

Criteria for Selection

Radiation Beam Characteristics

- * Beam edge sharpness (penumbra) , Beam penetration (energy)
- Machine Characteristics
- * Dose rate, Patient collimator distance
- * Isocentre height, Radioactive source versus x-rays

Service/Maintenance Issues

- Safety Considerations * Radiation protection
- Cost Considerations
- Additional Features

Introduction

- * What is Linac?
 - X-rays, Electron
- ***** What is x-rays?
- * Incidental discovery!
- How x-rays are produced?
- Physics of x-rays

Cathode

- *****Tungsten filament (3370 ° C)
- *Thermionic emission
- **★**Focusing cup
- Dual filaments

Anode

- Tungsten target
 - High melting point
 - High Z (74) , X-ray $\alpha~Z^2$
- ★Heat dissipation− Copper anode
- Rotating anode /Stationary
- * Anode hood copper and tungsten shields intercept stray electrons and x rays

Limitations of X-ray Tube

High voltage
Millions of volts cannot be held in single gap______

Clinical Radiation Generators * Grenz rays > 20 kVp * Contact Therapy 40-50 kVp * Superficial Therapy 50-150 kVp * Orthovoltage 150-500 kVp * Supervoltage 500-1000 kVp * Megavoltage > 1000 kVp

<u> Linac</u>?

A device in which electron beam is accelerated in linear path with the help of high frequency microwaves to produces high energy photon or electron beam

History

- Linacs were developed concurrently by two groups:
 - W.W. Hansen's group at Stanford University in the U.S.A.
 - D.D. Fry's group at Telecommunications Research Establishment in the U.K.
- ***** Both groups interested in Linacs for research
- Feasible radar technology developed during World War II

Medium/High Energy

*****10-25 MV

- Dual photon energy and
- multiple electron energiesAchromatic bending
- dual scattering foils or
- scanned electron pencil beam
- motorized wedge<u>A</u>symmetric jaws.
- *Advanced features
 - EPID, MLC
 - IMRT, IGRT

Basic Accelerator Technology

★ Sophisticated & complex

* Microwave Power sources

 Mechanical, Electrical, electronics, Radiation, Optics, Microwave

- * Acceleration structures* Beam transport systems
- * Support structures

- *Power distribution system
- High Voltage pulses to gun & RF Generator
- * Power suppliers

- ✤ Magnetron
 - Low energy accelerators
 - Less costlySmaller least complicated
 - Less reliable
 - shorter lifespan
- **≭** Klystron
 - Stable at higher energies
 - Costly & Complex
 - Bulky

Vacuum & Cooling

- *The vacuum system
 - Maintains requiredlow pressures
 - required for operation of WG, Gun and bending magnets.
 - Prevents breakdown of the high electric fields required during accelerator operation.
- *The water cooling system
 - Required to establish a stable operating temperature.

Ion Pump

- ***** Electric field to accelerate and traps ions
- * Solid electrodes in pump usually made from Titanium.
- * Ion Pumps have no moving

TT

- Aligned along the exterior of the waveguide.
- Magnetic fields parallel to the long axis of the waveguide.
- waveguide. *Steering coils
 - Independently of focusing coils
 - Ensure, electron beam is at the centre of WG
 - Entrance and exit electron beam as desired

requirement

Treatment Head

* Contains the beam shaping, steering, and control components of the linear accelerator.

Components in Head

- * Scattering Foils -- to spread the beam
- * Monitoring Chambers to monitor
- * Collimation System fixed and movable
- * X-Ray Target transmission-type
- ★ Flattening Filter –to produce a "flat" beam

Collimation Systems

- *Limiting the radiation beam
- Primary/fixed collimation
 - Cone-shaped, defines maximum field size
 - Depleted uranium/Tungsten
 - $\ Transmission <\!\!0.2\%$
- *Secondary/movable collimator
 - Transmission <2%
 - mounted on either side of the central axis
- *****Symmetric or asymmetric collimator

Multileaf collimators

- *Many independent collimators
- *Allow irregular field sizes
- *to be delivered from the linear accelerator.
- ★40–80 pairs of independent collimators
- *Each leaf has its own motor

$\bigcirc \bigcirc \bigcirc \bigcirc$

Flattening Filter Free Linac

- *****Removal of the FF results
 - Increase in dose rate (2 4 times higher)
 - Softening of the x-ray spectra
 - Shift in dmax
 - Reduction in head scattered radiation
 - Nonuniform beam profile.

X-ray target

- * X-ray production
- ★ up to 10 MeV, a thick tungsten target is employed, * Thick aluminum target being used for

* Retractable for electron beam therapy. Thin Target

energies greater than this.

×	Suitable X-ray target						
米	Electron Energy	Best Combination		Poor combination			
		Target	FF	Target	FF		
	<15 MeV	High Z	Low Z	High Z	High Z		
	= 15 MeV	High or Low Z	Low Z	High Z	High Z		
	> 15 MeV	Low Z	Low Z	High Z	High Z		
	From Radiation Physics for Medical Physicists						

C Ionization Chamber

- * Measures dose & Terminates the beam
 - After prescribed dose
 if the energy, quality, flatness, or dose rate
 - changes – Two chambers operate independently

Types of MLC

Three main types

 Type A - Siemens - Provides all the collimation replaces the standard collimation system

- 2. Type B Elekta Provides field shaping but additional shielding is provided by backup collimators. and replaces the standard collimation system
- Type C Varian Provides field shaping in addition to the standard collimation system, externally mounted and complements the standard collimation system.

×	Comparison						
	Elekta	Siemens Va	Steppereduce	d leaves to leakage			
		Primary Collimator	Secondary Collimator	Tertiary Collimator			
	Elekta	focused MLC	focused block	none			
	Siemens	focused block	focused MLC	none			
	Varian	focused block	focused block	unfocused MLC			

Other facilities

- *Electron cones
- *Onboard imaging/EPID
- *LASER
- *Optical back pointer
- *Shielding blocks
- *Physical wedges, etc

Conclusion

- *Choice of Equipment
- *Complex, needs qualified and skilled staff
- *Constantly developing to the needs of patients
- *****Uptime is high
- *Require regulated power supply

References

- Van Dyk J 1999 Modern Technology of Radiation Oncology vol 1 (Madison, WI: Medical Physics Publishing)
 Thwaites et al 2006. Back to the future: the history and development of the clinical linear accelerator. Phys. Med. Biol. 51 R343-R362
- * Karzmark C J et al 1993 Medical Electron Accelerators (New York: McGraw-Hill)
- mit)
 Mitzi Baker. Medical linear accelerator celebrates 50 years of treating cancer," *Stanford Report*, April 18, 2007.
 The History and Role of Accelerators in Radiation Oncology Alfred Smith (University of Texas M.D. Anderson Cancer Center, Houston TX)

- * Stanford's medical accelerator, first to treat cancer patients, is on display at Smithsonian," Sandstone & Tile. Vol.2, no.3, p.15.
- * The Physics of radiology, 4th edition, Johns, and John
- Sharma SD, Unflattened photon beams from the standard flattening filter free accelerators.....J Med Phys. 2011 Jul-Sep: 36(3): 123–125
 Greene, D., Williams, P.C., Linear Accelerators for Radiation Therapy. Institute of Physics Publishing, Bristol (1997)

