

Manipulating Radiation Response – Protectors and Physical Modalities

Dr. Nagraj G. Huilgol, м.D., D.G.O Chief, Advanced Centre for Radiation Oncology Dr. Balabhai Nanavati Hospital S.V. Rd., Vile Parle (W), Mumbai-400056 Email: nagrajhuilgol@gmail.com

Recovery curves of the type first described by Elkind and Sutton

A two-component survival curve for mammalian cells

Illustration of the concept of a Therapeutic ratio in turn of dose response relationships for tumour control and normal tissue damage

Dose response relationships for normal tissue and tumour.

Modification of the response of tumour by radiosensitizers and normal tissue by radioprotectors is also shown.

Radiobiological Principals of Radiation Therapy Design

Radiobiological Principals of Radiation Therapy Design

Radiobiological Principals of Radiation Therapy Design

Interaction between DNA damage and repair process

"WHE- New hemelegeus and jeining, Ht- Hemelegeus recombination 55% East pointen repair, 5%- Sirect repair(by MOMT) NEX - Nucleoble exclusion repain MMM- Mismatch repain other see test

Table 1: Cancer Susceptibility Syndromes Linked to Defective DNA Damage Repair Responses

Syndrome	Defects	Tumor Risk	
Li-Fraumeni (AD: p53 heterozygote) Lynch/HNPCC (AD: 1 D MLH1/MSH2) others	Cell cycle regulation, apoptosis Mismatch repair	Breast, sarcoma, others Colorectal, uterine,	
BRCA1, BRCA2 (AD: gene heterozygote)	HR and other DNA repair pathways	Breast, ovary	
Ataxia telangiectasia (AR: AT-mutated [atm]	DSB repair; cell cycle Regulation	Acute leukemia lymphomas	
Xeroderma pigmentosum (AR: XP variants or complementation groups)	NER	Skin cancers	
Fanconi's anemia (AR: complementation variants)	Cross-link repair	Acute myeloid leukemia	

Abbreviations: AD, autosomal dominant: AR, autosomal recessive: DSB, double-strand breaks:HNPCC,hereditary nonpolyposis colorectal cancer: HR, homologous recombination: NER, nucleotide excision repair: XP, xeroderma pigmentosum.

Table 2. DNA Repair Pathways Involved in the DDR to Chemotherapy and IonizingRadiation

Pathway

- Non- homologous end joining (NHEJ)
- Homologous recombination (HR)
- Base excision repair (BER)
- Direct (enzymatic repair (DR)
- Nucleotide excision repair (NER)
- Mismatch repair (MMR)

Description

- Mediates repair of DNA DSBs without the need for sequence homology.
- Mediates DNA strand breaks and replication lesions by copying a DNA sequence from intact DNA (often a newly synthesized sister chromatid
- A repair process that replaces missing or modified DNA bases resulting from oxidative stress or cancer treatments (IR, alkylating drugs)
- A repair process of alkylated base damage (eg,TMZ treatment via O6-methyguanine-DNA methyltransferase (MGMT)
- A repair process that removes large DNA adducts or large base Modifications causing DNA helix distortions using the opposite strand as a template for repair
- A repair process that functions during DNA replication (Sphase) To correct base-pairing errors made by DNA polymerase (slippage) or exogenously produced by IR and/ or CT.

SITE OF ACTION..

FIGURE 10-2. Sites of action of the commonly used anticancer drugs.

- **Restitution**
- **Repopulation**
- **Redistribution**
- **Reoxygenation**

- Reassortment (Redistribution)
 - Following a D_0 level radiation event cells die
 - Cells in G₂ and M are most sensitive and more likely to be killed.
 - Cells in S are more resistant and likely to survive
 - A radiation induce mitotic arrest is likely present
 - Cell growth kinetics tend to determine what percentage of the population will be in each phase of the cell cycle

- Reassortment (cont.)
 - Following irrradiation the percentage of cycling cells in each phase will be reestablished within 1-2 cell cycle times.
 - Reirradition will then again selectively kill cells in the radiation sensitive portions of the cell cycle
 - Thus reassortment improves chances of cells being irradiated in a sensitive part of the cycle

- Reassortment cont.
 - Tumor cells on average have shorter cell cycle times than normal tissues
 - This is especially true for late responding tissue
 - Reassortment then occurs more quickly in tumors.
 - Reasortment favors survival of normal late responding tissues

- Repair Following a D₀ level dose there is repair of radiation injury in surviving cells
 - Cells with long cell cycle times generally have a wider repair shoulder on the survival curve
 - Cells with short cell cycle time generally have a narrow repair shoulder.
 - Tumor cells are consdered to have short cell cycle times

- Repair cont.
 - Fractionation will broaden the survival shoulder more for late responding tissue than early responding tissues.
 - At high doses the cell survival curve actually indicates lower survival for late responding cells

- Regeneration
 - Following irradiation some cell populations will exhibit increased cell division
 - Usually follows a period of mitotic arrest
 - Repopulation tends to begin more quickly in normal early responding tissues than in tumors
 - Repopulation then favors survival of normal early responding tissues over tumors
 - Opposite is true of late responding tissues

- Reoxygenation
 - Hypoxia in many tumors blunts radiation injury
 - 2-3 times as much dose required to kill hypoxic cells
 - Normal tissues are not hypoxic as a rule
 - This markedly favors survival of tumor cells for doses in the D_0 range.
 - However, of the well oxygenated cells in a tumor there is usually a high percentage of cycling cells.

