

Basic Radiation Oncology Physics

T. Ganesh, Ph.D., DABR Chief Medical Physicist Fortis Memorial Research Institute**Gurgaon**

Acknowledgment:

I gratefully acknowledge the IAEA resources ofteaching slides for this presentation. Entire credit belongs to IAEA.

Penetration of photon beams into patient

- \blacktriangleright A photon beam propagating through air or vacuum is governed by the inverse square law.
- \blacktriangleright A photon beam propagating through a phantom or patient
is effected not only by the inverse square law but also by is affected not only by the inverse square law but also by
the ethnological conduction of the abotas has an incident the <u>attenuation and scattering of the photon beam inside</u> the phantom or patient.
- \blacktriangleright The three effects make the dose deposition in a phantom or patient a complicated process and its determination a complex task.

Need for dosimetric functions

- \blacktriangleright We need to know dose distribution within target volume and in the surrounding tissues
- \blacktriangleright One cannot measure dose at all points
- \blacktriangleright Several dosimetric functions link the dose at any arbitrary point inside the patient to the known dose at the beamcalibration (or reference) point in a phantom.

Dosimetric functions are measured in reference conditions

- \blacktriangleright Dosimetric functions are usually measured with suitable radiation detectors in tissue equivalent phantoms.
- \blacktriangleright Dose or dose rate at the reference point is determined for, or in, water phantoms for a specific set of reference conditions, such as:
	- ▶ Depth in phantom z
	- **▶ Field size A**
	- Source-surface distance (SSD)

Central axis depth dose (CADD)

- \blacktriangleright Typical dose distribution for an external photon beam follows
e known general pettern: a known general pattern:
	- \blacktriangleright Surface dose $D_{\rm s}$
	- **Exapid buildup of dose** beneath the surface - reaches a maximum value at a depth $z_{\textsf{max}}$ - decreases almost exponentially - reaches a value D_{ex} at the patient's exit point.

Surface dose

\blacktriangleright Surface dose:

 \blacktriangleright

- > For megavoltage x-ray beams the surface dose is generally much lower (skin sparing effect) than the maximum dose at z_{max} .
- For superficial and orthovoltage **For superficial and orthovoltage** beams $z_{\text{max}} = 0$ and the surface dose equals the maximum dose.
	- Typical values of surface dose:
		- **⊃** 100%for superficial and orthovoltage

6

- 30% for cobalt-60 gamma rays
- **⇒** 15% for 6 MV x-ray beams
- 10% for18 MV x-ray beams

Depth of dose maximum depends on….

Radiation treatment parameters

- \blacktriangleright The **main parameters** in external beam dose delivery with photon beams are:
	- ▶ Depth of treatment z
	- **▶ Fields size A**
	- Source-skin distance (SSD) in SSD setups
	- Source-axis distance (SAD) in SAD setups
	- > Photon beam energy
	- ▶ Number of beams used in dose delivery to the patient
	- **> Treatment time for orthovoltage and teletherapy machines**
	- Number of monitor units (MUs) for linacs

Radiation treatment parameters

- \blacktriangleright \triangleright Point P is at z_{max} on central axis.
- \triangleright Point Q is arbitrary point at
denth z on the central avis depth z on the central axis.
- \blacktriangleright > Field size A is defined on patient's surface.
- \blacktriangleright ${\mathcal A}_{{\mathsf Q}}$ $_{\tiny{\textrm{Q}}}$ is the field size at point Q.
- $\sum_{i=1}^{n}$ SSD = source-skin distance.
- \angle SCD = source-collimator distance

Radiation field size

- \blacktriangleright Radiation fields are divided into two categories: geometric and dosimetric (physical).
	- According to the ICRU, the geometric field size is defined as
"the projection of the distal and of the machine collimator" "the projection of the distal end of the machine collimator onto a plane perpendicular to the central axis of the radiation beam as seen from the front center of the source."
	- The dosimetric field size (also called the physical field size) is defined by the **intercent of a given isodose surface** is defined by the **intercept of a given isodose surface (usually 50%)** with a plane perpendicular to the central axis of the radiation beam at a defined distance from the source.

Equivalent field size

- \blacktriangleright Equivalent square for rectangular field:
	- An arbitrary rectangular field with sides a and b will be approximately equal to a square field with side $a_{\rm eq}$ approximately equal to a square field with side \bm{a}_eq when
both fields have the same area/perimeter ratio (Day's rule).

