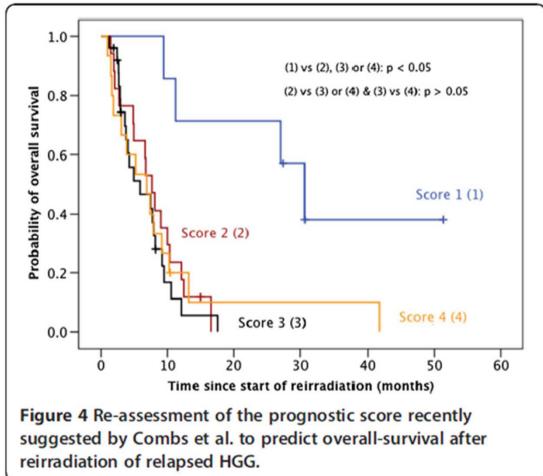



Table II. Factors identified as significantly influencing survival after re-irradiation used for the generation of the prognostic score.

Prognostic factor	Subgroups	Value for prognostic score
Histology	WHO Grade IV	2
	WHO Grade III	1
	WHO Grade II	0
Age	< 50 years	0
	\geq 50 years	1
Time betweeen		
RT and re-RT	≤ 12 months	1
	> 12 months	0

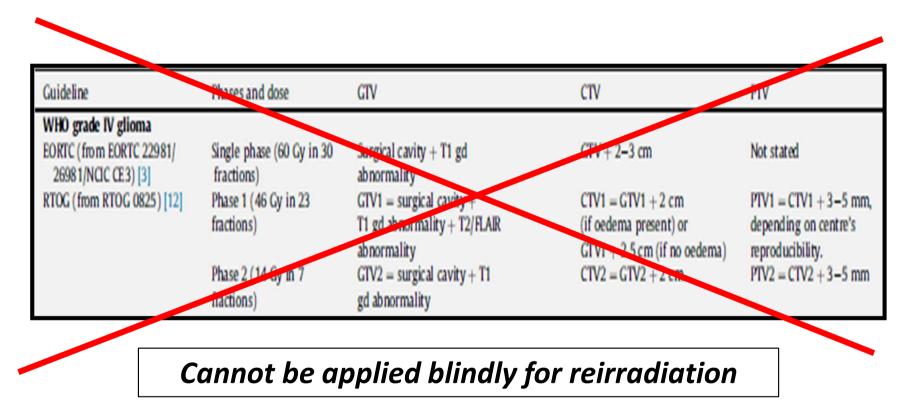
Stephanie Combs; acta oncologica;2013



OS after reirradiation stratified by Heidelberg Score

Stephanie Coombs et al, Acta Oncol 2013

Validation of the Heidelberg prognostic scoring system

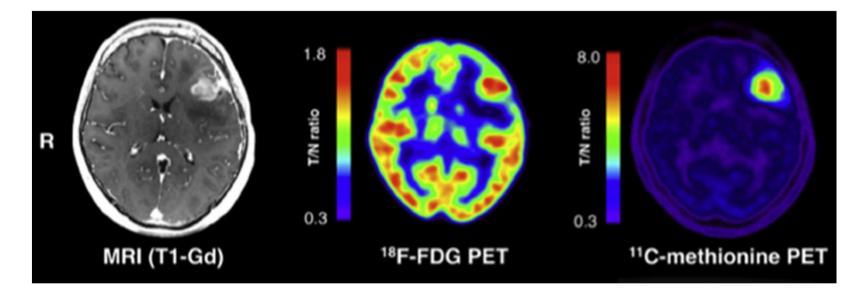

No convincing correlation of the Heidelberg prognostic score with overall survival after reirradiation