- Reoxygenation cont.
 - Large numbers of cycling tumor cells are killed
 - Cells previously of marginal oxygenation survive and move into the oxygenated zone
 - These newly oxygenated cells then start to cycle and are then susceptible to the next dose due to being oxygenated and cycling
 - Theoretically all tumor cells can be reoxygenated this way if enough fractions used

- Recruitment
 - Recruitment is the "5th" of the "4 r's"
 - Cells not previously part of the cycling pool are "recruited" to enter the cycling pool by one of the mechanisms of the 4 r's
 - Leads to regeneration
 - Can be direct result of reoxygenation
 - Contributes cells to the reassortment process
 - Repair of injury allows cells to enter cycling pool.

- Cell cycle time
 - Cell cycle times vary widely within a given tumor.
 - Some tumor cells may be very slowly cycling
 - Tumors of the same type may have different average cell cycle times
 - Slow is generally equated with benign tumors
 - Fast is generally equated with malignancy

- Growth fraction (fraction of cells in population which are actually cycling)
 - Even in tumors most cells are not cycling
 - Cycling cells are well oxygenated and fed
 - Growth fractions of greater than 10% are unusual.
 - Growth fraction may be less than 1%
 - Large growth fraction will usually result in rapid tumor growth.

- Cell loss fraction
 - Cells are lost from the tumor population in several ways.
 - Nonviable replication of deranged cells will result in loss of those cells
 - DNA is too altered for a functional cell to exist
 - Anoxia, cell death from poor blood supply
 - Attack of antigentic cells by immune system
 - Metastasis to blood stream > vast majority die

- Tumor oxygenation
 - Poor tumor oxygenation = slow growth
 - Poor tumor oxygenation = increased cell death
 - Tumor oxygenation decreases as size increases
 - Both chronic and transient hypoxia may have effect.

Tumour Hypoxia is One of the Determinant of Poor Outcome Following Radiation

Outcome of Interactions

• Additive

• Supra additive – Sensitization

• Sub additive - Protection

Biological Basis

- Temperature above 41°C is differential to mammalian cells
- Sensitizes cells to ionising radiation
- Can activate 0 and S phase cells
- Preferentially kills hypoxic cells due to pH dependency
- Cell membrane may be the primary target
- Can inhibit DNA repair

Biological Basis for Hyperthermia

- Microenvironment is hostile in tumour to heat, and heat in turn perpetuates the state
- Better thermal washouts in normal tissue reduces the cytotoxic effects.
- A therapeutic window is created

Hyperthermia can totally occlude tortous

- Neo-vascularization with concomitant alterations in oxygenation metabolism.
- Leading to hypoxia and low pH

Walenta; Streffer

		「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
5°C	in highly perfused tissues	
4°C	and the second se	Increasing thermal cytotoxicit
3°C	Vascular destruction in noorly portized ficance	
2°C	Cellular cytotoxicity	Thermal radiosensitization
0.0	Increased perfusion	Improved nutrient & oxygen sup
0.0	in all tissue types	inhibited repair of XRT damag
8°C		
7*C	Normothermia	Normothermia
6°C		

Decline in pO2 may last for 24 hours

Targets for Hyperthermia

- Plasma Membrane
- Cytoskeleton
- Nucleus

Changes in Tissue pH

- Accumulation of lactic acids
- Changes equilibrium of intra and extra cellular buffer state
- Increase in ATP hydrolysis
- Increase in pCO² level
- Inhibition of the Na⁺/H⁺ ion pump
Variable to Affect the Outcome

- Heat dose i.e. temperature over a time period
- Thermal gradients
- Sequence and interval between two modalities
- Tumour volume
- Intrinsic sensitivity for heat
- Heating mechanism

Characteristics of Heat Susceptible Tumour

- Nutrient deprived tissue
- Poor perfusion
- Anerobic metabolism
- Lower pH
- Low on energy

Thermal Sensitizers

- Hyperglycemia
- Amiloride
- Hydralazine
- Nitroprusside
- Arsenic Trioxide

Specification of the RF Heating System

Power Source	Single phase, 200V, 50~60Hz, 30A
Max. Input	4KVA
RF Output	8MHz
Electrode	Twin plate electrodes, <pre> <pre> <pre> <pre> </pre> </pre> </pre> <pre> <pre> </pre> </pre> </pre> <pre> </pre> <pre> <pre> </pre> </pre> <pre> <pre> <pre> </pre> </pre> </pre> <pre> <pre> </pre> </pre> <pre> <pre> <pre> </pre> </pre> </pre> <pre> <pre> <pre> <pre> </pre> </pre> </pre> </pre> <pre> <pre> <pre> <pre> </pre> </pre> </pre> </pre> <pre> <pre< td=""></pre<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>
Temp. Measurement	Micro thermocouple sensor (0.64mm diameter)
Temperature Control	On-Off control
Heating Method	RF Capacitive coupling heating

HEATING TECHNIQUE

- THERMOMETRY AT LEAST ONCE, WITH INVASIVE THERMISTOR PROBES
- PRIMARY HEAD & NECK NOT DONE
- APPROPRIATE ANTENNAE ARE ARRANGED IN PARALLEL WITH ACTIVE

SIDE TOWARDS THE LESION

- POWER : 400 900 W
- RF 8 MHz THERMATRON CAPCITATIVE HEATING

I C M R - Hyperthermia TrialRandomized

RT 64 – 70 Gy / 6 – 7 wks 200 cGy / day

RT 64 – 70 Gy / 6 – 7 wks 200 cGy / day + Weekly Hyperthermia.

