

Basic Principles of Radiation and Calibration of Therapy Units

Dr. S. D. Sharma

Officer-in-Charge, Medical Physics

Radiological Physics & Advisory Division Bhabha Atomic Research Centre CT&CRS Building, Anushaktinagar Mumbai - 400094, India

Radiotherapy beams and sources

 Basic characteristics of photon and electron beams

Calibration of radiotherapy beams

Calibration of brachytherapy sources

kV Therapy Units: First Phase of External Beam Therapy

Telegamma Units

OLD COBALT UNITS

MODERN COBALT UNIT

Telegamma Units (Modern Phase)

Bhabhatron: Indigenous Telecobalt Unit

Bhabhatron-I

Prototype version 0x0 to 35x35 cm² field size NTD = 80 cm

Bhabhatron-II

 \checkmark 0 X 0 Field size

- ✓ 3 X 3 Treatable Field
- ✓ Fully Computer Controlled
- ✓ Carbon Fiber Table Top
- ✓ Motorized Wedge
- ✓ Asymmetric Collimation
- ✓ Remote diagnosis
- ✓ Battery Backup

Beam Therapy Delivery Devices

FFF LINAC

SRS by Gamma Knife

Brachytherapy

- Clinical use of small encapsulated radioactive sources at a short distance from the target volume for treatment of malignant/benign tumours
- It plays an important role in the management of cancers of several anatomical sites
- Recently, there is a growing interest in using BT for reducing restenosis after treatment for vascular diseases.

Forms of Brachytherapy

Depending on the method of placing the sources **Interstitial Intracavitary** Surface moulds Intraluminal **Ocular** Vascular

Depending on the treatment dose rate LDR **MDR** HDR PDR

Temporary

Permanent

Implants 13

HDR Brachytherapy

• High dose rate (HDR) refers to a dose rate greater than

0.2 Gy/min (ICRU 38, 1985)0.5 Gy/min (AAPM TG 56, 1997)

• In the past few decades, HDR brachytherapy has been developed as an alternative to LDR brachytherapy.

Brachytherapy Sources and Delivery Devices

Imagingandplanningwhilethepatientremainsintreatmentposition

17

Physical characteristics of commonly used γ emitting brachytherapy sources

Sources	Т _{1/2}	Energy (MeV)		Γ _x	Γ _k	HVL in	HVL in
		Gamma	Beta	Rcm ² h ⁻¹ mCi ⁻¹	μGym²h ⁻¹ MBq ⁻¹	Water (cm)	Lead (mm)
Co-60	5.26 y	1.25	0.31	13.07	0.308	10.8	11.0
Cs-137	30 y	0.662	0.51-1.17	3.26	0.077	8.2	5.5
lr-192	73.84 d	0.38 (0.14 -1.06)	0.67	4.69	0.111	6.3	2.5
I-125	59.4 d	0.028		1.46	0.034	2.0	0.025
Pd-103	17 d	0.021		1.48	0.035	1.0	0.008

Interaction of photon & electron beams

- Interaction of x-rays & gamma rays with matter
 - Photoelectric interaction
 - **Compton interaction (scattering)**
 - Pair production
- Interaction of beta rays (electrons) with matter
 - Interaction with atomic electrons
 - Interaction with atomic nuclei

Photon Beams: General Description

- All photon beams used for external beam therapy are characterized by the same physical parameters irrespective of their origin, means of production and energy;
- Physical parameters used to describe photon beams are:

Photon fluence and fluence rate Energy fluence and fluence rate Dose rate in a given condition, etc.