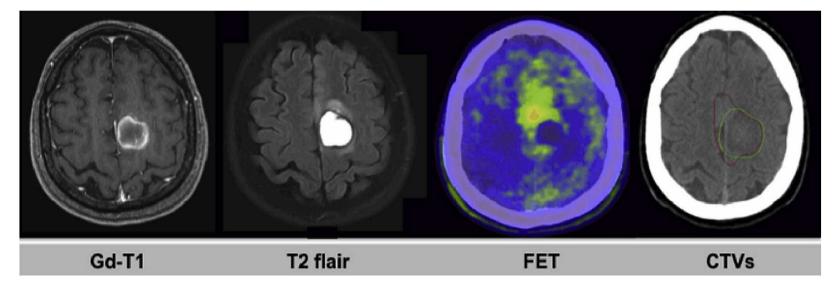
Scholltyssek et al, Radiat Oncol 2013

What is the appropriate target volume?

Guidelines for target volume delineation in patients with newly diagnosed glioblastoma

TRUTH is that we do not really KNOW


Personal philosophy: be conservative (but not overly)


- GTV = Gross infiltrative tumor + resection cavity (2nd surgery)
- CTV = GTV + 1-1.5cm (3D-isotropic expansion)
- Edit away CTV from natural anatomic barriers (bone, falx)
- Expand CTV where difficult to distinguish from edema/gliosis
- PTV = CTV + 2-5mm (technique & institutional set-up)
- In SRS, CTV margins do not apply (GTV = CTV)

Does advance imaging help define/refine target volumes?

Role of functional imaging

Amino Acid PET can improve target volume delineation

DTI predicts pattern of Recurrence

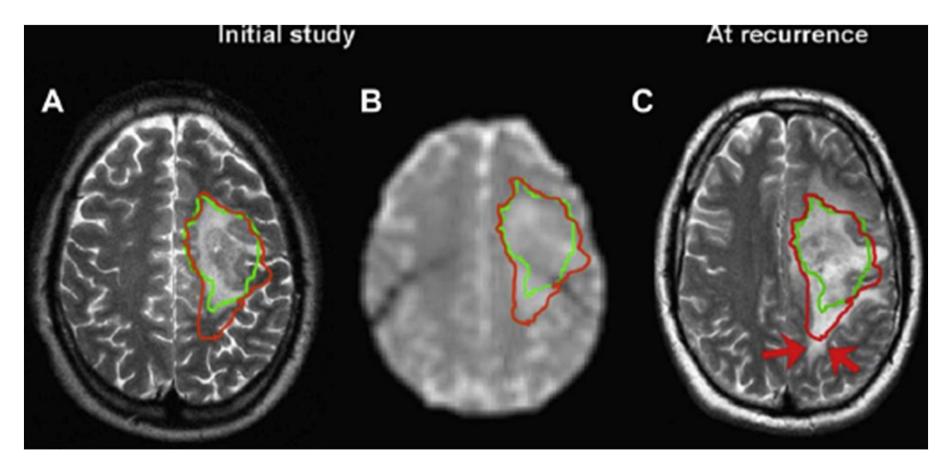


Fig 1. An example of the use of diffusion tensor imaging (DTI) to predict patterns of recurrence. This patient with a glioblastoma developed localised recurrence whose position was predicted by the DTI. The images show a T2-weighted image of the tumour before radiotherapy (A), a map of the isotropic component of the DTI carried out at the same time (B) and a T2-weighted image carried out after tumour progression (C). These images have been co-registered with the isotropic (green) and anisotropic (red) tensor abnormalities. There is a mismatch posteriorly where the anisotropic abnormality is greater than the isotropic abnormality. Imaging showed recurrence with a localised growth pattern in this

Whitfield et al, Clin Oncol 2014

How best to integrate systemic therapies?