N = 14 N = 14

Exclusion Criteria

Karnofsky's Index <80

Histology other than sq.cell.ca

Early Head & Neck Cancer

Bilateral nodes

Emotionally incompetent

Short Neck

Inclusion Criteria

Squamous cell- carcinoma –confirmed histologically /FNAC

Karnofsky's Index > 70

Loco-regionally advanced H&N cancer T3- 4/ No – N3

Only ipsilateral nodes

Emotionally capable of giving informed consent

Radiation Therapy

-Total dose of 66-70 Gy was given by appropriate portals with daily 200cGy per fraction.

-61/2 - 7 weeks of treatment

-4-6 MV energy rays used for treatment.

Demographic data

Parameters	RT-Group	RT + HT-Group
No. of Cases	26	28
@Age (yrs) Mean SD Range	58.42 11.39 40-76 yrs	57.71 12.93 31-78 yrs
#Sex (%) Male Female	24(92.3) 02(07.7)	22(78.6) 06(21.4)

@ By Student't' Test# By Chi-square Test

P > 0.05 Not Significant

TNM staging classification

Response	RT-Group (N=26)		RT + H	T-Group =28)
	No	%	No	%
T2N0	01	03.8	01	03.6
T2N1	01	03.8	01	03.6
T2N3	02	07.7	02	07.1
T3N1	02	07.7	03	10.7
T3N2	04	15.4	04	14.3
T3N3	06	23.1	02	07.1
T3NO	04	15.4	07	25.0
T4N0	-	-	03	10.7
T4N1	-	-	02	07.1
T4N2	02	07.7	02	07.1
T4N3	04	15.4	01	03.6

SITES OF DISEASE

Site	RT-Group (N=26)		RT + HT-Group (N=28)	
	No	%	No	%
Oropharynx	17	65.4	10	35.7
Hypopharynx	05	19.2	12	42.9
Oral cavity	04	15.4	06	21.4

RADIATION DOSE IN BOTH GROUPS

Response	RT-Group (N=26)		RT + HT-Group (N=28)	
-	No	%	No	%
=50GY</td <td>04</td> <td>15.4</td> <td>04</td> <td>14.3</td>	04	15.4	04	14.3
>70GY	01	03.8	01	03.6
50-60GY	-	-	01	03.6
60-70GY	21	80.8	22	78.5

FOLLOW-UP PERIOD

Durations	RT-((N	Group (=26)	RT + HT-Group (N=28)		
	No.	%	No.	%	
< 6 months	16	61.5	11	39.3	
6-12 months	08	30.8	12	42.8	
> 12 months	02	07.7	05	17.9	

Compliance to Hyperthermia Treatment

No. of hyperthermia treatments	No. of patients
0-1	03
2-4	02
5-7	23

COMPARISON OF RESPONSE BETWEEN TWO TREATMENT GROUPS

Response	RT-Group (N=26)		RT + HT-Group (N=28)	
	No	%	No	%
Complete Response	11	42.4	22	78.6
Partial Response	13	50.0	03	10.7
No Response	01	03.8	-	-
PD	01	03.8	03	10.7

Kaplan-Meier Survival plot

Mechanisms of Thermal Enhancement

Increase in intracellular drug concentration

Stimulation of drug binding to DNA

Change in the spectrum of adducts formed

Reduction in DNA repair

Increase in perfusion

Chemotherapy

- Concurrent once a week chemotherapy given
- Cisplatin- 30mg/m² i/v
- Paclitaxel- 30mg/m² i/v

Chemoradiation with hyperthermia in the treatment of head and neck cancer

Nagraj G. Huilgol, Sapna Gupta, Rajesh Dixit Int.J. Hyperthermia, February 2010; 26(1): 21-25

38 patients evaluated at the end of study

Complete response- 29/38 patients

Partial response- 09/38 patients

Mortality-01/40

Incomplete treatment- 01/40

Steel and Peckham- strategies of combined modality

➤ spatial cooperation

independent toxicity

>enhancement of tumor response

 \succ protection of normal tissues.

Drug-Radiation Interactions

- Increasing Initial Radiation Damage
- Inhibition of Cellular Repair
- Cell Cycle Redistribution
- Counteracting Hypoxia-Associated Tumor Radio-resistance
- Inhibition of Tumor Cell Repopulation

Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 93 randomised trials and 17,346 patients

Jean-Pierre Pignon a,*, Aurélie le Maître a, Emilie Maillard a, Jean Bourhis b, on behalf of the MACH-NC Collaborative Group

Radiotherapy and Oncology 92 (2009) 4-14

Overall Survival Curves

EVIDENCE SO FAR!