Percentage depth dose

 \triangleright Central axis dose distributions inside the patient are usually normalized to $D_{\text{max}} = 100\%$ at the depth of $_{\text{source}}$ dose maximum z_{max} and then referred to as percentage depth dose (PDD) distributions

 \triangleright PDD is thus defined as follows:

$$
PDD(z, A, f, hv) = 100 \frac{D_{\text{Q}}}{D_{\text{p}}} = \frac{\dot{D}_{\text{Q}}}{\dot{D}_{\text{p}}}
$$

- \blacktriangleright D_{Q} and D_{Q} are the dose and dose rate, respectively, at D_{Q} arbitrary põint Q at depth \boldsymbol{z} on the beam central axis. $\dot{D}_{\rm Q}$
- \blacktriangleright D_{P} reference point P at depth z_{max} on the beam central axis. $D_{\rm P}$ and $D_{\rm P}$ are the dose and dose rate, respectively, at $\frac{1}{2}$ for an the beam control ovident

Dose at any point is due to both primary & scatter

 \triangleright The dose at point Q in the patient consists of two components: **primary component** and **scatter component.**

$$
D_{\rm Q} = D_{\rm pri} + D_{\rm sca}
$$

- As the depth increases, the **relative** contribution of D_{pri} decreases and that of $\mathsf{D}_{\mathsf{sca}}$ increases
- At low energies, this effect is predominant

Tissue-phantom ratio (TPR)

- \blacktriangleright For isocentric setups with megavoltage photon energies the concept of tissue-phantom ratio TPR was developed.
- \blacktriangleright Similarly to TAR the TPR depends upon z , A_{Q} , and energy.

Fissue-maximum ratio TMR is a special TPR for $z_{ref} = z_{max}$. \blacktriangleright

Fortis

Off-axis beam profiles

- \blacktriangleright Combining a central axis dose distribution with offaxis data results in a volume, dose matrix.
- \angle 2-D and 3-D information on
the dose distribution in the the dose distribution in the patient
- \blacktriangleright The off-axis ratio OAR is defined as the **ratio of dose at an off-axis point** to the **dose on the central beam axis at the same depth** in a phantom

Off-axis or cross-beam beam profiles

Cross Beam Profile

Field size

≻ Geometric or nominal field size is:

- \triangleright Indicated by the optical light field of the treatment machine.
- \triangleright Usually defined as the separation between the 50% dose level points on the beam profile measured at the depth of dose maximum $z_{\sf max}$ (dosimetric field size)

Penumbra

The total penumbra is referred to as the **physical penumbra** and consists of three components:

- Geometric penumbra results from the finite source size.
- ▶ Scatter penumbra results from in-patient photon scatter originating in the open field.
- >Transmission penumbra results from beam transmitted through the collimation device.

Flatness & Symmetry

Isodose chart & isodose curves

 \blacktriangleright

- \blacktriangleright An isodose chart for a given single beam consists of a
family of isodose curves usually drawn at reqular family of isodose curves usually drawn at regular increments of PDD.
	- Two normalization conventions are in use:
		- For SSD set-ups, all isodose values are normalized to 100% at point of dose maximum on the central beam axis.
		- > For SAD set-ups, the isodose values are normalized to 100% at the isocentre 100% at the isocentre

Normalization at dose maximum

For SSD set-ups, all isodose values are normalized to 100% at point P on the central beam axis (point of dose maximum at depth z_{max}).

Cobalt-60 gamma rays $SSD = 80$ cm $A = 10x10$ cm² -5 100 50 10 10

Normalization at isocentre

≻For SAD set-ups, the isodose values are normalized to 100% at the isocentre.

Cobalt-60 gamma rays SAD = 80 cm A_0 = 10x10 cm²

Different type of normalization

Different normalizations for a single 18 MV photon beam incident on a patient contour

Isodose curves for a fixed SSD beam normalized at depth of **dose maximum**

Isodose curves for an isocentric beam normalized at the **isocenter**

Isodose curves are affected by…

 \triangleright Beam quality

≻Source size

 \triangleright Beam collimation

 \triangleright Field size

≻ Source-skin distance

≻ Source-collimator distance

Isodose curves for different energies

 \triangleright Isodose distributions for various photon radiation beams: orthovoltage x rays, cobalt-60 gamma rays, 4 MV x rays, 10 MV x rays

'Ears' in an isodose chart: Have you ever noticed?

Isodose Distribution

From: Dr. Palta, Univ of Florida

'Ears' in an isodose chart: Have you ever noticed?

Contaminant

electrons contribute to dose outside the field at shallow depths. The magnitude and extent of the dose outside the geometric edge of a field at shallow depths **increases**with beam energy

Does your TPS model this phenomenon?

- Measured dose distributions apply to a **flat radiation beam**incident on a flat homogeneous water phantom.
- \triangleright To relate such measurements to the actual dose distribution in a patient, **corrections** for irregular surface and tissue inhomogeneities have to be applied.
- > Three methods for contour correction are used:
	- (1)the (manual) isodose shift method;
	- (2)the effective attenuation coefficient method;
	- (3)the TAR method.