Before, After, or Concurrently? Personal Philosophy

ChemoRx-naïve patient (transformed from an erstwhile LGG)

- Give 6-12 cycles of monthly temozolomide as salvage to defer ReRT
- Follow-up with concurrent temozolomide during ReRT
- In patients with known 1p/19q deletion, PCV may be offered instead of TMZ

Patient progressed after prior chemoRx (either PCV/TMZ)

- <6 months from last exposure to chemoRx: Not much rationale of chemoRx</p>
- 6-12 months from last exposure to chemoRx: Value judgement
- >12 months from last exposure to chemoRx: Rechallenge with chemoRx

Bevacizumab-naïve patient (but received multiple chemoRx)

• Consider ReRT with concurrent bevacizumab followed by maintenance Rx

Patient progressed after prior chemoRx + Bevacizumab

• Enter patient into a clinical trial (either IND or combining IND + ReRT)

What happens when bevacizumab is combined with reirradiation?

Table 2 Univariate analysis (log-rank test/Cox regression), influence on post-recurrence survival (PRS) and post- recurrence progression-free survival (PR-PFS)		Table 3 Outcome data concerning PRS stratified by the Heidelberg score; subgroups with and without bevacizumab are shown			
Variable	Univariate p-value PRS/PR-PFS	Heidelberg	Entire cohort,	Bevacizumab,	No bevacizumab,
Age (< 50 y, ≥ 50 y)	ns (p=0.717)/ns (p=0.854)	score/group	PRS [months]	PRS [months]	PRS [months]
KPS (< 70, ≥ 70)	ns (p=0.156)/ns (p=0.095)		7	7	i no (montano)
MGMT (meth/not meth)	ns (p=0.897)/ns (p=0.711)	Excellent	/	/	-
Initial WHO grade (II/III/IV)	ns (p = 0.996)/ns (p = 0.922)	Good	7	8	2
Bevacizumab (no/yes)	p=0.027/ns (p=0.396)	Moderate	9	9	-
Adjuvant/Salvage chemotherapy (no/yes)	ns (p=0.108)/ns (p=0.054)	Poor	7	8	6
Sex (male/female)	ns (p=0.410)/ns (p=0.304)	P-value	ns (p=0.664)	ns (p = 508)	ns (p=0.316)
Time interval (\leq 12 y, > 12 y)	ns (p=0.672)/ns (p=0.349)	A "poor" score consists of patients with score values of 3 or 4.			

The applicability and validity of Heidelberg Prognostic Score

becomes suspect with addition of bevacizumab to reirradiation

Niyazi et al, Radiat Oncol 2014

First ever randomized controlled trial involving re-irradiation in gliomas

- APG101: i.v. CD95 ligand-binding fusion protein and synergistic activity with RT
- 84 Recurrent GB patients
- RT vs. RT+APG
- OS: no difference (11.5 m)
- CD95: negative prognostic biomarker

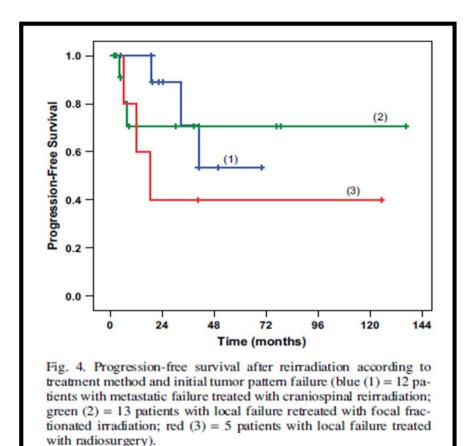
Wick et al, ECCO 2013 & ASCO 2014

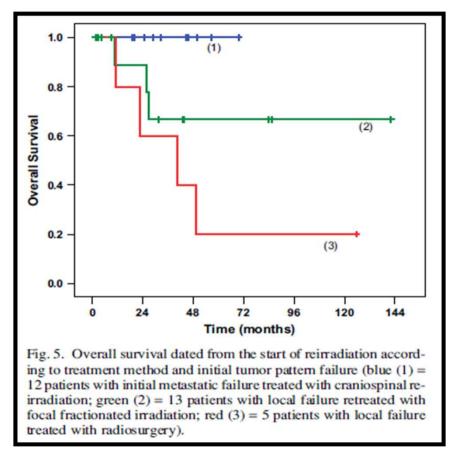
How to select patients appropriately for reirradiation?