- Chemoradiotherapy shows equal results of survival with the possibility of laryngeal preservation. It is higher with chemoradiation in laryngopharyngeal malignancies.
- CT+RT should be considered standard of care for small volume stage III/stage IV laryngeal and hypopharyngeal cancers (TMH – EBM)

RESULTS OF TREATMENT OF ADVANCED CARCINOMA OF THE LARYNX UTILIZING CHEMOTHERAPY AND RADIATION THERAPY

Author	Year	No.	Type of Therapy	Stage III/IV (%)	2 Year Survival (%)
Veterans Affairs	1987	30	C/RT	100	52
Larynx Group		166	S/RT	100	68
Pfister	1991	13	C/RT	98	77
Karp	1991	14	C/RT	92	50
Urpa	1994	8	C/RT	93	75

SELECTED RANDOMIZED TRIALS COMPARING COMBINATION CHEMOTHERAPY AND RADIATION THERAPY WITH RADIATION THERAPY ALONE IN PATIENTS WITH LOCALLY ADVANCED HEAD AND NECK CANCERS

Author	Total No. of Patients	CT/RT Schedule	CT Regimen	RT Fraction	Overall Survival Benefit (p<0.05)
GORTEC	226	Concurrent	CBDCA/5-FU	Standard	Yes
Adelsin	100	Concurrent	CDDP/5-FU	Standard	No
Wendt	270	Concurrent	CDDP/5-FU	Hyper- fractionated	Yes
Keane	212	Concurrent	MMC/5-FU	Standard	Νο
Brizel	122	Concurrent	CDDP/5-FU	Hyper- fractionated	No
Merlano	157	Alternating	CDDP/5-FU	Standard	Yes

Carbon Ion Accelerator

IDEAL RADIATION PROTECTOR

- Pre-empt injury
- Promote repair
- High DRF
- Should protect all organ systems
- Should spare tumours
- Least toxic unlike amifostine
- Compatible with other drugs

Protectors

- Methylene Blue
- Phenobarbitone
- Mannitol
- Antioxidants
- Diethyldithiocarbonate (DDTC)
- Disulfran (dimer of DDTC)
- Sodium thiosulfate
- Mercaptoetahnosulfonate
- (MESNA)

Damage

- Scavangable damage OH•
- Non Scavangable damage

 Direct ionisation of DNA
 Reaction with H₂O⁺
 or non scavangable OH•
 Scavangable : 63
 - Non Scavangable : 35

Conversion of Amifostine Amifostine (prodrug) $NH_{2}(CH_{2})_{3}-NH-(CH_{2})_{2}-S-PO_{3}H_{2}$ Membrane bound alkaline phosphatase $NH_{2}-(CH_{2})_{3}-NH-(CH_{2})_{2}-SH$ WR-1065 (Active form) Oxidation $NH_{2}-(CH_{2})_{3}-NH-(CH_{2})_{2}-S$ $HH_{2}-(CH_{2})_{3}-NH-(CH_{2})_{2}-S$ WR-33278

Amifostine – WR2721 "Organic Thiophosphate" - A Pro Drug $NH_2-(CH_2)_3-NH(CH_2)_2-S-P-OH$

•High concentration of alkaline phosphates

•Facilatated uptake into normal cell

•High vascularity

•Normal pH

Low concentration of alkaline phosphatasde
Passive uptake into cell
Low vascularity
Acidic pH

Examples of Protection Factors Achieved by Amifostine in

Different Normal Tissues and Tumours

Tissue	Protection Factor
Salivary gland	2.3-3.3
Bone marrow	1.8-3.0
Jejunum	1.5-2.1
Skin	1.4-2.1
Testis	1.5-164
Lung	1.2-1.4
Kidney	1.3-1.5
Bladder	1.3-1.5
Tumours	1.0-2.8

Onset of Xerostomia Significantly Delayed With Amifostine

Radiation Toxicity

Effects of Xerostomia •Health Loss of teeth Osteoradionecrosis Oral infections

•Quality of life Eating Sleeping

•Function Speaking

Summary of Pivotal Phase III Study of Amifostine as a Radioprotector

- Amifostine significantly reduced the incidence of ≥ grade 2 xerostomia
 - Acute xerostomia was reduced from 78% to 51% (p < 0.0001)
 - Late xerostomia 57% to 34% (p < 0.002)
- Improved clinical benefit as assessed by PBQ
 - Mouth dryness (p < 0.001)
 - Mean summary score (p < 0.008)

Conclusion

Amifostine offers patients with head and neck cancer a new option to protect against longterm complications of xerostomia without affecting efficacy or survival

Structure of various Vitamin E derivatives and their physical properties

Illustration of the concept of a Therapeutic ratio in turn of dose response relationships for tumour control and normal tissue damage

CHLORPROMAZINE

Calmodulin regulated enzymes and cellular processes

L:~ 1

Inclusion Criteria in Ca. Cervix

- FIGO STAGE III
- HISTOLOGICAL PROOF OF SQUAMOUS CELL CARCINOMA
- NORMAL RENAL PARAMETERS
- KL 70 % & ABOVE
- AGE UP TO 70 AND AP/PA > 18 CMS

Biphasic Effects of CPZ

Cation radical of CPZ has marked nonspecific inhibitory effects on various emzymatic processes in cells.

