
ICRO 2015 SRMS IMS, Bareilly

Prof Kamal Sahni

Incidence, prevalence & mortality

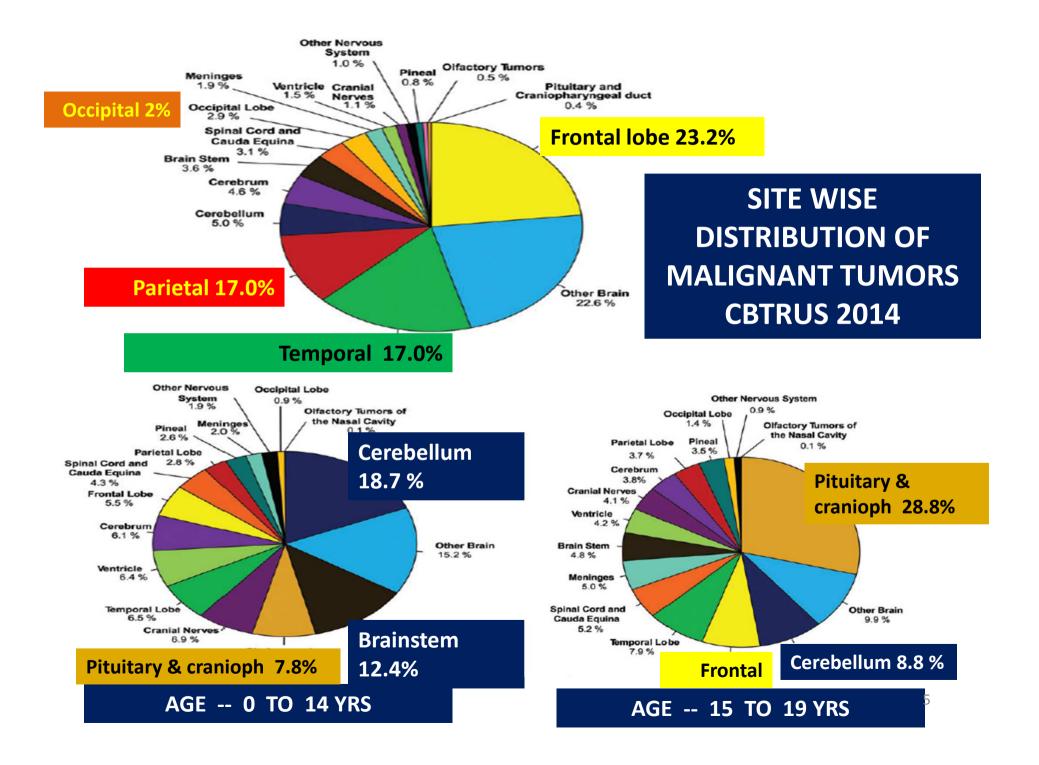
- Metastatic vs. Primary CNS tumors =10:1
- World wide incidence of Primary CNS tumors =3.4 (very high human development=5.1, high=4.7, medium=4.0, low=1.3).
- High mortality upto 75%.
- **↑** whites than in blacks.
- **males except meningiomas and schwannomas (blacks and low socioeconomic group).**

Malignant & Non-malignant

 Rates per 100,000 and age-adjusted to the 2000 United States standard population.

Etiologic Factors

Environmental factors


Ionizing and non-ionizing radiation Cellular telephones Chemical exposures (formaldehyde, vinyl chloride, acrylonitrile, etc.)

Viral Associations

EBV, HCMV, HIV

Hereditary Syndromes

Cowden, Turcot, Lynch & Li-Fraumeni (Gliomas) Gorlin(PNET), neurofibromatosis type I&II (meningiomas, optic nerve glioma, shwannoma), VHL (haemangioblastoma).

WHO Classification of CNS Tumours, Lyon, 2007.

ASTROCYTIC TUMORS

GRADE I Subependymal giant cell astrocytoma, Pilocytic astrocytoma,

- II Pilomyxoid astrocytoma, Diffuse astrocytoma, pleomorphic xanthoastrocytoma
- III Anaplastic astrocytoma,
- IV Glioblastoma, Giant cell glioblastoma,, gliosarcoma

OLIGODENDROGLIOMA AND OLIGOASRTCYTOMA

GRADE II Oligodendroglioma , Oligoastrocytoma

III Anaplastic Oligodendroglioma, Anaplastic Oligodastrocytoma EPENDYMAL TUMORS

GRADE I Subependymoma, Myxopapillary ependymoma

II Ependymoma

III Anaplastic ependymoma

CHOROID PLEXUS TUMOR

GRADE I Choroid plexus papilloma

- II Atypical choroid papilloma
- **III Choroid plexus carcinoma**

WHO Classification of CNS Tumours, Lyon, 2007.

Pineal tumor	rs
GRADE I	Pineocytoma
II , III	Pineal parenchymal tumor of intermediate
C	differentiation, Papillary tumor of the pineal region
IV F	Pineoblastoma
Embryonal t	umors
Grade IV I	Medulloblastoma, PNET
	Atypical teratoid/rhabdoid tumor
Tumors of th	e cranial and paraspinal nerves
GRADE I	Schwannoma, Neurofibroma
II-IV	Perineurioma
	Malignant peripheral nerve sheath tumor (MPNST)

WHO Classification of CNS Tumours, Lyon, 2007.

