
Correlation and 
Regression



Sir Francis Galton 
1822-1911

Geographer, 
meteorologist, tropical 
explorer, inventor of 
fingerprint identification, 
eugenicist, half-cousin 
of Charles Darwin and 
best-selling author



Galton
� Obsessed with 

measurement 
� Tried to measure 

everything from the 
weather to female 
beauty 

� Invented correlation and 
regression



Sweet Peas

� Galton’s experiment with sweet peas 
(1875) led to the development of initial 
concepts of linear regression.

� Sweet peas could self-fertilize: “daughter 
plants express genetic variations from 
mother plants without contribution from a 
second parent.”



Sweet Peas (2)

� Distributed packets of seeds to 7 friends
� Uniformly distributed sizes, split into 7 size 

groups with 10 seeds per size.
� There was substantial variation among packets.
� 7 sizes 10 seeds per size 7 friends = 490 seeds
� Friends were to harvest seeds from the new 

generation of friends and return them to Galton.



Sweet Peas (3)

� Plotted the weights of daughter seeds 
against weights of mother seeds.

� Hand fitted a line to the data
� Slope of the line connecting the means of 

different columns is equivalent to 
regression slope.



Sweet Pea Scatterplot
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Sweet Pea Scatterplot with Regression Line
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Slope indicates strength of 
association

Galton drew his line by hand, and 
estimated that for every thousandth of an 
inch of increased size of parents, the 
daughters size was affected by 0.33 
thousandths



Things Galton Noticed

� Mother plants of a given seed size tended to 
have daughter seeds of pretty similar sizes

� Extremely large mother seeds grew into 
plants whose daughter seeds were generally 
not so large

� Extremely small mother seeds grew into 
plants whose daughter seeds were generally 
not so small

� Galton put a name on the loss of extremity:
“Regression to the mean”



Karl Pearson (1857-1936)

� Formalized Galton’s 
method

� Invented least 
squares method of 
determining 
regression line

Pearson with Galton, c. 1900



Least squares idea: Choose the line that 
minimizes the sum of the squares of the deviations 
of each observation from the regression line



Scatterplots



Correlations:
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Correlation does not imply causality

� Two variables might be associated because 
they share a common cause

� For example, SAT scores and College Grade 
are highly associated, but probably not because 
scoring well on the SAT causes a student to get 
high grades in college

� Being a good student, etc., would be the 
common cause of the SATs and the grades



Intervening and confounding factors

There is a positive correlation between ice cream 
sales and drownings

There is a strong positive association between 
Number of Years of Education and Annual 
Income

� In part, getting more education allows people to 
get better, higher-paying jobs.

� But these variables are confounded with others, 
such as socio-economic status



Regression and correlation will not 
capture nonlinear relationships



0

5

10

15

20

25

0 50 100 150 200

SPEED (KM/H)

M
IL

E
A

G
E

*

* Mileage: liters / 100 km

FUEL CONSUMPTION & SPEED

Speed And Mileage Have A Curved 
Relationship.  Using r would be 
inappropriate

r = -0.172



Bivariate regression equation

Y=bx+c
b=slope
c=intercept



Adding another variable



Multiple regression equation

Y=b1x1+b2x2+ c
b1=slope of 1st

variable
X1=1st variable
B2=slope of 2nd

variable
X2=second variable
c=intercept



Another view



Another view



Dummy variables

� All examples have been continuous variables, but most 
historical data is categorical

� We can recode categorical variables into dummy 
variables
Race becomes codes

white (0,1)
black (0,1)
Asian (0,1)

One category must be omitted



Dummy variable scatter plot
(FEV is forced expiratory volume)



Bivariate regression results

ß
Variable (coefficient F-test 
SMOKE 0.71 41.7892 

Y-Intercept 2.5661426 

� The slope coefficient of 0.71 for SMOKE and FEV suggests hat FEV 
increases 0.71 units (on the average) as we go from SMOKE = 0 (non-
smoker) to SMOKE = 1 (smoker). This is surprisingly given what we know 
about smoking. How can a positive relation between SMOKE and FEV exist 
given what we know about the physiological effects of smoking? The 
answer lies in understanding the confounding effects of AGE on SMOKE 
and FEV. In this child and adolescent population, nonsmokers are younger 
than nonsmokers (mean ages: 9.5 years vs. 13.5 years, respectively). It is 
therefore not surprising that AGE confounds the relation between SMOKE 
and FEV. So what are we to do?