CPZ
$$10^{-6} - 10^{-5}$$
 \longrightarrow Protective $10^{-4} - 10^{-2}$ \longrightarrow Toxic

Abe. et al

CANCER OF CERVIX

- FIGO STAGE III
- HISTOLOGICAL PROOF OF SQUAMOUS CELL CARCINOMA
- NORMAL RENAL PARAMETERS
- KL 70 % & ABOVE
- AGE UP TO 70 AND AP/PA > 18 CMS

Proctitis

Treatment Group Proctitis	Control No. of Pts. (%) n=15	CPZ No. of Pts (%) n=17
Gr. 0	0(0)	8(47.0)
Gr. I	1(6.66)	2(11.76)
Gr. 2	3(20)	4(23.52)
Gr. 3	10(66.66)	4(23.52)
Gr. 4	1(6.6)	0(0)

Groups	Age	Diagnosis	Stage	Initial response	Disease-free- survival1
Control Control	70 65	Ca.larynx Ca.pyriform	T4 N0 M0 T3 N3 M0	PR PR	Lost to FU with disease 7months lost to FU With disease
Control Control Control	67 70 61	Ca. base tongue Ca. base tongue Ca. base tongue	T4 N3 M0 T3 N1 M0 T4 N3 M0	PR CR PR	Lost to FU with disease 18 months died 6 months lost to FU with disease
Control Control Control	25 50 39	Ca. tonsil Ca. pyriform Ca. or pharynx	T4 N3 M0 T3 N0 M0 T4 N0 M0	CR CR CR	Lost to FU 2 years 2 years: recc.after 1 months
Control	42	Ca. tonsil	T4 N3 M0	PR	2 months died with disease
AK-2123 mg/d 880 mg x 9 880 mg x 9 880 mg x 9	60 25 60	Ca. pyriform Ca. floor of the mouth Ca.base tongue	T3 N0 M0 T3 N0 M0 T3 N2 M0	CR CR CR	2 year 21 months 1 year, died without disease
880 mg x 9	45	Ca.pyriform	T3 N3 M0	CR	6 months, recc. Lost to FU
990 mg x 9 990 mg x 9 990 mg x 9	70 50 55	Ca. pyriform Ca. base tongue Ca. pyriform	T3 N1 M0 T3 N3 M0 T3 N0 M0	CR CR CR	 21 months 10 months 5 months: ? 2nd neoplasm in esophagus
990 mg x 9	48	Ca. base tongue	T3 N0 M0	CR	1 year developed Striders
990 mg x 9	50	Ca. base tongue	T3 N0 M0	CR	1 year

Sanazole (AK-2123) with Accelearated Hyperfrationated Radiotherapy

References	Trial acronym	Year	No. pts	fxª	RT schedule	Hypoxic modification	En	dpoi	nt ^b			Obs. time
[21]	van den Brenk	1968	30	HH	7.75 Gy x4vs7.25 Gy x4 with HBO	HBO 4 atm	L	D	S			2+years
[22]	Evans 1	1970	40	LL	60 Gy/30 fx	Normobaric 02	L	D	S			2 + years
[23]	Tobin	1971	17	LL	60 Gy/30 fx	HBO 3 atm	L	D	S			2-3 years
[24]	Chang	1973	51	HHL	6 Gy x6+ HBO vs 6 Gy x7 or 60 Gy/30 fx	HBO 3 atm	L	D	S	M	C	5 years
[25]	Shigamats u	1973	31	HH	60-79 Gy/10 fx vs. 40-50 Gy/8-10 fx + HBO	HBO	L	D	S			2 + years
[26]	Evans 2	1975	44	LL	60 Gy/30 fx	Normobaric 02	L	D	S	M	C	2 + years
[27]	MRC 1 trial	1977	276	HH	35-45 Gy x10	HBO 3 atm	L	D	S	M	C	4 + years
[26]	MRC 3, trial	1979	24	HL	45-50/15 el 48.5-55/20 air vs. 40-45/10 HBO	HBO	L	D	S		C	5 years
[29]	RTOG 70-02	1979	254	LL	60-70 Gy/30 fx	Carbogen	L	D	S	M	C	2 + years
[30]	Sause	1979	44	HL	48 Gy/12 fx + HBO vs. 62 Gy/25 fx	HBO 3 aim	L	D	S		c	2 + years
[31]	Giaux	1962	56	11	50 Gy/16 fx	MISO	L	D	S			34 months
[32]	Sealy 1	1962	97	HH	36 Gy/6 fx/17 days	MISO	L					>1 year
[33]	B run in	1963	101	LL	72 Gy/36 fx	MISO	L	D	S			2 years
[34]	MRC 10 fx	1964	162	HH	40-45 Gy/10 fx	MISO	L	D	S		C	3 + years
[34]	MRC 20 fx	1964	89	LL	50-57 Gy/20 fx	MISO	L	D	S			3 + years
[35]	Panis	1964	52	MM	Split-course 1.1 Gy x6 daily/ 5 days – 4 weeks split-repeat	MISO	L	D	S		С	2 + years
[36,37]	EORTC 22S111	1966	330	MM	1.6 Gy x3/10 days – 3 weeks split + same to total of 67–72 Gy	MISO	L	D	S		С	5 + years
[38,39]	MRC 2. trial	1966	103	HL	64 Gy/30 fx vs. 41-44 Gy/10 fx + HBO	HBO 3 aim	L	D	S	M	C	4 + years
[40]	Sealy 2	1966	124	HL	63 Gy/30 fx (air); 36 Gy/6 fx (HBO)	HBO/MISO	L	D	S	M	C	1-2-year
[41,42]	IAEA study	1967	36	LL	70 Gy/35 fx	On ids zo e	L	D	S		с	2 + years
[43,44]	RTOG 79-15	1967	297	LL	66-74/33-37 fx	MISO	L	D	S	M	с	2 + years
[45]	Galecki	1969	35	LL	70 Gy/35 fx vs. 66 Gy/30 fx vs. 80.5 Gyx 70 fx	Metronidazole	L	D	S		с	3 + years
[46]	Dahanca 2	1969	622	LL	68-72/34-36 fx eller 61/22/9.5 weeks	MISO	L	D	S	Μ	с	5 + years
[47]	RTOG 79-04	1969	40	HH	4 Gy 11-13 fx	MISO	L	D	S		C	2 + years
[48]	RTOG 8S-27	1995	504	LL	66-74 Gy/33-37 fx	Etanidazole	L	D	S	M	C	5 + years
[49]	Huilgol	1996	18	LL	54 Gy/45 fx/22 days	AK-2123	L	D	S			2 + years
[50]	European trial	1997	374	LL	66-74 Gy/33-37 fx	Etanidazole	L	D	S		C	5 + years
[51,52]	Dahanca 5	1998	414	LL	66-68/33-34	Nirnorazole	L	D	S	M		5 years
[53]	Haffty	1999	48	HH	12.65 Gy x2 vs. 11.50 Gy x2 + HBO	HB04 atm	L	D		М	C	5 + years
[54]	Mendenhall	2005	101	MM	76 Gy/1.2 Gy fx BID	02 Carbogen	L	D	S	М		5 + years
[55]	Ullal	2006	46	LL	60 Gy/30 fx	AK-2123	L					3 + months
[56]	ARCON	2010	345	LL	64-68 Gy/32-34 fx accelerated fx	Nicotinamide	L	D	S			2 years