Meningeal tumors :

GRADE I Meningioma, Hemangioblastoma

- II Atypical meningioma, Hemangiopericytoma
- III Anaplastic/malignant meningioma, Anaplastic hemangiopericytoma

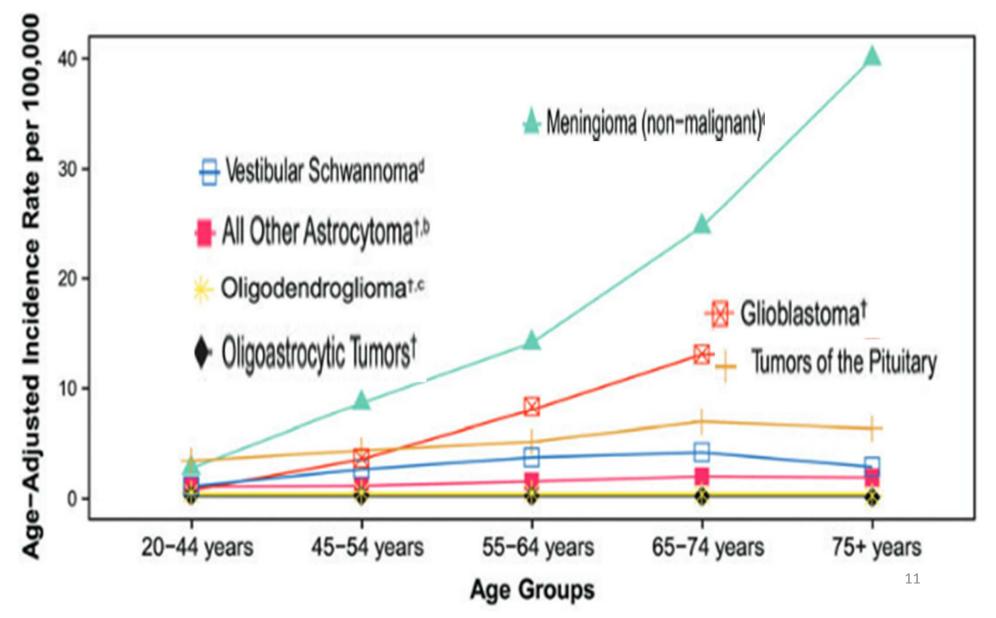
Tumors of the sellar region

GRADE ICraniopharyngioma,
Granular cell tumor of the neurohypophysis
Pituicytoma, Spindle cell oncocytoma of the
adenohypophysis

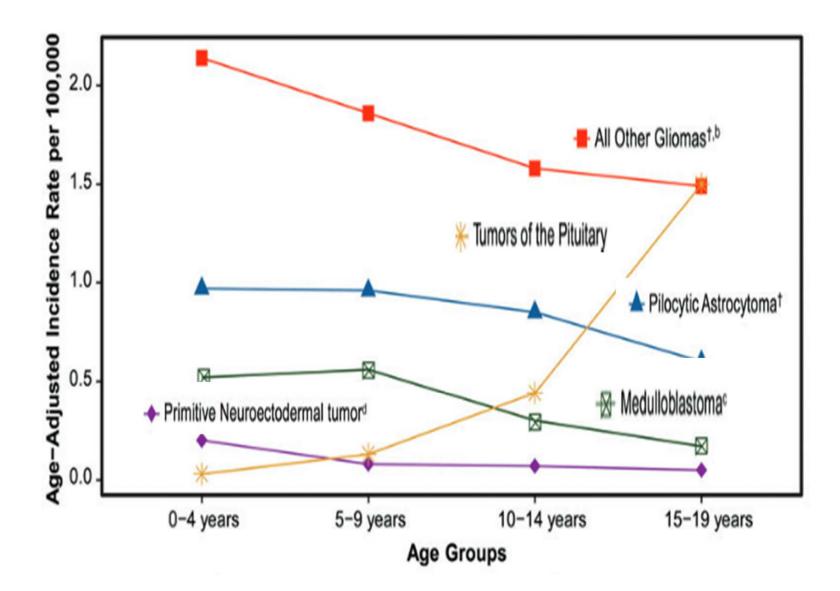
Simplified Working Formulation

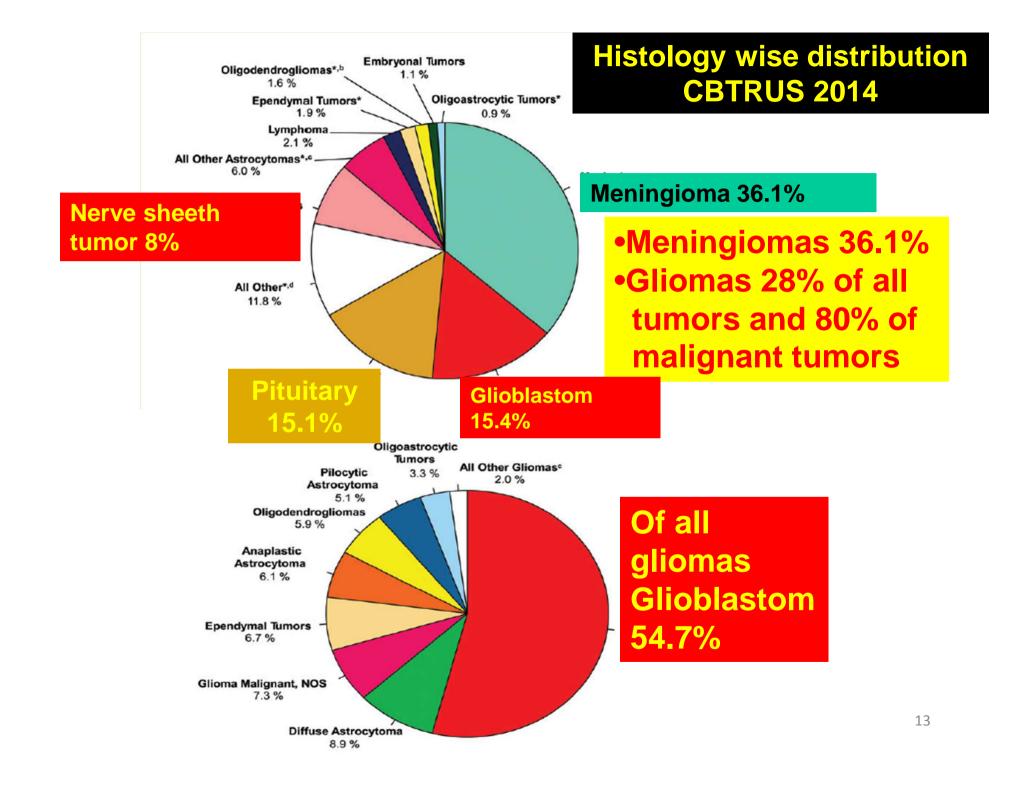
- 1) Neuroepithelial Tumors :
 - **Glial cell origin:** Asrocytoma, Oligodendroglioma, Ependymoma, choroid plexus
 - Neuronal and mixed neuro–glial origin: Gangliocytoma, Neurocytoma, Papillary glioneuronal tumor, Rosette-forming glioneural tumor of the fourth ventricle
 - **Embryonal Tumors : Medulloblastoma, PNET**
- 2) Tumors of specialized anatomic structures: Pituitary adenoma, craniopharyngioma, pineocytoma, chordoma, haemangiopericytoma, germ cell tumors, choroid plexus tumors. ,
 3)Tumors of meninges (meningoepithilial cells, mesenchymal)
 4)Tumors of haematopoitic system : lymphoma, plasmacytoma.
 5) metastatic