Inverse Square Law & Beam Divergence

Photon beam sources are assumed to be point sources

Beams producedare divergent

Passage Through a Medium

= depth of Z_{max} maximum dose $(\mathbf{d}_{\mathbf{m}})$ Dose D_{max} maximum \mathbf{Z}_{ex} = depth at exit surface (d_{ex}) $D_{ex} = Exit dose$ $D_s = Surface dose$

Scattered photons from - collimator, flattening filter and air

Back scattered photons

Secondary electrons - collimator, air & phantom/ patient

Build Up Region: 6 & 18 MV X-rays

(Due to long range of secondary electrons produced by photons)

Depth of dose maximum (d_m) and D_{ex}

d _m depends on:					
Beam energy & Field size					
- dependence or	n beam				
energy is	more				
pronounced					

D _{ex}	
Dose at exit su	irface
Depends on b	eam energy

Beam	d _m (cm)
Co-60	0.5
4 MV	1.0
6 MV	1.5
10 MV	2.5
15 MV	3.0 ²⁴

Percentage Depth Dose, PDD

$$P = \frac{D_d}{D_{d_0}} \times 100 \qquad \mathbf{d_0} =$$

$$\mathbf{d}_0 = \mathbf{d}_m$$

$$P = \frac{D_d}{D_{\text{max}}} \times 100$$

Properties of TMR

TMR is independent of SSD, increases with energy and field size.

TMR data for 10 MV x-ray beams

Collimator Scatter Factor (S_c)

$$S_{c} = D(r)/D(10)$$

Photon Beam Penumbra

Photon Beam: Flatness and Symmetry

- Flatness
 - within ±3% over 80%
 of the field

 Symmetry

 within ± 2% over 80% of the field

$$S = 100 \times \frac{(area_{left} - area_{right})}{(area_{left} + area_{right})}$$

Photon Beam: Isodose Chart

Beam qualitySource size, SSD, and SDDCollimation and flattening filterField size

Electron Beam: CADD Curves

- Rapid dose fall i.e. very high gradient (G)
- X-ray contamination (0.5 5%)
- 90% \rightarrow E/4 cm 80% \rightarrow E/3 cm
- Dmax does not follow a linear relationship with energy; depends on machine design and accessories
- The percent surface dose for electrons increases with energy.
- In clinical practice, isodose distributions for an individual machine, cone, and/or field size is required.

Electron Beam: Inverse Square Law (ISL) Virtual Source Position - Effective SSD

SSD_{eff} : distance between virtual source position to isocentre
 SSD_{eff} : Function of beam energy and field size
 ISL can be used to correct absorbed dose for small variations in air gaps between the patient surface and the applicator 35

Electron Beam: Range and Energy

$$G = R_{\rm p} / (R_{\rm p} - R_{\rm q})$$

$$E_{\rm p,o} = 0.22 + 1.98 R_{\rm p} + 0.0025 R_{\rm p}^2$$

$$\overline{E}_{\rm o} = C R_{\rm 50} \qquad C = 2.33 \text{ MeV cm}$$

$$\overline{E}_{\rm z} = \overline{E}_{\rm o} (1 - z / R_{\rm p})$$

Energy (MeV)	R ₉₀ (cm)	R ₈₀ (cm)	R ₅₀ (cm)	R _p (cm)	\overline{E}_0 (MeV)	Surface dose %
6	1.7	1.8	2.2	2.9	5.6	81
8	2.4	2.6	3.0	4.0	7.2	83
10	3.1	3.3	3.9	4.8	9.2	86
12	3.7	4.1	4.8	6.0	11.3	90
15	4.7	5.2	6.1	7.5	14.0	92
18	5.5	5.9	7.3	9.1	17.4	96

36

Electron Beam: Isodose Curves

- Depends on the energy, field size, and collimation
- For the low-energy beams

 All the isodose curves show some expansion
- For the higher energies
 - Only the low dose levels bulge out
 - Higher isodose levels tend to lateral constriction, which becomes worse with decreasing field size.

Electron Beam: Flatness & Symmetry

The flatness changes with depth

Flatness $< \pm 5\%$ ($\pm 3\%$) over an area confined within lines 2 cm inside the geometric edge of fields

Symmetry < 2%

 Dose difference between points located symmetrically opposite on cross beam profile in the reference plane < 2%