Randomized dinical trials with hypoxic modification of radiotherapy in HNSCC.

^a H: Hypofract; L: conventional tract; M: hyperfract (multiple fx/day).
 ^b L: Loco-regional failure; D: disease specific death; S: overall death; M: distant metastasis; C: complications.

Hypoxia modification of radiotherapy......Overgaard Jens, 100 (2011); 22-32, Radiotherapy and Oncology

Endpoint	Events	/ Total	Odds	s ratio and	1 95% CI			
	Hypoxic modification	Control				Odds ratio	Risk Reduction	NNT**
Loco-regional control	1203 / 2406	1383 / 2399	4	-		0.71 (0.63-0.80)*	8% (5-10%)*	13
Disease specific survival	1175 / 2335	1347 / 2329		-		0.73 (0.64-0.82)	7% (5-10%)	14
Overall survival	1450 / 2312	1519 / 2305				0.87 (0.77-0.98)	3% (0-6%)	31
Distant metastasis	159 / 1427	179 / 1391				0.87 (0.69-1.09)	2% (-1-4%)	57
Radiotherapy complications	307 / 1864	297 / 1822		+ _		1.00 (0.82-1.23)	0% (-3-2%)	>>
			0.5	1	2			
		Нурохі	c modificati	on better	Control bet	ter		

Head and neck cancer - meta analysis - summary

Meta Analysis - Hypoxic modification of radiotherapy in HNSCC

* 95% Cl.

** Numbers of patients Needed to Treat to achieve benefit in one patients.

Hypoxia modification of radiotherapy......Overgaard Jens, 100 (2011); 22-32, Radiotherapy and Oncology

	Trial	Modification	Events	/ Total		Odds ratio and	1 95% CI		
			Hypoxic						
		n	nodificatio	n Control					
Normobaric	1970 Evans 1	02	7/15	11/25	9				
oxygen	1975 Evans 2	02	13/20	19/24					
	1979 RTOG 7	70-02 Carbogen	53/121	63/133			_		
	2005 Menden	hall Carbogen	6 / 50	9/51					
	2010 ARCON	Carb+Nic	32/171	47 / 174					
	Subtotal (Norm	nobaric oxygen)	111/377	149/407	<i>.</i>			OR: 0.73 (0.53-1.00)	p=0.05
Hyperbaric	1968 van den	BrenkHBO	5/17	10/13	<u>-</u>				
oxygen	1971 Tobin 19	971 HBO	5/9	6/8	<				
	1973 Chang 1	1973 HBO	8/26	13/25		-	-		
	1973 Shigama	Itsu HBO	8/15	11/16		i			
	1977 MRC 1.	trial HBO	31/125	8//151	4				
	1070 Sauce		9/01	10/10	`	- i			
	1096 MDC 21	HBO	21/53	20/50					
	1990 WHC 2.	HBO	13/23	21/25	<u> </u>				
	Subtotal (Hym	arbaric ovuren)	122/298	195/326				OB: 0.46 (0.33-0.64)	n<0.001
Hypoxic	1982 Sealy 1	MISO	11/50	11/47				011. 0.40 (0.55-0.04)	P<0.001
sensitizer	1983 Brunin	MISO	15/51	18/50		i			
o o nonizor	1984 MRC 10	fx MISO	51/82	53/80					
	1984 MRC 20	fx MISO	25/43	30/46		•!			
	1984 Panis	MISO	14/26	16/26					
	1986 Sealy 2	HBO/MISC	0 34/60	46/64					
	1986 EORTC	228111 MISO	103 / 167	114/163		∎;_			
	1987 Europea	an trial ETA	94/187	92/187					
	1987 IAEA st	udy Ornidazole	13/18	14/18					
	1987 RTOG 7	79-15 MISO	113/147	104 / 150					
	1989 Dahanc	a 2 MISO	182/328	187/294		_			
	1989 RTOG 7	79-04 MISO	16/21	17/19	<u> </u>	•			
	1989 Galecki	Metro	3/18	5/17	<				
	1992 Giaux	MISO	28/30	23/26	-	î	•	\rightarrow	
	1995 RTOG 8	5-27 ETA	154/252	159/252	/		_		
	1996 Huilgol	AK-2123	2/9	7/9	<				
	1998 Dananc	a 5 NIM	104/219	125/195	<i>.</i>				
	2006 Ullal	AK-2123	8/23	18/23	· ·			00.076 (0.66.0.00)	
All triple w	Subtotal (Hype	oxic sensitizer)	9/0/1/31	1282/ 2200		~		OP: 0.71 (0.62-0.88)	p<0.001
All trials w	in hypoxic i	nodification 1	203/2406	1383/ 2399	01 00			0R: 0.71 (0.63-0.80)	p<0.001
					0.1 0.2	0.5 1	2 5	10	
_					Hypoxic modifica	tion better	Control better		
Test for h	eterogeneity	: p = 0.12							