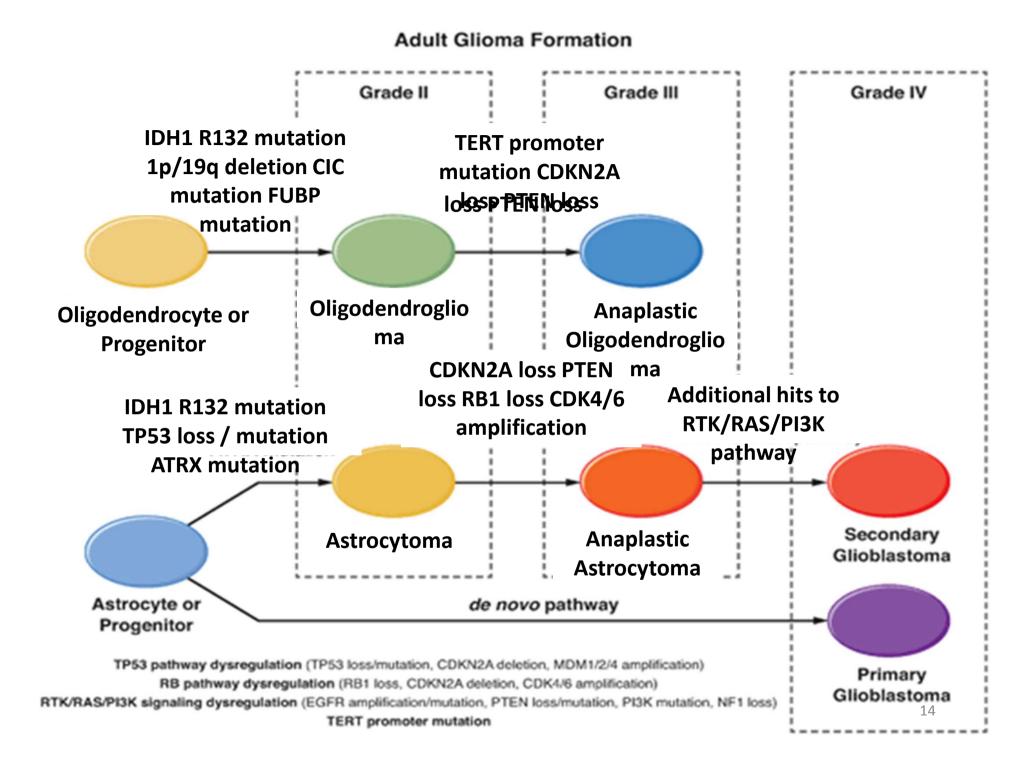
Classification of Adult Brain Tumors


WHO grade I = low proliferative potential, a frequently discrete nature, and the possibility of cure following surgical resection alone.

WHO grade II = generally infiltrating and low in mitotic activity but recur more frequently than grade I malignant tumors after local therapy. Some tumor types tend to progress to higher grades of malignancy.

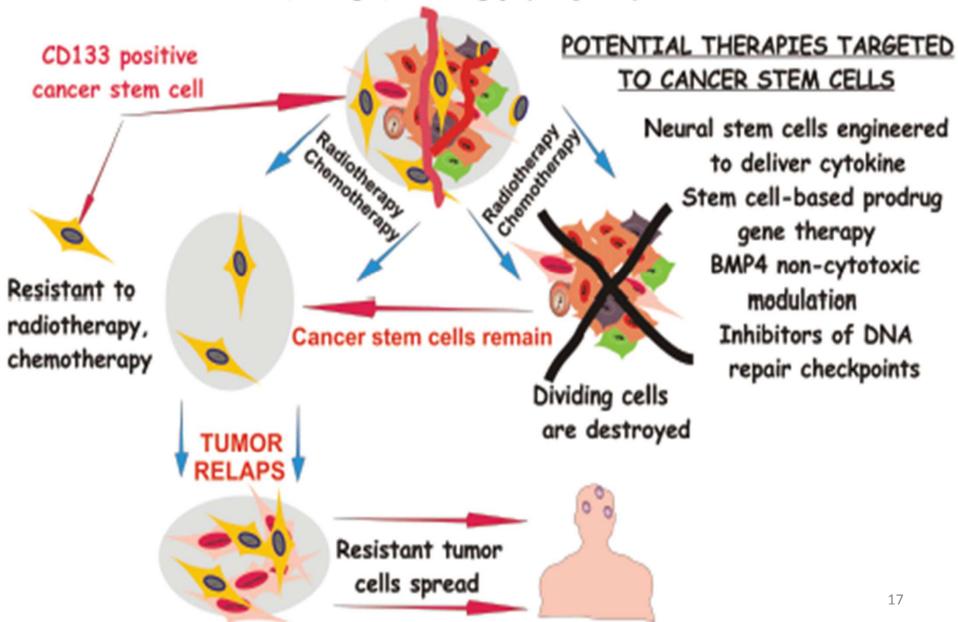

WHO grade III = anaplastic histology & infiltrative, usually treated with aggressive adjuvant therapy.


WHO grade IV = mitotically active, necrosis-prone, micro-vascular proliferation & generally associated with a rapid pre & post-operative progression & fatal outcomes, usually treated with aggressive adjuvant therapy.