Calibration of RT Beams

Co-60 Gamma rays: 1.25 MeV

High Energy X-rays: 4, 6, 10, 15, 18 MV

High Energy electrons: 4 - 22 MeV

Proton Beams: All energies

Protocol: IAEA TRS-398

Dosimeter: Ionization chambers

TECHNICAL REPORTS SERIES No. 398

Absorbed Dose Determination in External Beam Radiotherapy

An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water

Sponsored by the IAEA, WHO, PAHO and ESTRO

INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 2000

N_{D,w} BASED FORMALISM

The absorbed dose to water at the reference depth z_{ref} in water for a reference beam of quality Q_o and in the absence of the ionisation chamber is given by

$$\mathsf{D}_{\mathsf{w},\mathsf{Qo}} = \mathsf{M}_{\mathsf{Qo}} \mathsf{N}_{\mathsf{D},\mathsf{w},\mathsf{Qo}}$$

where,

M_{Q0} = dosimeter reading under reference conditions (Practical conditions - same as standards lab)

N_{D,w,Qo}= absorbed dose to water calibration factor of the dosimeter obtained from standards laboratory

However, other than reference beam quality

$$\mathbf{D}_{\mathbf{w},\mathbf{Q}} = \mathbf{M}_{\mathbf{Q}} \mathbf{N}_{\mathbf{D},\mathbf{w},\mathbf{Q}\mathbf{o}} \mathbf{k}_{\mathbf{Q},\mathbf{Q}\mathbf{o}}$$

k_{Q,Qo} = beam quality correction factor (BQCF)

40

General Practical Considerations

A Chamber sleeve : PMMA, Wall thickness ≤ 1.0 mm; Air gap: 0.1- 0.3 mm
 * sleeve should not be left in water longer than is necessary to carry out the measurements

- * The use of a thin rubber sheath is not recommended,
- ▲ Verify stability of the dosimeter system using a check source
- Enough time should be allowed for the dosimeter to reach thermal equilibrium
- Mains powered electrometers should be switched on at least two hours before use to allow stabilisation
- Pre-irradiate the ionisation chamber with 2 5 Gy to achieve charge equilibrium in the different materials
- Operate the measuring system under stable conditions whenever the polarity or polarising voltage are modified
- ▲ Measure the leakage current before and after irradiation(< 0.1%)

Evaluation of Influence Quantities

Atmospheric variations :

$$k_{TP} = \frac{(273.2 + T)}{(273.2 + T_o)} \frac{P_o}{P}$$

 No correction for humidity, if N_{D,w} is referred to a relative humidity (RH) of 50% and is used in 20 - 80% of RH

* If $N_{D,w}$ is referred to dry air, apply $k_h = 0.997 (Q_o = {}^{60}Co)$

Polarity effect (k_{pol}) : true reading is taken to be the mean of the absolute values of readings taken at both polarities

For routine use of a single potential and polarity

$$k_{\rm pol} = \frac{M_+ + M_-}{2M}$$

Where,

M = electrometer reading obtained with the polarity used routinely (+ or -)

 \Rightarrow For most chamber types, k_{pol} is negligible for photon beams

Evaluation of Influence Quantities

Ion Recombination(k_s): (two voltage method)

For pulsed beams (Linac X-rays and electrons),

(Based on linear dependence of 1/M on 1/V)

$$k_s = a_0 + a_1 \left(\frac{M_1}{M_2}\right) + a_2 \left(\frac{M_1}{M_2}\right)^2$$

Where,

 M_1 = electrometer reading at polarising voltage V_1 (Normal Voltage) M_2 = electrometer reading at polarising voltage V_2 (Lower Voltage) (M_1 and M_2 are corrected for k_{pol} at their respective voltages) a_0 , a_1 and a_2 = quadratic fit co-efficients

Ideally, $V_1/V_2 = 3$

Evaluation of Influence Quantities

V ₁ /V ₂		Pulsed		Pulsed-scanned		
	a _o	a_1	a2	a _o	a_1	<i>a</i> ₂
2.0	2.337	-3.636	2.299	4.711	-8.242	4.533
2.5	1.474	-1.587	1.114	2.719	-3.977	2.261
3.0	1.198	-0.875	0.677	2.001	-2.402	1.404
3.5	1.080	-0.542	0.463	1.665	-1.647	0.984
4.0	1.022	-0.363	0.341	1.468	-1.200	0.734
5.0	0.975	-0.188	0.214	1.279	-0.750	0.474