- \triangleright Grid lines are drawn parallel to the central beam axis all across the field.
- **The tissue deficit (or excess) h** is the
difference between the SSD along a difference between the SSD along a gridline and the SSD on the central axis.
- \triangleright k is an energy dependent parameter
aiven in the next slide given in the next slide.
- \triangleright The isodose distribution for a flat
phantom is aligned with the SSD phantom is aligned with the SSD central axis on the patient contour.
- For each gridline, the overlaid isodose
distribution is shifted up (or down) such distribution is shifted up (or down) such that the overlaid SSD is at a point **k×h**above (or below) the central axis SSD.

(1) Manual isodose shift method

Parameter k used in the isodose shift method

(2) Effective attenuation coefficient method

- \triangleright The correction factor is determined from the attenuation factor exp(-µx), where x is the depth of missing tissue above the calculation point, and µ is the linear attenuation coefficient of tissue for a given energy.
- \triangleright For simplicity the factors are usually pre-calculated and supplied in graphical or tabular form.

(3) TAR method

The tissue-air ratio (TAR) correction method is also based on the attenuation law, but takes the depth of the calculation point and the field size into account.

> Generally, the correction factor C_F as a function of depth z , thickness of missing tissue h , and field size f , is given by:

$$
C_{F} = \frac{TAR(z-h,f)}{TAR(z,f)}
$$

 \triangleright TMRs / TPRs also can be used in place of TAR

Corrections for tissue inhomogeneities

- \blacktriangleright Radiation beams used in patient treatment traverse various tissues that may differ from water in density and atomic number.
- $\sum_{i=1}^{n}$ This may result in isodose distributions that differ significantly from those obtained with water phantoms.
- \blacktriangleright The effects of inhomogeneities on the dose distributions depend upon:
	- Amount, density and atomic number of the inhomogeneity.
	- Quality of the radiation beam.

Corrections for tissue inhomogeneities

- \blacktriangleright Four empirical methods have been developed for correcting the water phantom dose to obtain the dose at points P_3 in region (3) beyond the inhomogeneity $_3$ in region (3) beyond the inhomogeneity:
	- ▶ TAR method
	- ▶ Power law TAR method
	- Equivalent TAR method
	- ▶ Isodose shift method

Best way to account for inhomogeneities

- Model based algorithms
	- Convolution-superposition method
	- Monte Carlo method

General considerations for photon beams

Almost a dogma in external beam radiotherapy:

Successful radiotherapy requires a uniform dose distribution within the target (tumor).

External photon beam radiotherapy is usuallycarried out with **multiple radiation beams** in order to achieve a **uniform dose distribution**inside the target volume and a dose as low as possible in healthy tissues surrounding thetarget.

Criteria of a uniform dose distribution within the target

 \triangleright Recommendations regarding dose uniformity, prescribing, recording, and reporting photon beam therapy are set forth by the International Commission on Radiation Units and Measurements (ICRU).

The ICRU report 50 recommends a target dose uniformity **within +7% and –5%** relative to the dose delivered to a well defined prescription point within the target.

Methods of beam setup

 \triangleright Photon beam radiotherapy is carried out under two setup conventions

constant Source-Surface Distance

(SSD technique)

isocentric setup with a constant Source-Axis Distance

(SAD technique).

SSD technique

The distance from the source to the **surface** of the patient is kept **constant** for all beams.

SAD technique

 \triangleright The center of the target volume is placed at the machine isocenter, i.e. the **distance to the target point** is kept constant for all beams.

Note:

In contrast to SSD technique,the **SAD technique** requires **no** adjustment of the patient setup when turning the gantry to thenext field.

SSD vs. SAD technique: Which is better?

> There is little difference between fixed SSD techniques and isocentric (SAD) techniques with respect to the dose:

- Fixed SSD arrangements are usually at **a greater SSD** than isocentric beams because the machine isocenter is on the patient skin.
- They have therefore a slightly **higher PDD** at depth.
- Additionally, beam **divergence is smaller** with SSD due to the larger distance.

SSD vs. SAD technique: Which is better?

These dosimetric advantages of SSD technique are small.

 \triangleright With the exception of very large fields exceeding 40x40 cm² , **the advantages of using a single set-up point** (i.e., the isocenter) greatly outweigh the dosimetric advantage of SSD **beams**

Dose specification

 \triangleright Parameters to characterize the dose distribution within a volume and to specify the dose are:

- Minimum target dose
- Maximum target dose
- **Mean target dose**
- A **reference dose** at a **representative point** within the volume

 \triangleright The ICRU has given recommendations for the selection of a representative point (the so-called **ICRU reference point**).

Dose specification

- The **ICRU reference dose point** is located at a point chosen to represent the delivered dose using the following criteria:
	- The point should be located in a region where the dose can be calculated accurately (i.e., no build-up or steep gradients).
	- \triangleright The point should be in the central part of the PTV.
	- For multiple fields, the isocenter (or beam intersection point) is recommended as the ICRU reference point.