Age vs. Malignant & Non-malignant CBTRUS 2014

Age vs. Pediatric CNS Tumors CBTRUS 2014

COMMON CNS TUMORS AND CORRESPONDING GENE ALTERATIONS


Common Adult Tumors	Frequent Gene and Chromosomal Alterations
Grade II astrocytoma	IDH1 R132, TP53, ATRX
Grade III anaplastic astrocytoma	IDH1, TP53-MDM2/4, CDKN2A, CDK4/6-RB, PTEN
Grade IV glioblastomas	TP53-MDM2/4, CDKN2A, CDK4/6-RB, EGFR, PTEN, NF1, RTK/RAS/PI3K pathway
Grade II oligodendroglioma	IDH1 R132, chromosome 1p-19q translocations, CIC , FUBP1
Grade III oligodendroglioma	IDH1, chromosome 1p-19q translocations, CIC, FUBP1, TERT promoter, CDKN2A,PTEN
Meningioma	NF2 (posterior & lateral), TRAF7 (anterior), AKT1, KLF4 (central) Sonic hedgehog signalling,
Ependymoma	Supratentorial: CDKN2A deletion, amplification of EPHB2 Spinal: NF2/ chromosome 22 loss.

COMMON CNS TUMORS AND CORRESPONDING GENE ALTERATIONS

Common Pediatric Tumors	Frequent Gene and Chromosomal Alterations			
Medulloblastoma :	MYCC, MYCN, (Poor Prognosis) chromosome 17p deletions, CTNNB1, DOX3X, SMARCA4, MLL2 (Good prognosis : WNT group), TP53, SUFU, SMO, MLL2, PTCH, KDM6A (Intermediate prognosis : SHH group)			
Ependymoma	Lateral infratentorial: NF2/chromosome 22 loss, Medial infratentorial: chromosome 1q gain			
Pilocytic astrocytoma	KIAA1549-BRAF fusion rearrangements			
Medulloblastoma	B CDNK2A delet EPHB2 amplification Third Ependymoma 4th Vent Chr1q gain (medial) NF2/chr22 loss (lateral) NF2/chr22 loss			

GLIOBLASTOMA

(Cd133+ stem cells, tumor cells, stroma, blood vessels, microglia, infiltrating lymphocytes ...)

GBM Sub-classification Schemes

Primary (de Novo, ~90%)	Secondary (~10%)		
•Elderly (>62)	•Younger (<40)		
•EGFR amplification	•TP53 alteration		
 PTEN inactivation 	•IDH1 mutation		
•CDKN2A deletion	•Chromosome 19 loss		
•Shorter survival	•Longer survival		

<u>Mesenchy</u> <u>mal</u> •29% •57.7 yrs	<u>Classical</u> •27% •55.7 yrs •EGFR (+) •TP53 (-)	Proneural •28% •51.8 yrs •TP53 (+) •IDH1 (+)	<u>Neural</u> •16% •62.8 yrs
•NF1 (+)	•1853 (-)		

	IDH 1/2 Mutation	1p/19q Co-deletion	MGMT promoter methylation
Diffuse astro (GRII)	70%-80%	15%	40%-50%
Oligod/astro (GRII)	70%-80%	30%-60%	60%-80%
Astro(GR III)	50%-70%	15%	50%
Oligod/astro (GR III)	50%-80%	50%-80%	70%
GBM (GR IV)	5% - 10%	<5%	35%
Diagnostic role	DD glioma vs.gliosis Typical for transformed LGG	Pathognomonic for oligodendroglioma	None
Prognostic role	Protracted natural history in IDH- mutated tumors	Protracted natural history in 1p/19q codeleted tumours	Prognostic for AG (+/- with IDH mutations) treated with RT / CT
Predictive role	Absence of mutation suggests predictive role for MGMT promoter methylation	Prolongation of survival with early chemotherapy in 1p/19-co-deleted OD	Predictive in GBM for benefit from alkalating CT Elderly GBM: MGMT- methyl = TMZ MGMT – unmethyl=RT

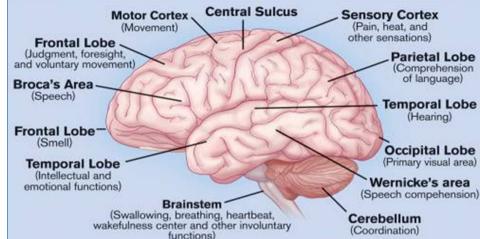
ANATOMIC LOCATION AND CLINICAL CONSIDERATIONS

Increased intracranial pressure

Seizures

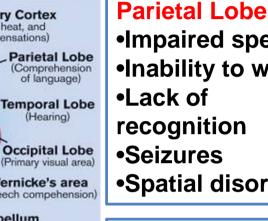
Physiological deficits specific to location

Neurocognitive deficits


Endocrinal dysfunction

Clinical presentation

Frontal Lobe Behavioral and emotional changes Impaired judgment •Impaired sense of smell •Memory loss •Hemiplegia •Cognitive dysfunction Vision loss •Papilledema


Seizures:

20% in supratent. tumors, 70% in slow growing, May antidate the clinical diagnosis by months

Brainstem

•Behavioral and emotional changes Difficulty speaking and swallowing •Drowsiness Headache •Hearing loss •Muscle weakness on one side of the face •Hemiparesis Uncoordinated gait •Vision loss, ptosis, strabismus Vomiting

Impaired speech Inability to write •Lack of recognition Seizures •Spatial disorders

Occipital Lobe

Temporal Lobe

•Often asymptomatic Impaired speech Seizures •Homonymous superior quadrantanopsia • Auditory hallucinations Abnormal behavior

DIAGNOSTIC TESTS

 Magnetic Resonance Imaging : Most useful imaging studies are T1-weighted sagittal images, gadolinium (Gd)-enhanced and unenhanced T1 axial images, and T2-weighted axial images

• CT Scan

- Newer Imaging Modalities
 - Magnetic resonance spectroscopy,
 - Dynamic contrast-enhanced MRI,
 - Diffusion-perfusion MRI, and
 - Functional MRI
 - Quick brain MRI
- PET

DIAGNOSTIC TESTS

Cerebrospinal Fluid Examination

Medulloblastoma, ependymoma, choroid plexus carcinoma, lymphoma, and some embryonal pineal and suprasellar region tumors have high likelihood of spreading to CSF.