For continuous radiation (⁶⁰Co gamma rays),

(Based on linear dependence of 1/M on 1/V²)

$$k_{s} = \frac{\left(V_{1} / V_{2}\right)^{2} - 1}{\left(V_{1} / V_{2}\right)^{2} - \left(M_{1} / M_{24}\right)}$$

⁶⁰C0 γ-Rays :Reference Dosimetry

Reference Conditions

Influence quantity	Reference value/characteristics
Phantom material	Water
Chamber type	Cylindrical or plane parallel (PP)
Measurement depth, z _{ref}	5 or 10 g/cm ²
Reference point of the chamber	For cylindrical chambers, on the central axis at the centre of the cavity volume. For pp chambers, on inner surface of the window at its centre
Position of the reference point of the chamber	At the measurement depth z _{ref}
SSD or SCD	80/100 cm
Field size	10 cm × 10 cm 45

⁶⁰C0 γ-Rays :Reference Dosimetry

Experimental Set-up : SSD

⁶⁰C0 γ-Rays :Reference Dosimetry

The absorbed dose to water at z_{ref} in water, in the user ⁶⁰Co beam and in the absence of the chamber

$$D_w(z_{ref}) = MN_{D,w}$$
 Gy/min

where,

M = reading of the dosimeter corrected for temperature and pressure, electrometer calibration, polarity effect, ion recombination and timer error

$$= M_{unc}k_{TP}k_{elec}k_{pol}k_{s}/(t \pm \delta t) \qquad t = time of irradiation (min)$$

Absorbed dose at z_{max} :For SSD Set-up, $D_w(z_{max}) = D_w(z_{ref}) \times 100/PDD(z_{ref})$ For SAD Set-up, $D_w(z_{max}) = D_w(z_{ref})/TMR(z_{ref})$

47

⁶⁰C0 γ-Rays : Uncertainty D_w (z_{ref})

Physical quantity/ procedure	Rel. Std. uncertainty (%) - typical value	
$N_{D, \mathrm{w}}$ calibration of secondary standard at PSDL	0.5 (A1)	
Long term stability of secondary standard	0.1 (A2)	
$N_{D, \mathrm{w}}$ calibration of user dosimeter at SSDL	0.4 (A3)	
Combined uncertainty in $N_{D,w}$ calibration of user dosimeter at SSDL (quadrature sum of A1 to A3)	0.6 (A)	
Long term stability of user dosimeter	0.3 (B1) 48	

HE X-rays: Reference Dosimetry

Reference Conditions

Influence quantity	Reference value/characteristics
Phantom material	Water
Chamber type	Cylindrical
Measurement depth z _{ref}	For TPR ²⁰ ₁₀ < 0. 7, 10 (or 5) g/cm ² For TPR ²⁰ ₁₀ = 0. 7, 10 g/cm ²
Reference point of the chamber	On the central axis at the centre of the cavity volume
Position of the reference point of the chamber	At the measurement depth z _{ref}
SSD/SCD	100 cm
Field size	10 cm × 10 cm 49

HE X-rays:Reference Dosimetry

Experimental Set-up : SSD

HE X-rays: Measurement of QI (TPR²⁰₁₀) Reference Conditions

Reference value/characteristics		
Water		
Cylindrical or plane parallel (PP)		
20 and 10 g/cm ²		
For cylindrical chambers, on the central axis at the centre of the cavity volume. For PP chambers, on the inner surface of the window at its centre		
At the measurement depths		
100 cm		
10 cm × 10 cm 51		

HE X-rays: Reference Dosimetry

Absorbed dose to water at the reference depth z_{ref}

 $D_{w,Q}(z_{ref}) = M_Q N_{D,w} k_Q \qquad Gy/MU$ $M_Q = M_{unc} k_{TP} k_{elec} k_{pol} k_s = Corrected Electrometer reading$

Absorbed Dose to water at z_{max}

 $D_{w,Q}(z_{max}) = 100 D_{w,Q}(z_{ref})/PDD (z_{ref})$ Gy/MU - SSD

$$D_{w,Q}(z_{max}) = 100 D_{w,Q}(z_{ref})/TMR (z_{ref}) Gy/MU - SAD$$

HE X-rays : Uncertainty D_{W,Q}(z_{ref})