Case selection for reirradiation in brain tumors

- Age: Younger patients (<50 years) likely to do better
- Performance status: KPS>60 (at least) or NPS <2 (at worst)
- Location: Preferably away from deep or eloquent brain structures
- Spread: No leptomeningeal or ependymal dissemination
- Size: Should preferably be small volume (limited to one side)
- Morphology: Circumscribed & not very diffusely infiltrating

Need to select favorable subset for improved outcomes

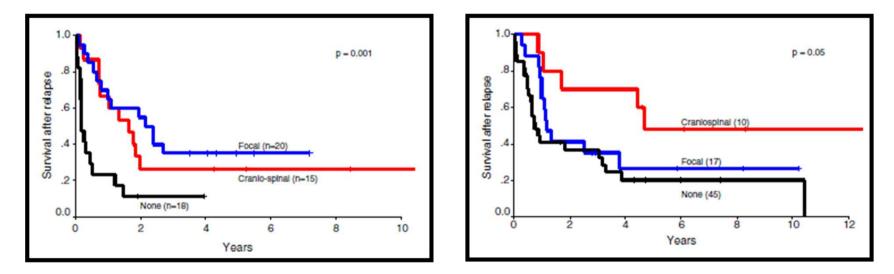

Reirradiation in ependymoma


- Retrospective analysis from St Jude Children's Research Hospital
- 38 children with localized ependymoma at initial diagnosis

Median time to failure after 1st course of RT: 19 mths (range 3-73 mths)

- ReRT for local (n=21), metastatic (n=13), or combined failure (n=4)
- Median age of study cohort at reirradiation: 4.8 yrs (range 2-16.9 yrs)
- Median interval between both courses of RT: 21.9 mths (range 7.5-67.7 mths)
- ReRT included CSI (n=19), focal fractionated RT (n=13), or SRS (n=6)

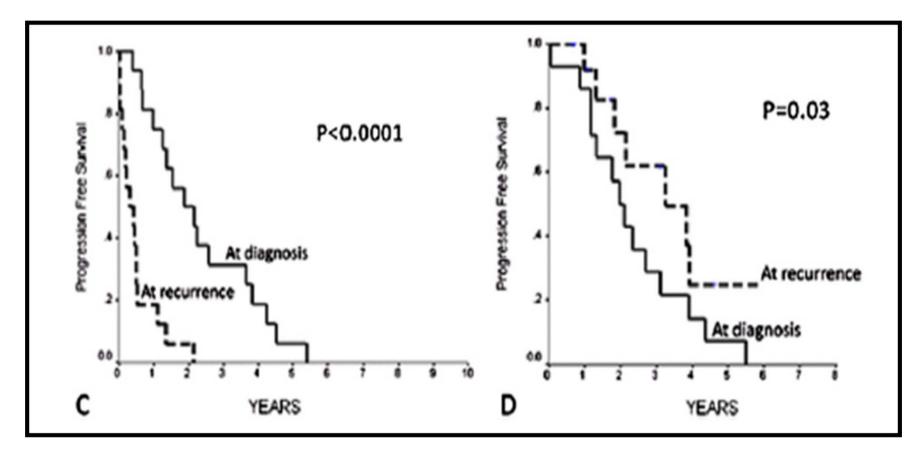
Disease outcomes after reirradiation



Conclusion: Patients with locally recurrent EP experience durable local tumor control, but remain at risk of metastasis. Patients with metastatic EP failure may receive salvage therapy that includes a component of CSI. Durability of disease control and long-term effects from this approach require further follow-up. © 2008 Elsevier Inc.