- Biopsy (craniotomy / stereotactic)
- IHC
- Cytogenetics

Management of Brain Tumors

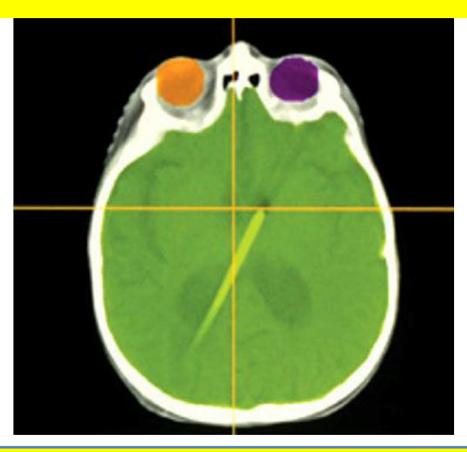
- Surgery
- Radiation Therapy
- Chemotherapy and targeted agents

Surgical Procedures

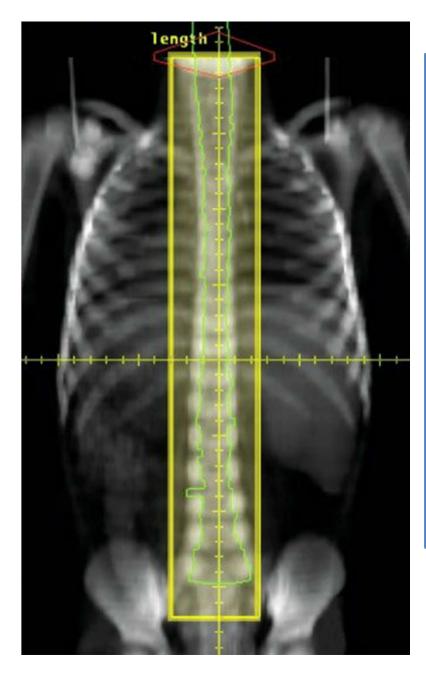
- Biopsy
- Total Resection
- Surgical Debulking
- CSF Diversion
- Re-resection

Overview of Brain Tumors RADIOTHERAPY:

Radiobiologic and Toxicity Considerations The process of radiation injury depends on

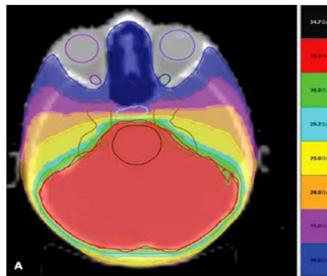

- Technical factors: dose, volume, fraction size, specific target cell population,
- Secondary mechanisms of expression of injury such as vascular leak causing edema, vascular endothelial loss resulting in hypoxic injury,
- Reactive gliosis,
- ? Host factors.

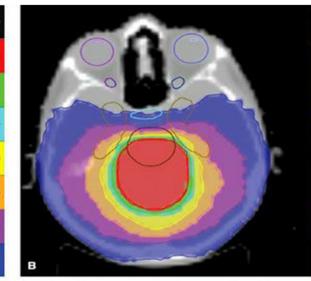
Some structures (e.g., optic chiasm, hypothalamus, lacrimal gland, lenses, etc.) appear to be substantially more sensitive to radiation than others.

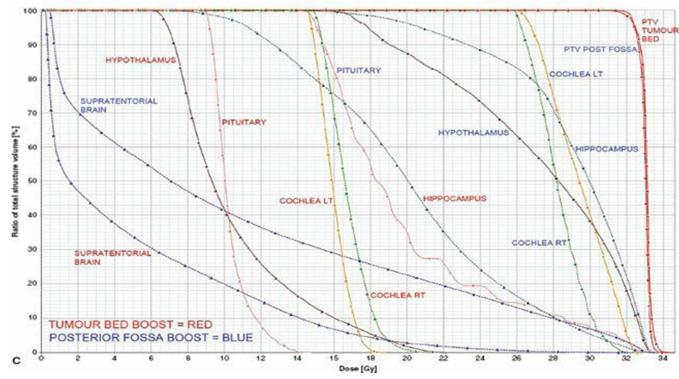

Radiotherapy Techniques

- Partial-brain irradiation, 3DCRT, IMRT, IGRT
- Whole-brain radiotherapy (WBRT),
- Cranio-spinal irradiation (CSI),
- Stereotactic radiosurgery (SRS),
- Fractionated stereotactic radiotherapy (FSRT),
- Brachytherapy, (less commonly)
- Proton beam thearpy (3DPT, IMPT).

Overview of Brain Tumors Importance of CT simulation


CT SIMULATION ADVANTAGE : Coverage of meninges in subfrontal region and sparing of lens in CSI.




CT SIMULATION

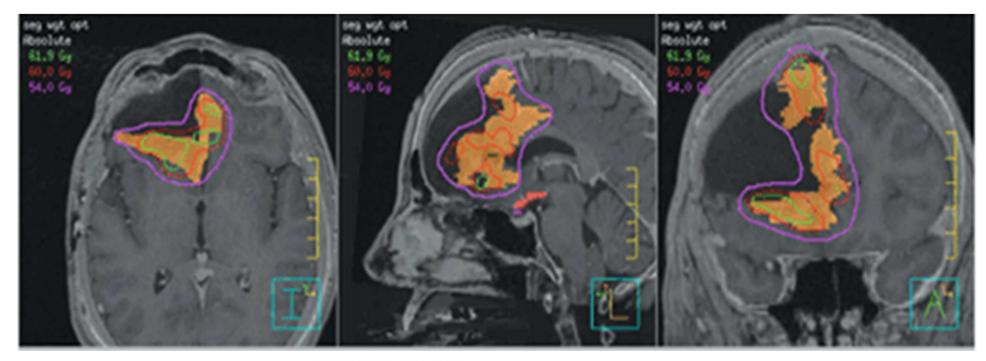
•Contouring of the cord and overlying meninges that extend laterally to the lateral aspect of the spinal ganglia results in a \checkmark field width than one based on bony anatomy.

