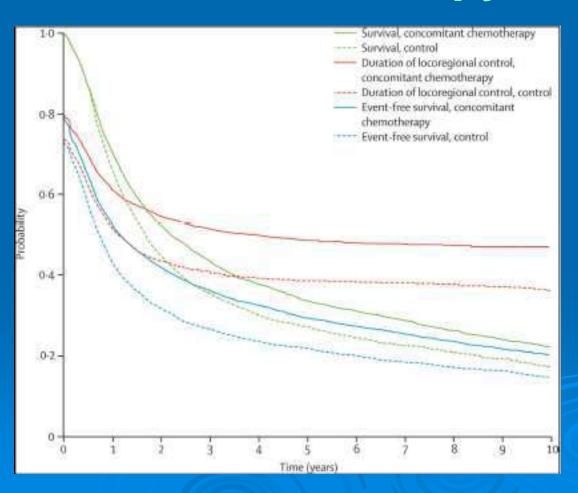
RADIOBIOLOGY IN RELATION TO CONCURRENT CHEMORADIOTHERAPY

Satyajit Pradhan


Dept. of Radiotherapy & Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005

- Combined use of RT and CT in cancer treatment-a logical and reasonable approachhas already proven beneficial for several malignancies.
- ➤ Local control of primary tumor mass by RT + Systemic CT to control metastatic disease-effective means to combat the disease.
- Many CT drugs enhance the effects of RT- even more impetus to integrate both modalities.

Biological Basis for Concurrent Chemoradiotherapy

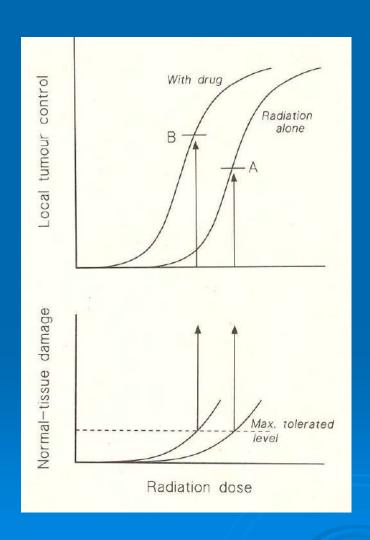
- Chemotherapy may be given neo-adjuvantly, concurrently or adjuvantly
- Used concurrently
 - > Advantage: neither modality delayed
 - Disadvantage: risk of increased toxicity
- Biological basis
 - Spatial co-operation: radiotherapy targets local and chemotherapy distant disease
 - Additive independent cell kill with no overlapping toxicity
 - Preferential sensitisation of tumour vs normal cells (or protection of normal vs tumour cells)

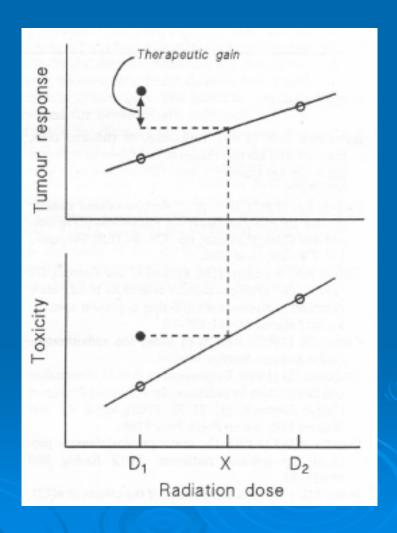
Meta-analysis of Head and Neck Cancer Trials Involving Concurrent Chemoradiotherapy

- ➤ 1950s- Search for chemical agents that might enhance the effects of radiation.
- ➤ In1958- Heidelberger *et al* obtained "potentiation of activity" by combining FU with radiation in a preclinical study.
- Pioneering studies later translated into clinical trials-often with contradictory results, (those observed in treatment of lung cancer).
- Major breakthrough in early 1970s-, Nigro et al. -Concurrent CT & RT in patients with cancer of anal canal.

Chemoradiation: e.g. Locally advanced NSCLC

- Meta-analysis
- Concurrent chemoradiotherapy vs sequential chemotherapy and radiotherapy
- Improved local control
- Significant overall survival advantage of 6.6% at 3 years (24.8% vs 18.2%)
- But higher oesophageal toxicity rates (18% vs 3%)

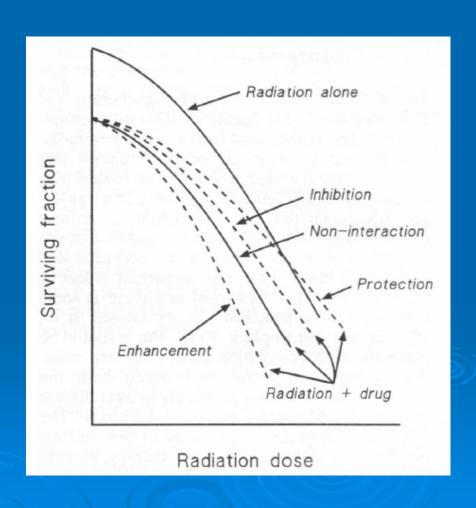

Developments in Radiobiology


- Developments in biology are increasing our understanding of the complex molecular pathways that control cellular processes
- Our understanding of radiation effects on cells has changed considerably over the past 10 years
- Radiobiology is exploiting these developments to find novel molecular targets for successful chemoradiotherapy approaches