Dose specification

ICRU reference point for multiple fields

The ICRU (reference) point is located at the isocenter

Example for a 3 field prostate boost

ICRU Reference point

- \triangleright Specific recommendations are made with regard to the position of the ICRU (reference) point for particular beam combinations:
	- **For single beam:**

the point on **central axis** at the **center of the target volume**.

- **For parallel-opposed equally weighted beams:** the point on the **central axis midway between the beam entrance points**.
- **For parallel-opposed unequally weighted beams:** the point on the central axis at the **centre of the target volume**.
- **For other combinations of intersecting beams:** the **point at the intersection of the central axes** (insofar as there is no dose gradient at this point).

 \triangleright Single photon beams are of limited use in the treatment of deep-seated tumors, since they give a **higher dose** near the entrance at the depth of dose maximum than at depth.

Single fields are often used for **palliative treatments** or for relatively **superficial lesions**(depth < 5-10 cm, depending on the beam energy).

For deeper lesions, a **combination** of two or more photon

beams is usually required to concentrate the dose in the target volume and spare the tissues surrounding the target as much as possible.

Normalization

- \triangleright Dose distributions for multiple beams can be normalized to 100% just as for single beams:
	- \blacktriangleright at z_{max} for each beam, **Example 2 at isocenter for each beam.**

 \triangleright This implies that each beam is equally weighted.

Weighting and normalization

A **beam weighting** may additionally applied at the normalization point for the given beam.

Example:

Two beams with z_{max} normalization weighted as 100 : 50%

will show one beam with the 100% isodose at $z_{\sf max}$ and the other one with 50% at $z_{\sf max}$.

 \triangleright A similar isocentric weighted beam pair would show the 150% isodose at the isocenter.

Parallel opposed beams – Equally weighted

Example:

 A parallel-opposed beam pair is incident on a patient.

- \triangleright Note the large rectangular area of relatively uniform dose (<15% variation).
- \triangleright The isodoses have been normalized to 100% at the isocenter.

 \triangleright This beam combination is well suited to a large variety of treatment sites (e.g., lung, brain, head and neck).

Parallel opposed beams – Unequally weighted

When?

- **≻ Target volume is one sided,** but at a larger depth
	- Single beam will give very high entry dose
	- Equally weighted opposing
beams will give bigh dose beams will give high dose throughout the volume

- **▶ Give more weight to the beam from target side & less to the other**
- \blacktriangleright Remember, it is **NOT** a magic solution

> Isocenter can be at mid-plane or at center of tumor – ratio of weights will differ

Parallel opposed beams – Equally weighted

- Weight 100:100 at iso
- At iso, it is now 200%
- **≻ Tumor is covered by 187%**
- \triangleright What does this mean?

Fortis

Parallel opposed beams – Unequally weighted

We need to deliver 106.4 cGy & 212.8 cGy at the iso of AP & **PA beams respectively** 54

Multiple co-planar beams

 \triangleright Multiple coplanar beams allows for a higher dose in the beam intersection region.

Two examples:

4-field box

3-field technique using wedges

Multiple co-planar beams – 4 field box

 \triangleright A 4-field box allows for a very high dose to be delivered at the**intersection** of the beams.

Multiple co-planar beams – 3-field technique using wedges

- \triangleright A 3-field technique requires the use of wedges to achieve a **similar result**.
- \triangleright Note that the latter can produce significant **hot spots** near the entrance of the wedged beams and well outside the targeted area

3-field technique using wedges – Equally weighted

Weight 100:100:100 at iso \triangleright At iso it is now 300% Target covered by 290%

We have to deliver 69 cGy at the iso of each beam

Note: For the wedged beams, we need to take into account the wedge attenuation factor (transmission factor) while calculating time or MUs

3-field technique using wedges – Unequally weighted

- Weight 60:110:120 at iso (AP:RL:LL)
- \triangleright At iso it is now 290%
- Target covered by 270%

We have to deliver 44.4 cGy, 81.5 cGy & 88.9 cGy at the iso of AP, RL and LL beams respectively.

Normalization

- Weight 60:110:120 at iso (AP:RL:LL)
- \triangleright At iso it is now 290%
- Target covered by 270%

We normalize 290% to 100%

- Target is covered by 270% or [100/290]*[270] = 93.1%
- **≻ The question is: are you going to prescribe your dose to** 100%? or to 93.1%?
	- Prescribing at 100% tumor receives a minimum dose of 93.1%
of your prescription dose of your prescription dose
	- Prescribing at 93.1% tumor receives your FULL prescription
dose but some part is overdosed by 7.4% (or even more) dose, but some part is overdosed by 7.4% (or even more)

The field flatness changes with depth. This is attributed to an increase in scatter to primary dose ratio with increasing depth and decreasing incident photon energy off axis