•The addition of shielding further reduces the volume of normal tissues included in the treated volume.

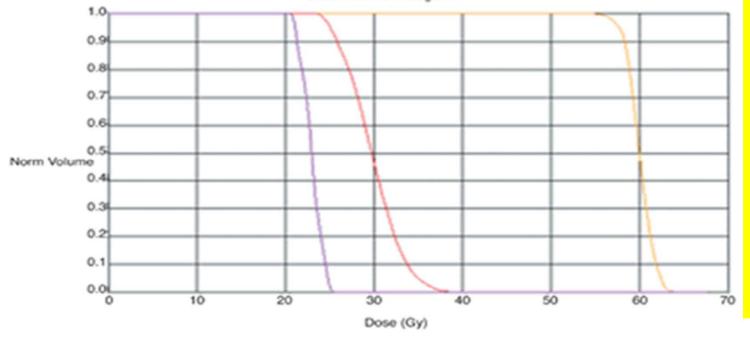
Axial images of an Image Guided RT for a whole posterior fossa

30.84

29.20

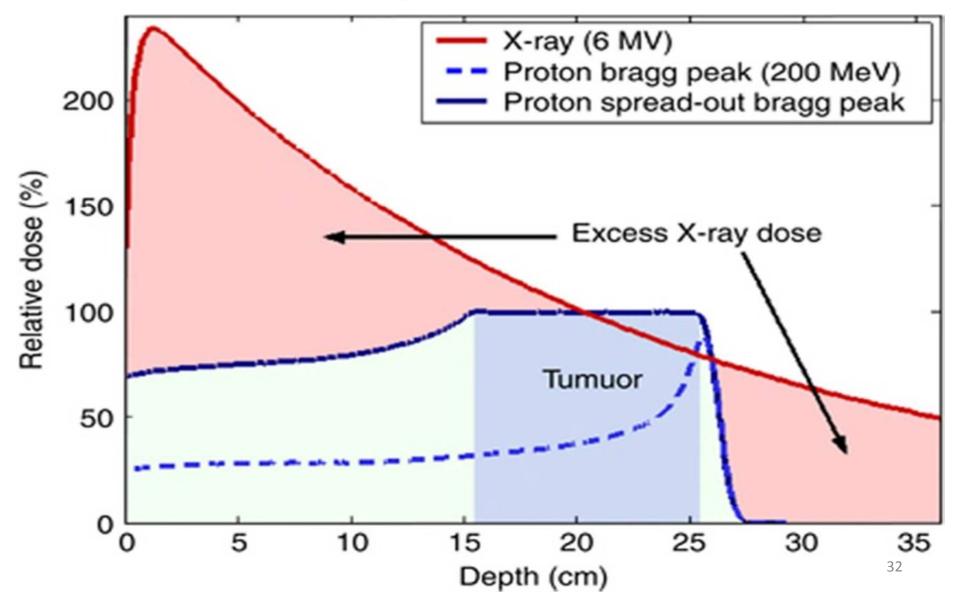

25.80

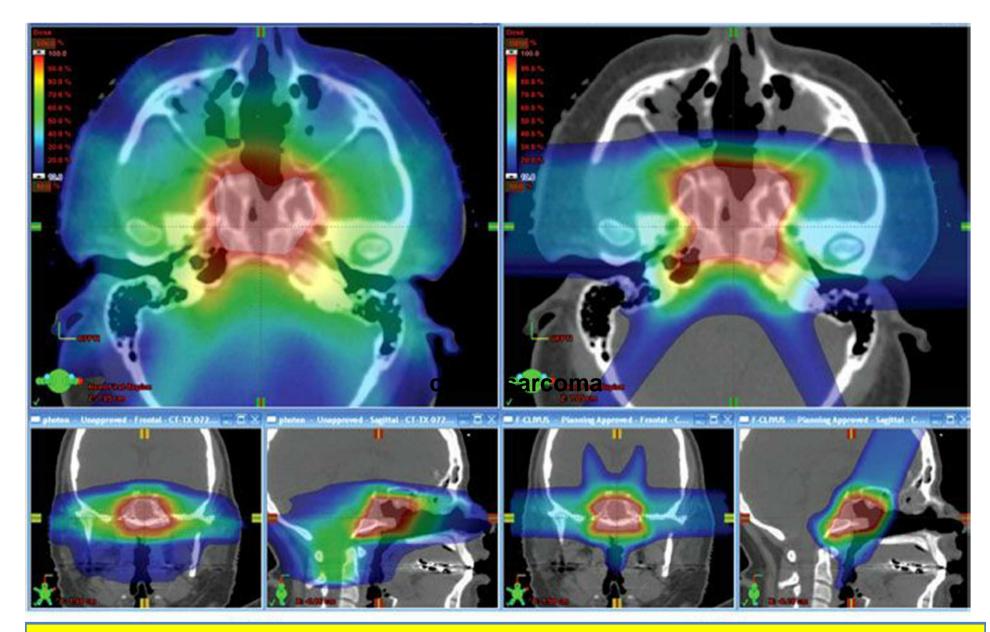
20.80

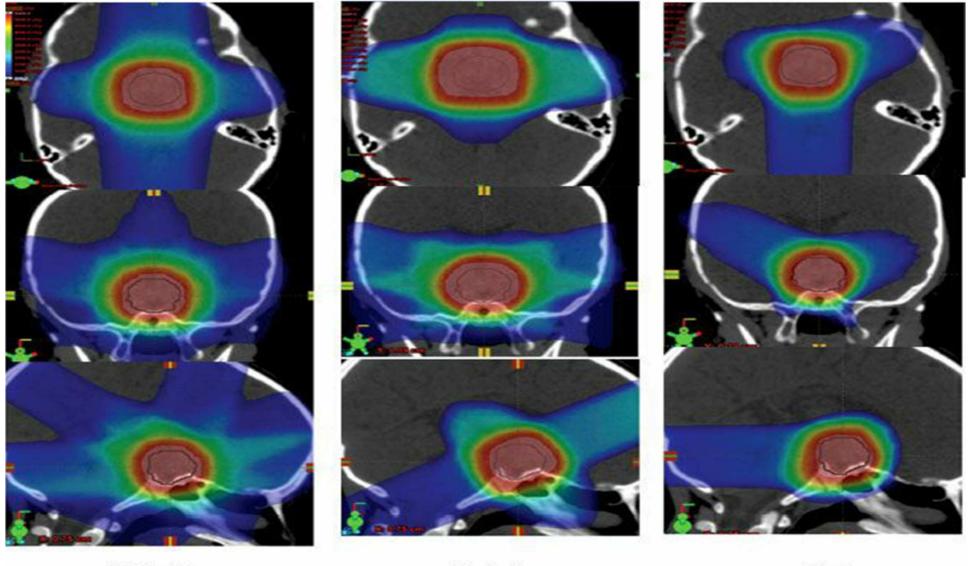

(A) and a reducedvolume posterior fossa boost

(B) for a patient with medulloblastoma.

(C) DVH show significant sparing of organs at risk with the reduced-volume boost.

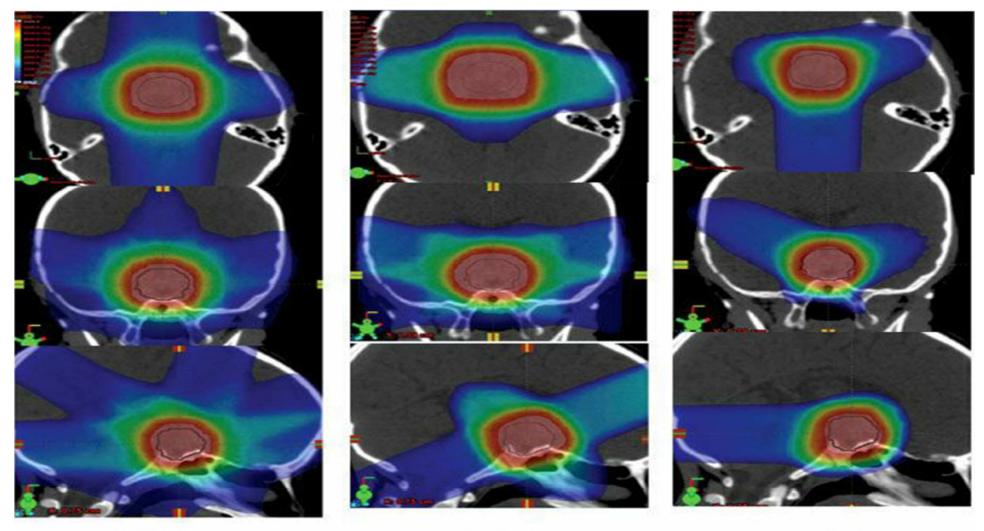



Cose Volume Histogram


IMRT SPARES CRITICAL ORGANS Example Opticchiasm a & pituitary in this case

X-Rays vs. Proton

Clivus sarcoma. The maximum and mean relative doses to the brainstem are 71% and 42% with IMRT compared to 59% and 11% with protons, respectively (sharp dose gradient with protons).