Chemoradiation: e.g. Locally Advanced Head & Neck Cancer

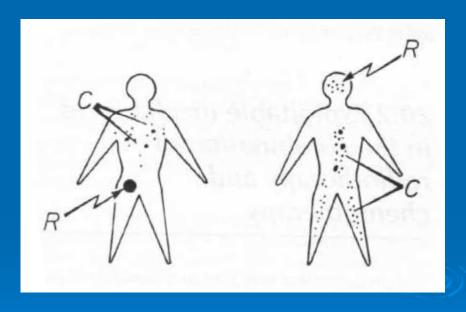
- Meta-analysis
- Significant overall survival advantage with addition of chemotherapy to RT (sequential & concomitant) 4.5% at 5 years
- More pronounced effect with concomitant chemotherapy 6.5% at 5 years

Improvement in Therapeutic Index


Combining CT with RT

Goals- increase patient survival by:

- Improving local-regional tumour control
- Decreasing or eliminating distant metastases
- > Both
- Preserving organ or tissue integrity and function


Interaction of Different Modalities

- Noninteractive- each modality appears to exert its own individual effect
- Interactive- situation where one modality modifies the effect of the other

Spatial Cooperation

- Action of RT and CT drugs directed towards different anatomical sites
- Envisages no interaction between the two modalities
- Independent action of the two agents

C= Chemotherapy R= Radiotherapy

Independent Cell Kill

- >Two modalities can both be given at full dose,
- Even in absence of interactive processes, tumour response greater than that achieved with either alone
- Effective antitumour drugs that do not increase radiation damage

	Asso	Response of		
	Intestinal	Bone marrow	Lung	Bronchial tumour
Radiation	-	-	+++	+++
Drug	+++	+	-	++
Combination	+++	+	+++	++++

Advantages & Disadvantages of Different Chemoradiation Sequencing Strategies

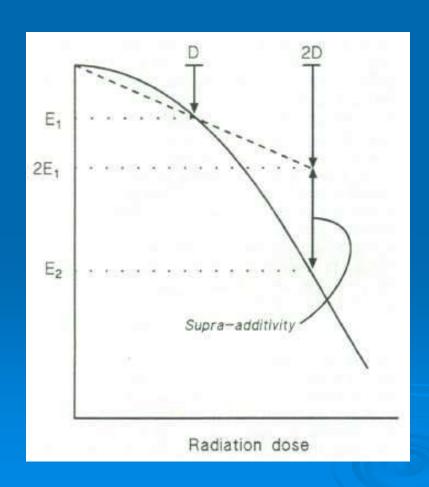
Strategy	Advantages	Disadvantages	
Sequential Chemoradiation	Least toxicMaximize systemic therapySmaller RT fields	•Increased T/t time •Lack of local synergy	
Concurrent Chemoradiation	•Shorter T/t time •Radiation enhancement	Compromised systemic therapyIncreased ToxicityNo cytoreduction of tumour	
Concurrent Chemoradiation & Posterior Chemotherapy	 Maximise systemic therapy Radiation enhancement Local and systemic therapy delivered upfront 	 Increased toxicity Increased T/t time Difficult to complete CT after CTRT 	
Induction Chemotherapy & Concurrent Chemoradiation	Maximize systemic therapy Radiation enhancement	 Increased toxicity Increased T/t time Difficult to complete CTRT after induction CT 	

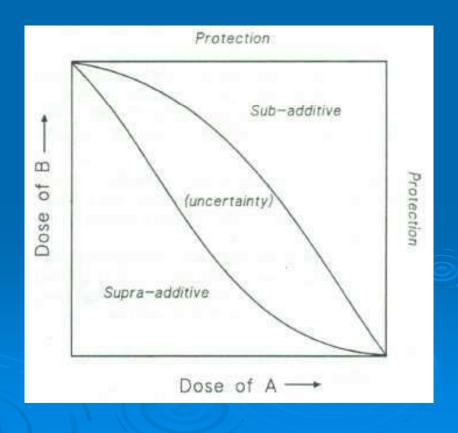
Lung Damage in Mice as a Result of CT+RT

Drug	ι	Course**		
Drug	Before	Concurrent	After	Source**
Cyclophosphamide	++	+++	++	C M
Bleomycin	+ - ++	++	++	C M S
Adriamycin	- - +	+++	+	C M S
Actinomycin-D	- +	+		C S
Methotrexate	+ - -	- -	- -	C M S
5-FU	-	-	-	М
Vincristine	+	+	+	С
CCNU	-	-	+	С
Cis-Platinum	-	-	-	C M
Mitomycin C	-	+	-	М