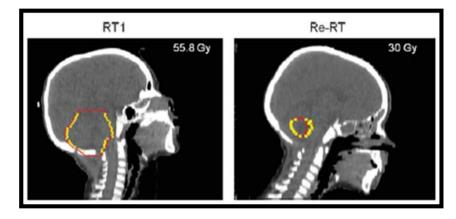
Merchant et al, IJROBP 2008

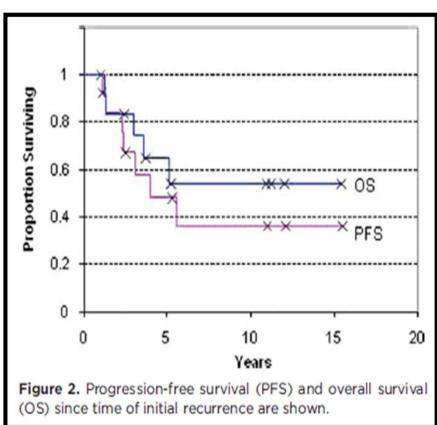
Relapsed intracranial ependymoma in children in the UK: Patterns of relapse, survival and therapeutic outcome


	Group A	Group B	Total
ocal	44	37	
ocal + other sites in CNS	3	7	81 (75% 10 (9%)
Spine with no local relapse	2	3	5 (5%)
Other CNS site-no local relapse	5	7	12 (11%

Relapse was associated with poor outcome in both age groups. A survival advantage conferred by both radiotherapy and surgery at relapse is independently significant.

Messahel et al, EJC 2009




Conclusions: Reirradiation is an effective treatment that may change the natural history of recurrent ependymoma in children. However, this change may be associated with increased neurocognitive toxicity. Additional follow-up is needed to determine the risk of late recurrence, secondary radiation-induced tumors, and long-term functional outcome of these patients.

Bouffet et al, IJROBP 2012

Reirradiation in Medulloblastoma

- 13 children treated with ReRT
- Sx and/or CTh at relapse in all
- Median time RT1 to RT2: 57 mths
- ReRT included local, spinal, & CSI
- Median ReRT dose: 30Gy (19.8-45Gy)
- Median # size: 1.5Gy (1-1.8Gy)
- Median Cum Dose: 84Gy (65-98.4Gy)
- Median FU: 30 mths (1-176 mths)

Bakst et al, Cancer 2011

TABLE 3. Major Toxicities Observed in Relapsed Medulloblastoma Patients According to the Use of Irradiation

Toxicity	Nonirradiated Patients and Toxicity (%)	Irradiated Patients and Toxicity (%)	Ρ
Hemorrhage (grade 1)	15/24 (62.5%)	9/14 (64.3%)	1.00
Hypopituitarism	8/24 (33.3%)	8/14 (57.1%)	.187
Necrosis (grades 1, 2)	7/24 (29.2%)	9/14 (64.3%)	.047
Hypothyroidism	7/24 (29.2%)	7/14 (50.0%)	.298

CONCLUSIONS: The use of irradiation as a component of salvage therapy for relapsed MB may prolong survival.

Wetmore et al, Cancer 2014

Our own experience of reirradiation in brain tumors

- More than 100 patients treated with re-irradiation since 2008
- Histology includes high-grade glioma, ependymoma, medulloblastoma, others
- Image-guided IMRT (mostly tomotherapy) used for reirradiation
- CFRT used in vast majority (≈95%); occasionally (≈5%) HFRT for CSI as reirradiation
- Doses range from 36-55.8Gy; minimum 2-year interval from 1st course of irradiation
- Most gliomas received concurrent TMZ in addition to neoadjuvant or adjuvant TMZ
- Few patients have received bevacizumab with reirradiation (in recent times)
- ReRT generally well tolerated, but few patients developed symptomatic necrosis

Ongoing prospective study evaluating QOL in patients being treated with reirradiation as part of MD Dissertation

In summary: is there a magic formula?

- Select cases appropriately for reirradiation (age, KPS, histology)
- Keep cumulative biological doses <100Gy EQD2
- Have atleast 12 months interval between primary RT and re RT
- Avail functional/metabolic imaging to refine target volumes
- Use modern technology to reduce volume of reirradiation
- Add systemic therapies judiciously to/with reirradiation

The simple answer is NO

Thank You