Physical quantity/ procedure	Rel. Std. uncertainty (%) - typical value
$N_{D,w}$ calibration of user dosimeter at SSDL	0.6
	A)
Long term stability of user dosimeter	0.3 (B
	1)
Establishment of reference conditions	0.4 (B
	2)
Dosimeter reading relative to monitor chamber	0.6
Uncertainty of $D_{W,Q}(z_{max})$ can be estimated by including	uncertainty of PDD/ TMR
	3)

HE Electrons: Determination of BQ (R₅₀)

Reference Conditions

Influence quantity

Reference value/characteristics

Phantom material

Chamber type

Reference point of the chamber

Position of the reference point of the chamber

SSD

Field size at phantom surface water - $R_{50} \ge 4 \text{ g/cm}^2$ ($E_o \ge 10 \text{ MeV}$) water or plastic - $R_{50} < 4 \text{ g/cm}^2$

PP or cylindrical- $R_{50} \ge 4$ g/cm²Plane parallel (PP) - $R_{50} < 4$ g/cm²

PP - on the inner surface of the window at its centre Cylindrical - on the central axis at the centre of the cavity volume

PP - at the point of interest Cylindrical : 0.5 r_{cyl} deeper than the point of interest 100 cm

10 cm × 10 cm - R₅₀ ≤ 7 g/cm² 20 cm × 20 cm - R₅₀ > 7 g/cm²

55

When using an ionisation chamber, the measured quantity is R_{50,ion}. The R₅₀ is obtained using

$$\begin{split} R_{50} &= 1.029 \ \mathrm{R_{50,ion}} - 0.06 \ \mathrm{g/cm^2} \quad (R_{50,ion} \leq 10 \ \mathrm{g/cm^2}) \\ R_{50} &= 1.059 \ \mathrm{R_{50,ion}} - 0.37 \ \mathrm{g/cm^2} \quad (R_{50,ion} > 10 \ \mathrm{g/cm^2}) \end{split}$$

When using detectors other ion chambers (e. g. diode, diamond, etc.) the measured quantity is R₅₀

HE Electrons: Reference Dosimetry

Reference Conditions

Inf	uenc	e qu	antity

Reference value/characteristic

- **Phantom material**
- **Chamber type**
- Measurement depth z_{ref}
- Reference point of the chamber
- Position of the reference point of the chamber

SSD

Field size at phantom surface water - $R_{50} \ge 4 \text{ g/cm}^2$ ($E_o \ge 10 \text{ MeV}$) water or plastic - $R_{50} < 4 \text{ g/cm}^2$

 $= (0.6 R_{50} - 0.1) \text{ g/cm}^2$

PP - on the inner surface of the window at its centre Cylindrical - on the central axis at the centre of the cavity volume

PP - at *z*_{ref} Cylindrical : 0.5 r_{cyl} deeper than *z*_{ref}

100 cm

10 cm × 10 cm or that used for 57 **normalisation of output factors**

HE Electrons:Reference Dosimetry

Experimental Set-up : SSD

Absorbed dose to water at the reference depth
$$z_{ref}$$

 $D_{w,Q}(z_{ref}) = M_Q N_{D,w} k_Q \qquad Gy/MU$
 $M_Q = M_{unc} k_{TP} k_{elec} k_{pol} k_s = Corrected Electrometer reading$

Absorbed Dose to water at z_{max}

 $D_{w,Q}(z_{max}) = 100 D_{w,Q}(z_{ref})/PDD (z_{ref})$ Gy/MU - SSD

HE Electrons: Use of Plastic Phantoms

The use of plastic phantom is strongly discouraged, as in general they are responsible for the largest discrepancies in the determinations of absorbed dose in electron beams.

Nevertheless, when accurate chamber positioning in water is not possible, or when no waterproof chamber is available, their use is permitted.

Plastic phantoms may only be used at beam qualities $R_{50} < 4$ g/cm² (E₀ < 10 MeV).