Endpoint: Loco-regional failure

Meta Analysis - Hypoxic modification of radiotherapy in HNSCC

Hypoxia modification of radiotherapy.....Overgaard Jens, 100 (2011); 22-32, *Radiotherapy and Oncology*

Endpoint: Overall death

Meta Analysis - Hypoxic modification of radiotherapy in HNSCC

Hypoxia modification of radiotherapy.....Overgaard Jens, 100 (2011); 22-32, *Radiotherapy and Oncology*

	Number events/number e	entered			HP of death	
	Altered fractionated RT	Control	O-E	Variance	(altered fractionated RT control)	HR (95% CI)
A Hyperfractionation						
EORT C227913	126/180	135/176	-17-2	64-2		
RIO4	41/52	47/51	-11.5	20-6	·	
PMH Toronto ⁵	119/172	124/164	-13-8	59-6		
RTOG 9003 HF ⁶	184/276	201/279	-15.9	95.9		
Subtotal	470/680	507/670	-58-4	240-4	\Leftrightarrow	0.78 (0.69-0.89)
B Accelerated fractionation	without total dose reduction					
EORTC 228517	171/257	164/255	-1.3	83-3		
RTOG 9003 56	205/281	201/279	1.2	101.5		
RTOG 9003 B6	190/277	201/279	-9-0	97-6	_	
BCCA 91138	30/41	23/41	4.8	13-1		→
DA HANCA9	422/755	413/730	-5-0	208-6		
Oro 930110	51/65	48/63	4.8	24-4		
CAIR ¹¹	19/51	37/49	-16-5	12.6	i	
KBN PO 7912	42/196	41/199	1.3	20.7	i =	
Subtotal	1130/1923	1128/1895	-19-9	561-8	\Leftrightarrow	0.97 (0.89-1.05)
C Accelerated fractionation	with total dose reduction					
RTOG791313	91/106	87/104	-2.9	44-1		
CHART ¹⁴	359/552	227/366	5.7	140-2		
Vienna ¹⁵	62/78	66/81	-3.1	31.9	i [
TROG 910116	96/174	109/176	-9.4	51-1		
GORTEC 940217	105/137	111/131	-10.5	53-4		
Subtotal	713/1047	600/858	-20.2	320-6		0.94 (0-84-1-05)
Total	2313/3650	2235/3423	-98-5	1122-9	•	0.92 (0.86-0.97)
v2 test for betern consider	p-0.001				0.5 1.0	1.5 2.0
v2 test for interaction	2-0.03				Altered fractionated PT better	al battar
L'tescion interaction	p=0.02				Altered fractionated RT effect with p=0-00)3

Figure 1: Hazard ratio of death with altered fractionated radiotherapy versus conventional radiotherapy

The centre of each square is the hazard ratio (HR) for individual trials and corresponding horizontal line is the 95% CI. The area of the square is proportional to the number of deaths in each trial. The broken line and centre of the black diamond is overall pooled HR and the horizontal tip of the diamond is the 95% CI. Open diamonds are the HR of different types of radiotherapy. BCCA=British Columbia Cancer Agency. CAIR=Continuous Accelerated Irradiation. CHART=Continuous Hyperfractionated Accelerated Radiation Therapy. DAHANCA=Danish Head and Neck Cancer Study Group. EORTC=European Organisation for Research and Treatment of Cancer. GORTEC=Groupe d'Oncologie Radiothérapie Tête et Cou. KBN=Komiet Badan Naukowych (Committee for Scientific Research). O-E=observed minus expected. PMH-Toronto=Princess Margaret Hospital, Toronto. RT=radiotherapy. RTOG=Radiation Therapy Oncology Group. TROG=Trans-Tansman Radiation Oncology Group.

