Cranio-spinal Irradiation

ICRO course: 26 Apr 2014,Shimla Prof.Bidhu K Mohanti FORTIS Memorial Research Institute,Gurgaon <bk.mohanti@fortishealthcare.com>

Cranio-spinal axis radiation therapy

- Medulloblastoma
- Pinealoblastoma
- Ependymoblastoma
- Intracranial Germ cell tumor(germinoma)
- Central neurocytoma
- Glioneuronal tumor
- Choroid plexus carcinoma
- Leukemia/lymphoma(with CNS axis mets)

CSF seeding: Cerebrospinal fluid

secreted by choroid plexus

- circulates in ventricles, central canal of spinal cord, and subarachnoid space
- completely surrounds brain and spinal cord
- clear liquid
- nutritive and protective
- helps maintain stable ion concentrations in CNS

Meyer JJ et al.Radiation Oncol 2006;1:48

Craniospinal Irradiation(CSI) volume

 To treat the entire CNS axis, because tumor cells from the brain parenchyma ,for certain neoplasms, have direct access to the subarachnoid space and hence to the CSF.

A two compartment kinetic model, brain parenchyma & the CSF fluid, which are interconnected.

PTV_brainPTV_spine

Dose needed for tumor control

Two compartments:

- brain(solid tumor)
- spine(fluid)

require different total dose,fractions,schedule PTV_brain: ≤ 54 Gy

PTV_spine: 24-35 Gy

Site	Whole	Boost
Brain	23-35 Gy	Posterior fossa=54 Gy
Spine	23-35 Gy	Seeding = 36-42 Gy

Before we deliver CSI

- We should realize, the cranio-spinal irradiation is going to treat a large and complex volume of body.
- Leading to:
- -acute morbidities
- -long-term late effects

CSI: Acute morbidities

- Multiple acute toxicities take place during therapy course, because of the exposure of a large portion of the normal tissues, including bone marrow, head and neck, thorax, abdomen, and pelvis:
- -nausea, vomiting
- -esophagitis
- -diarrhoea
- -myelosuppression
- -fatigue, weight loss

CSI: long-term effects

- Endocrine dysfunction
- Hypothyroidism
- Impaired fertility
- Neurocognitive decline
- Growth retardation
- Hearing/visual impairment
- Cardiomyopathy
- Nephropathy
- Second malignancies

CSI: Reducing Morbidities

- All our techniques and dose regimens for CSI should aim to reduce:
- 1.the acute morbidities for better tolerance and compliance
- 2.the late effects which diminish the QOL in the cured children(as they achieve adulthood)
- All efforts should be made to monitor closely during RT course , and subsequently maintain a follow-up strategy to identify the long-term effects.

CSI: the evolving techniques

- 2-D
- 3-D CRT
- IMRT
- Adaptive IGRT
- VMAT
- Tomotherapy
- Proton therapy

Paterson E, Farr RF. Acta radiol 1953;39:323
Chojnacka M etal. Paediatr Blood Cancer 2004;42:155
Taylor RE etal. PNET-3 study. IJROBP 2004;58:1184
Wang Z et al . Radiation Oncology 2013;8:217

Planning steps

- Positioning
- Immobilization
- Simulation
- Verification
- Treatment
- Junction shift

Difficulties in classic irradiation techniques

- Divergences of bilateral brain fields and the upper spine field are in different directions
 - > Matching inf. border of cranial fields & sup. border of spine field
- > Spine fields are not geometrically matched
 - > How to avoid/reduce high dose region?
- > Varying depth of spinal cord along its length
- > Patient is in prone position difficult position to reproduce

Craniospinal irradiation: 2-D

- > Goal: To irradiate the entire neuraxis
- Classical setup
 - ➤ Two lateral brain fields
 - > Abutted to one or two
 - PA spine fields

CSI:positioning

Prone

Supine

In standard care, prone positioning is preferred. Supine positioning is required for anesthesia.

Radiotherapy Planning: 2-D

Phase I

- Two lateral cranial fields
- 1 or 2 spinal fields

Phase II: Posterior fossa boost

- Two lateral cranial fields
- Conformal technique in low risk cases.

Critical organs are too many

- > Eye lens, optic apparatus,
- > Lungs, heart, breast tissue, kidneys
- Exit dose is an issue

Spare lenses, but cover cribriform plate region

All symmetric fields

A. <u>Fully divergent skull fields and</u> <u>a divergent upper spine field</u>

- Two divergences are involved here at the junction of cranio-spinal fields
 - Skull fields diverge in the RT LT direction
 - Upper spine field diverge in the PA direction
- Collimator rotation required to match the skull fields with the divergence of upper spine field
- Additionally, couch rotation (couch kick) required to match the divergence of the skull fields

- another junction
- > This junction *cannot* be matched
 - ➤ There will be a gap
 - There will be a overlap