Dummy variable scatterplot (3-D)



Multiple regression results

                  b       

Variable    coefficient     F-test

SMOKE         -0.2089949     6.6994

AGE            0.2306046  793.8988

Y-Intercept    0.3673730  



Intergenerational coresidence of the aged, 1950-2000: 
Independent variables

Table 1. State-level measures of intergenerational coresidence, earnings, and education, 1950-2000

1950 1960 1970 1980 1990 2000 All years
Mean of states:

Percent of persons aged 65+ residing with their children 34.1 24.4 17.4 13.9 13.5 14.5 19.6
Percent of persons aged 30-39 with low incomes 55.8 44.8 39.0 32.3 29.7 28.5 38.7
Percent of persons aged 65+ with low incomes 75.4 61.6 49.1 32.1 27.5 23.7 44.9
Percent of persons aged 30-39 completed high school 44.0 54.6 66.7 81.9 89.3 89.8 71.1
Percent of persons aged 65+ completed high school 17.1 19.3 27.0 38.8 56.5 69.2 38.0

Standard deviation:
Percent of persons aged 65+ residing with their children 6.6 5.9 4.3 3.8 3.6 3.8 8.9
Percent of persons aged 30-39 with low incomes 7.1 5.1 3.7 3.4 4.5 4.3 11.0
Percent of persons aged 65+ with low incomes 6.0 7.9 8.2 6.5 5.3 3.3 20.0
Percent of persons aged 30-39 completed high school 10.9 9.1 8.0 5.9 3.9 3.4 18.9
Percent of persons aged 65+ completed high school 5.0 5.0 6.5 9.0 8.9 7.1 20.5

Number of cases: 46 46 46 46 46 46 276

Note: Alaska, Delaware, Hawaii, Nevada, and Wyoming excluded because of insufficient cases; the District of Colombia is treated as a state. 
Low income is defined as half the median income for each age group in the 2000 census (under $12,046 for persons 30-39, and under
$6,998 for persons aged 65 or over in 2000 dollars).
Source: Ruggles et al. (2004)



State-level regression results

 

B t B t B t

1950 19.61 36.00 *** 4.29 1.64 0.97 0.25

1960 9.87 18.13 *** -0.34 -0.15 -3.99 -1.22

1970 2.91 5.34 *** -3.41 -2.26 * -5.88 -2.30 *

1980 -0.61 -1.11 -2.79 -4.07 *** -3.42 -2.12 *

1990 -1.03 -1.89 -1.87 -3.48 ** -1.14 -1.58

2000   (reference)   (reference)   (reference)

Percent of persons aged 30-39 with low incomes 0.30 6.42 *** 0.12 2.85 ***

Percent of persons aged 65+ with low incomes 0.12 2.31 * -0.01 -0.30

Percent of persons aged 30-39 completing high school -0.37 -8.60 ***

Percent of persons aged 65+ completing high school 0.01 0.30

Yes Yes Yes

14.42 1.12 4.29 2.59 43.84 6.77 ***

rho / lamda
0.91 0.93 0.95

Log likelihood

N 276 276 276

Source: Ruggles et al. (2004)
Note: Omitted state is New Hampshire

    Model 1     Model 3     Model 5

Table 2.  State-level models of education and income on percent of elders residing with adult 
         Ordinary Least Squares (OLS)  Models with Pooled data, 1950-2000

      OLS       OLS       OLS

Census Year

Income and education

* p < .05   ** p < .01  *** p < .001

State effects

Constant

Adjusted R Square/pseudo F