IMRT

SRT

PT

•Mean body and brain doses are 1/3rd with Protons than IMRT or SRT. •The mean right cochlear dose is 807 cGy with IMRT, 388 cGy with SRT, and 7 cGy (RBE) with protons. The mean left cochlear dose is 792 cGy with IMRT, 887 cGy with SRT, and 5 cGy (RBE) with protons.

IMRT

SRT

PT

The total-body V₁₀ and total body integral dose are 37.2% and 0.223 Gy-m³ with 3DCRT compared with 28.7% and 0.185 Gy-m³ with proton therapy, respectively.

General principle of treatments in adult Low Grade Gliomas (LGG)

Surgery : Except deep seated lesions such as pontine glioma Complete resection not achievable frequently

Radiotherapy :

RT immediately or after progression EORTC TRIAL 22845 – 7.4 vs .7.2 yrs OS. but PFS 5.3 vs. 3.4 Conclusion in doubt

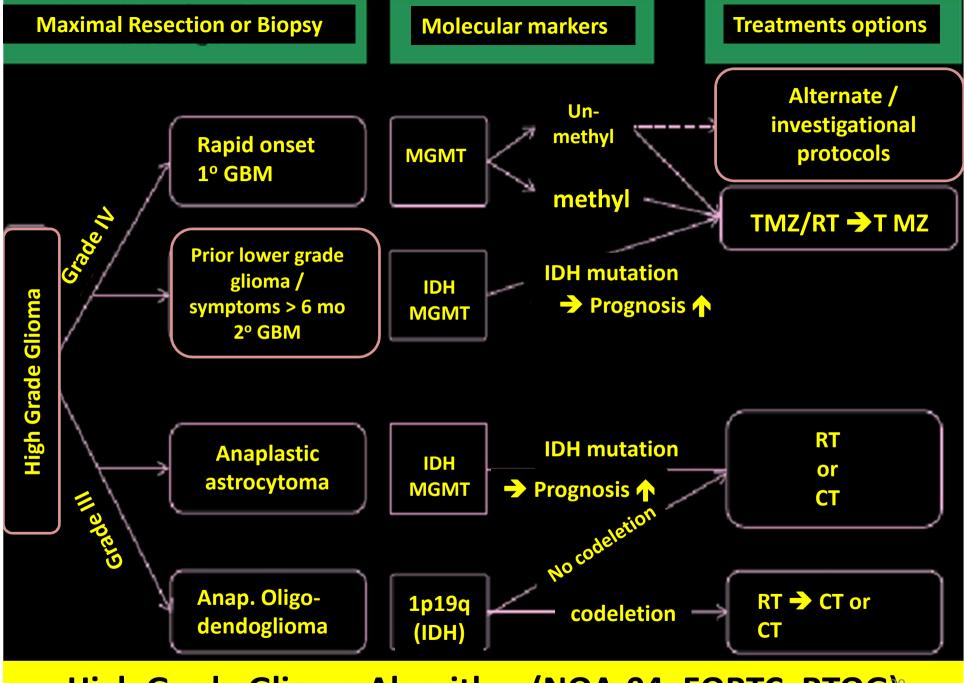
No difference in survival of dose escalation