100 cm

100 cm

0 *** 0. 0. VA* ·BWI Immobilization cast and frame

CSI: 2-D Simulator settings

Problem 2 Divergence of spinal field S

Solution to Problem 2: Use asymmetric spinal block

2-D:What are the other techniques? Electron Field(s)

> 16 MeV PA electron beam spine field

3-D image-based :Contouring

Structure	2D T		
BRAIN			
BRAIN NEW			
CHIASMA			
CTV BOOST			
HEART			
HPA			
L COCHLEA			
L KIDNEY			
L OPTIC NV			
L. EYE			
LIVER			
POST FOSSA			
PRV L COCHLEA			
PRV R COCHLEA			
PTV BRAIN NEW			
PTV SPINE NEW			
R COCHLEA			
R EYE			
R KIDNEY			
R OPTIC NV			
SPARE			
SPINE			
SPINE BOOST			
SPINE NEW			
THYROID			
Hung			
patient			
r lung			
residual			
target vol. 3			
testis			

3-D:Contouring all planes

CSI:Beam arrangement- 3D-CRT

3-D planning: What are the other techniques?

> Spine treated by **PA, RPO & LPO**

Decreased dose to gut, heart, trachea, esophagus and kidneys for 3-field technique

CS:IMRT techniques?

> IMRT

- > Better dose distribution
- Less dose to parotid and lenses
- Easy to setup
- No need to shift junctions
- Upper & lower spine fields have a long overlap
 - Intensity modulated region
- Cranial and spinal fields are optimized as a single plan

CSI-VMAT (no Junction shift: dose tapering)

VMAT : Complete dose distribution

		Beam	Dose	
Structure	2D T	1: BRAIN	V	
BRAIN		2: 1SPINE	V	-
BRAIN NEW		4. 201 INC		-
CHIASMA				
CTV BOOST				
HEART				
HPA				
L COCHLEA		dose Control	Developed	ΨX
L KIDNEY			Dose(cuy)	
L OPTIC NV			2D 31	D
L. EYE		3850.0		•
LIVER				
POST FOSSA		3675.0		•
PRV L COCHLEA		3500.0		-
PRV R COCHLEA		3500.0		
PTV BRAIN NEW		3325.0	V	•
PTV SPINE NEW				
R COCHLEA		3181.8		-
R EYE				
R KIDNEY		3022.7		•
R OPTIC NV				
SPARE		2800.0	—	•
SPINE		2450.0		
SPINE BUUST		2450.0		
SPINE NEW		1750.0		-
THYRUID				
l lung		700.0		-
patient				
riung		All 2D On	All 3D O	n
tesidual		ickness % 5		
target vol. 5		toff % 0		solines
tesus	1		الشار	

×

A novel VMAT technique for CSI developed at FMRI, Gurgaon

> IMRT Techniques:

Better dose distribution,Less dose to parotid and lenses,Easy to setup,No need to shift junctions.Cranial and spinal fields are optimized as a single plan

We extended this IMRT protocol to VMAT at FMRI, Gurgaon

Junction free craniospinal irradiation in linear accelerator using volumetric modulated arc therapy : A novel technique using dose tapering.

Sarkar B et.al., accepted at AAPM, 2014

Post fossa boost: dose distribution

Comparison of VMAT and 3DCRT dose distribution

3DCRT dose distribution

VMAT dose distribution

CSI:Tomotherapy

Helical Tomotherapy

- Tomo eliminates junctions
 - In one long couch movement, the entire volume is treated without any need for junctions
 - Biggest advantage
 - > However a large volume receives small dose

Sharma DS et al. BJR 2009:82:1000-09

CSI:Proton Therapy

Protons!

Advantages are many!

Proton therapy

- Perfect dose painting
- No exit dose whatsoever
- > All critical organs saved

CSI: treatment results

Long term disease control and survival have consistently improved in last 20 years.

- Medulloblastoma:50% to 80% survival at 5 years or more
- Other neoplasms:35% to 80% survival at 5 years or more

Perez and Brady 5th Ed. 1836-42. Packer RJ et al. JCO 2006;24:4202

Patient Treated with Craniospinal irradiation in FMRI, Gurgaon(n=8;Average RT course=40 days)

	Dose			Boost				
	Bra	ain	Spi	Spine Post fossa		fossa	Spine	
Plan	Dose In Gy	No of #	Dose In Gy	No of #	Dose In Gy	No of #	Dose In Gy	No of #
IMRT	35	21	35	21	19.8	11	x	x
IMRT	23	13	23	13	30.6	17	Х	x
IMRT	35	21	35	21	19.8	11	Х	x
IMRT	35	21	35	21	19.8	11	16	8
3-D CRT	30.6	17	30.6	17	28.8	16	X	X
VMAT	35	21	35	21	19.8	11	Х	х
VMAT	35	21	35	21	19.8	11	Х	X
VMAT	35	21	35	21	19.8	11	5.4	3
Mean Value	33	19	33	19	22	12		

Inank your