Depth scaling	z _w = z _{pl} c _{pl} g/cm²	(z _{pl} in g/cm²)
BQI g/cm²)	R _{50,ion} = R _{50,ion,pl} c _{pl} g/cm ²	(R _{50,ion,pt} in
Reference Depth	z _{ref,pl} = z _{ref} /c _{pl} g/cm²	(z _{ref} in g/cm²)
D _w	M _Q = M _{Q,pl} h _{pl}	60

HE Electrons : Uncertainty D_{W,Q} (z_{ref})

Physical quantity/ procedure	Rel. Std. uncertainty (%)		
	Cyl. Chamber	PP Chamber	
$N_{D,w}$ calibration of user dosimeter at SSDL (A)	0.6	0.6	
Long term stability of user dosimeter (B1)	0.3	0.4	
Establishment of reference conditions (B2)	0.4	0.6	
Dosimeter reading relative to monitor chamber (B3)	0.6	0.6	
Correction for influence quantities (B4)	0.4	0.5	

Uncertainty of $D_{W,Q}(z_{max})$ can be estimated by including uncertainty of PDD

Calibration of Brachytherapy Sources

Quantity: RAKR/AKS

Method: IAEA TECDOC 1274

Detector: Ionization chamber

Well Type Chamber

Cylindrical Chamber

IAEA-TECDOC-1274

Calibration of photon and beta ray sources used in brachytherapy

Guidelines on standardized procedures at Secondary Standards Dosimetry Laboratories (SSDLs) and hospitals

INTERNATIONAL ATOMIC ENERGY AGENCY

March 2002

Reference Air Kerma Rate (RAKR)

Defined as Kerma Rate to air measured in air at a reference distance of 1 meter along the transverse bisector of the source corrected for air attenuation and scattering.

The recommended unit of RAKR is µGy.h^{-1.}

Source Strength Specification : AAPM Rep. 21 (1987), (TG-32)

Air Kerma Strength (AKS)

 $S_k = K_{air}(d)d^2 \mu Gym^2h^{-1}(cGycm^2h^{-1}) = 1U$

- RAKR does not have the dimensions of a Kerma rate lead to confusion in teaching and clinical use
- Recommendations agree with BCRU and ICRU in that the source strength is specified directly in terms of AKR in free space at one meter (i.e. RAKR)

Methods of Source Calibration at Hospitals (1) Well type ionization chamber LDR sources (137Cs, 192Ir wires/seeds, ¹²⁵I seeds). HDR sources (¹⁹²Ir, ⁶⁰Co) (2) Cylindrical ionization chamber - in air - in phantom HDR sources (¹⁹²Ir, ⁶⁰Co) 65

Calibration using well type chamber

 $RAKR = M K_{t,p} K_{recom} N_{elec} N_{K,RAKR,s}$

 $AKS = M K_{t,p} K_{recom} N_{elec} N_{K,AKS,s}$

Calibration using well type chamber - contd.

$$1/k_{recom} = 4/3 - [Q_1/(3 - Q_2)]$$

where Q₁ = charge collected at higher voltage (300 V) Q₂ = charge collected at lower voltage (150 V)

 $N_{elec} = electrometer cal. factor$

 $N_{K,RAKR,s}$ ($N_{K,AKS,s}$) = chamber cal. factor in terms of

RAKR (AKS) for the given source s

(given by Standard laboratory)

HDR-1000 Well Type Ionization Chamber & Electrometer

Response Graphs: HDR Ir-192 and LDR Cs-137 tube (BARC)

Calibration of µ-Selectron HDR ¹⁹²Ir Source

Uncertainty in RAKR Measurement of HDR Ir-192 Source: Well Chamber method

Uncertainty component	Rel. Std. uncertainty (%)	
	Туре А	Туре В
RAKR calibration by the SSDL (1σ)		1.2
Stability of the well type chamber	0.3	
Electrometer reading relative to timer	0.3	
Correction for influence quantities	0.2	
Recombination correction		0.1
Half life of Ir-192 source		0.1
Square sum	0.47	1.21