Surveillance

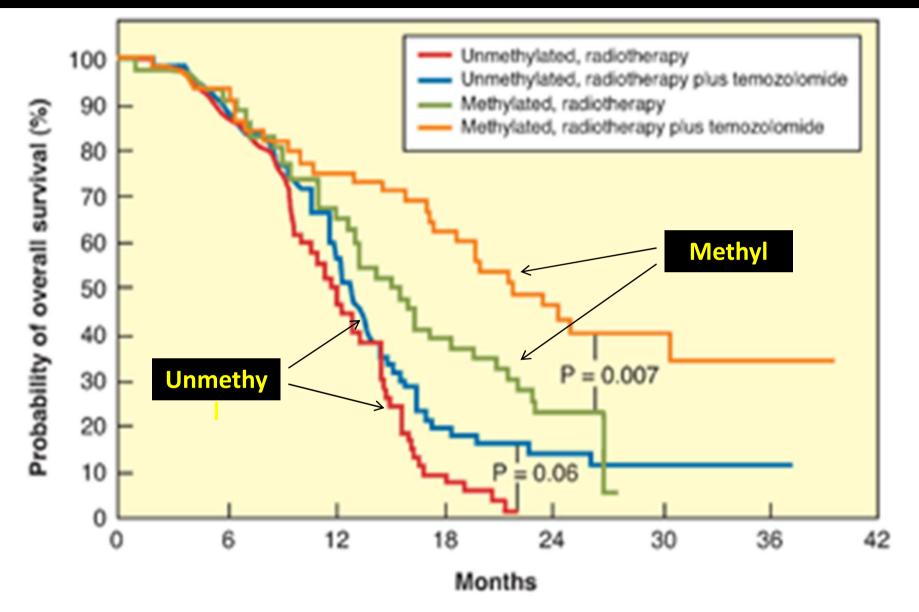
Risk factors for survival in Low Grade Gliomas •Age (<40 vs, > 40 years old) Tumor largest diameter (<6 cm vs. > 6 cm) Tumor crossing midline (yes vs. no) •HPE tumor type (oligodendroglioma or mixed vs. astrocytoma) Neurologic deficit present preoperatively (absent vs. present) **Survival** Low risk (0-2) 7.8 (6.8 - 8.9) yrs. 3.7 (2.9 - 4.7) yrs. High risk (3-5)

Maximal surgical resection compatible with A good neurological outcome

Follow-up with routine imaging


Second surgical resection (if feasible) at time of progressive

disease


Radiotherapy (or chemotherapy for children < 10 yers and children of all ages with NF-1) at time of progressive disease that

is not resectable

An algorithm for the management of patients with **low-grade** astrocytoma **Children & Adults**

High Grade Glioma Algorithm (NOA-04, EORTC, RTOG)

Radiotherapy vs. Radio-chemotherapy in GBM - NEJM 2005 40

Summary of Features of CNS Tumors in Adults

Type :	Location :	Clinical F	Survival	RT	СТ	
<mark>A*</mark>	Supratent	slow growing	5 yr MS	Yes	At rec	c.
AA	Supratent	Rapid growing	2.5 yr MS	Yes	Yes	
GBM *	Supratent	↑ Malignant	1 yr MS	Yes	Yes	
OG*	Supratent	个 Seizures	5 yr MS	Yes	Yes	
MN	convexity,	Women 个	Long term	Yes	Rare	
	clival					
LYMP	Multifocal,	个 CSF/ occular	3-5 Yr N	IS	Yes	Yes
periventricular Diss.						
A*=Ast	crocytoma	(adult>child),	AA=Anaplast	ic	astrocy	/toma,
GBM=0	Glioblastoma	(<mark>elderly</mark>), OG*=C	ligodendrog	lioma	(any	age),
MN=Meningioma, LYMP= Lymphoma, Diss= Dissamination 41						

Summary of Features of CNS Tumors in Childhood & Young Adults

	-				
Type :	Location :	Clinical F:	Survival	RT	СТ
BSG*	Pons	Fatal	1 Yr MS	Yes	Seldom
PA*	Cerebellum	Cure with TR	80% 10 yr	in res	s Yes
	hypothalamu	IS			
EPDM	* 4 th ventricle	e, Cure with TR,	70% 5 yr	Yes	Seldom
	cauda equina	<mark>ı can diss. in CS</mark>	F		
MDBN	A Cerebellum	likely to	70% - 80%	Yes	Yes
		diss. in CSF			
GERM	* Pineal &	Sensitive to CT	80% 5Yr	Yes	Yes
	suprasellar	& RT			
NGER	M ""	Marker+	25% 5Yr	Yes	Yes
BSG=brain stem glioma,PA*=Pilocytic astrocytoma (child>adult),					

EPDM*=Ependymoma (child, adult), MDBM= medulloblastoma (child>adult), GERM =

Germinama NGERM-Nongerm cell tumor (2nd & 2rd decade)

Ependymal Tumors

- Grade I and II ependymal tumors
 - Standard treatment options:
 - Surgery only if totally resectable.
 - Surgery → RT if residual

Anaplastic ependymomas

- Standard treatment options:
 - Surgery plus radiation therapy.
- Children younger than 3 yrs Chemotherapy

Medulloblastomas

- Standard treatment options:
 - Surgery plus craniospinal radiation therapy for goodrisk patients.
- Treatment options under clinical evaluation:
 - Surgery plus craniospinal radiation therapy and various chemotherapy regimens are being evaluated for poorrisk patients.
- Medulloblastoma occurs primarily in children, but it also occurs with some frequency in adults

Meningeal Tumors

- Standard treatment Options For Grade I :
 - 1. Active surveillance with deferred treatment, especially for incidentally discovered asymptomatic tumors.
 - 2. Surgery.
 - 3. SRS for tumors less than 3 cm.
 - **4.** Surgery \rightarrow RT in residual /recurrence.
 - **5. FRS for patients with unresectable tumors.**

Standard treatment Options For Grade II - III :

1. Surgery \rightarrow RT