^{*} Before= 7-28 days before irradiation; After= 7-28 days after irradiation

^{**}C=Collis(1981); Collis & Steel (1983); M=von der Maase (1986); S=Steel et al (1979)


Protection of Normal Tissues


- ➤ Well documented situation in experimental animals where certain drugs increase resistance of normal tissues to radiation or second cytotoxic treatment.
- Phenomenon with Colchicine and vinca alkaloids. WW Smith earlier, Millar et al (1978)
- Cyclophosphamide, Cyt Arab., Chlorambucil, MTXeffective radioprotective agents
- ➤ Maximal radioprotection- Cyt. Arab 2 days before irradiation . For Cyclophos optimum gap 3 days before
- Priming treatment with one cytotoxic drug can protect against a large dose of another (Millar & McElwain, 1978)

Protection of Normal Tissues

- ➤ Cyt Arab- in marrow did not modify stem cell radiosensitivity-stimulated enhanced repopulation by surviving stem cells
- ➤ In small intestine- Cyt Arab 12hrs before irradiation increased survival of intestinal stem cells perhaps by repair of radiation damage(Phelps & Blackett, 1979)
- Attempts made to exploit this phenomenon in high dose combination CT (Hedley *et al* 1978)- critical dependence on timing precluded use in fractionated RT

Enhancement of Tumour Response-Concept of Supra-additivity

Inhibition of Repair of Radiation Damage:

- Antimetabolites of no interest as cytotoxic agents-3aminobenzmide, cordyceptin, caffeine etc
- Anticancer agents- Actinomycin D, Adriamycin, Hydroxyurea, Ara-C, Cisplatinum
- Sensitization detected at low radiation dose and at low dose rate (Kelland and Steel, 1988)
- Selectivity for effects on tumours rather than on normal tissues is essential

Cell Synchronization:

- Many cytotoxic drugs- some degree of selectivity in killing cells at certain phases of cell cycle
- Radiation- cell cycle dependence-peaks of resistance in S-phase and in G1
- Attractive possibility of complementary action between drug and radiation
- This approach to synergism works well with rapidly cycling cells
- Slowly growing or resting cells in human tumours explanation why synchronisation therapy disappointing (Tubiana et al, 1975; Tannock, 1989)

Recruitment:

- Response to therapy can be improved if nonproliferating cells stimulated to come into cycle
- Growth fraction of some experimental tumours is increased by suitable priming treatment
- Resulting therapeutic benefit has not been large

Enhanced Repopulation:

- CT after a few days of RT-greater effect on experimental tumour
- This strategy also damaging normal tissues that repopulate rapidly after irradiation
- Enhanced repopulation may lead to therapeutic detriment in combined modality therapy
- If CT given first it may switch on repopulation during subsequent course of RT-may reduce effectiveness

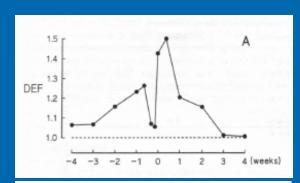
Reduction of Hypoxic Fraction:

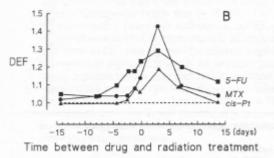
- Debulking of tumour by CT-reduction of hypoxic fraction- improved response to RT
- Little evidence for benefit being achieved this way

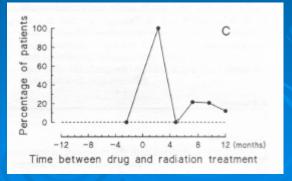
Debulking:

- Most promising basis for expecting benefit from combined CT+RT
- Debulking leads to improved O₂ supply or increased proliferation-greater cell kill from subsequent RT

Concurrent CTRT-Summary


- Concurrent CT & RT- T/t with CT during fractionated course of RT
- Reasoning based on expectation of interaction between the two modalities
- Mechanism:
 - Influence of one modality on intrinsic cellular sensitivity of other modality
 - Indirect interaction such as physiological alteration involving oxygenation or pH status by one modality
- Advantages: Avoids delaying CT or RT Least chance of tumour repopulation
- Disadvantages: Increased normal tissue complications-,
 e.g. Esophageal stricture, Mucositis


Time-dependence of Interactive Effects between Drugs and Radiation


Interaction of Cyclophos. (200mg/kg) and pelvic irradiation in mice

Interaction of 5FU, MTX and cis-platinum and pelvic irradiation in mice

Normal tissue damage in patients treated for testicular teratoma with RT and combination CT

Summary of Evidence for Exploitation of Four Mechanisms in Combination of RT & CT

	Evidence in Mice	Evidence in Man
Spatial co-operation	+++	++
Independent cell kill	+++	+
Protection of normal tissues	++	-
Enhancement of tumour response	+	-

Thank You