Hypwerfractionated or accelerated radiotherapy..... Bourhis J, Overgaard J. et., Vol. 368: 843-854; Sep 2, 2006, Lancet

	Number events/number	entered				
	Altered fractionated RT	Control	0-E	Variance	HR of cancer death (altered fractionated RT control)	HR (95% CI)
A Hyperfractionation						
EORT C227913	104/180	115/180	-15-2	54-0		
RIO4	37/52	44/51	-11-2	19-0		
PMH Toronto ⁵	92/172	98/164	-10-7	46-7		
RTOG 9003 HF ⁶	163/276	179/279	-13-2	85-3		
Subtotal	396/680	436/670	-50-2	205-0		0.78 (0.68-0.90)
B Accelerated fractionation	without total dose reduction					
EORTC 228517	127/257	143/255	-9-2	67-4	_	
RTOG 9003 56	179/281	179/279	0.7	89-5		
RTOG 9003 B ⁶	170/277	179/279	-6-3	87-2		
BCCA 91138	23/41	18/41	3.4	10-2		→
DA HANCA9	244/755	274/730	-18-6	129.5	_	
Oro 930110	45/65	44/63	3.6	22-0		_
CAIR ¹¹	13/51	35/49	-16-4	11-1	_ 	
KBN PO 7912	34/196	34/199	0.7	17-0		
Subtotal	835/1923	906/1895	-42-3	433-8	$\langle D \rangle$	0-91 (0-83-1-00)
C Accelerated fractionation	with total dose reduction					
RTOG 791313	86/106	77/104	-0.1	40-1		
CHART ¹⁴	279/552	181/366	2.2	110-2		
Vienna ¹⁵	52/78	61/81	-5.3	28-1		
TROG 910116	85/174	92/176	-5.5	44-2	i	
GORTEC 940217	93/137	103/131	-10-4	48.7		
Subtotal	595/1047	514/858	-19-0	271.5		0-93 (0-83-1-05)
Total	1826/3650	1856/3423	-111-5	910-4	•	0-88 (0-83-0-94)
x ² test for heteropeneity	p=0-003			6	0.5 1.0 1.5	2-0
y ² test for interaction	p=0.12				Altered fractionated RT better Control better	
I ² =56%	k-0.43				Altered fractionated RT effect with p=0.0002	

Figure 3: Hazard ratio of head and neck cancer death with altered fractionated radiotherapy versus conventional radiotherapy

The centre of each square is the hazard ratio (HR) for individual trials and corresponding horizontal line is the 95% Cl. The area of the square is proportional to the number of events from each trial. The broken line and centre of the black diamond is overall pooled HR and the horizontal tip of the diamond is the 95% Cl. Open diamonds are the HR of different types of radiotherapy. BCCA=British Columbia Cancer Agency. CAIR=Continuous Accelerated Irradiation. CHART=Continuous Hyperfractionated Accelerated Radiation Therapy. DAHANCA=Danish Head and Neck Cancer Study Group. EORTC=European Organisation for Research and Treatment of Cancer. GORTEC=Groupe d'Oncologie Radiothérapie Tête et Cou. KBN=Komiet Badan Naukowych (Committee for Scientific Research). O-E=observed minus expected. PMH-Toronto=Princess Margaret Hospital, Toronto. RT=radiotherapy. RTOG=Radiation Therapy Oncology Group. TROG=Trans-Tansman Radiation Oncology Group.

Hypwerfractionated or accelerated radiotherapy...... Bourhis J, Overgaard J. et., Vol. 368: 843-854; Sep 2, 2006, Lancet

Figure 2: Survival curves by treatment arm for all trials and for the three groups of trials according to the type of altered fractionated radiotherapy (A) Hyperfractionation. (B) Accelerated fractionation without total dose reduction. (C) Accelerated fractionation with total dose reduction. (D) All three groups together. The slopes of the broken lines from year 6 to year 27 are based on the overall death rates in the seventh and subsequent years. RT=radiotherapy.

Hypwerfractionated or accelerated radiotherapy...... Bourhis J, Overgaard J. et., Vol. 368: 843-854; Sep 2, 2006, Lancet

Trial	Events/ CT	/patient Control	0-E	Variance	Hazard ra (CT:contr	Risk tio reduction ol) (SD)
■ Platin +FU	1051/ 1761	1122/ 1742	-90-9	536·8	\ominus	16% (4)
 PolyCT with P 	724/ 965	564/ 742	13.5	305-5	\triangleleft	> _5% (6)
 PolyCT w/o P 	444/ 640	391/ 568	-32-2	193-3 🚽		15% (7)
MonoCT	1478/ 2212	1443/ 2111	<u>-83</u> ·3	707.7	\Leftrightarrow	11% (4)
Total	3697/ 5578	3520/ 5163	-192·9	1743·3 0·50 0·	★ 75 1.00	10% (2) 1·25 1·50
				С	T better co	ntrol better

Figure 3: Hazard ratio of death with locoregional treatment plus chemotherapy compared with locoregional treatment by types of chemotherapy

Platin (cisplatin or carboplatin)+fluorouracil (FU), combination CT with platin (Poly CT+P), combination CT without platin (Poly CT w/o P), singleagent CT (mono CT) including platin. Test for heterogeneity between types of chemotherapy, p=0.02.

Hypwerfractionated or accelerated radiotherapy...... Bourhis J, Overgaard J. et., Vol. 368: 843-854; Sep 2, 2006, Lancet

Table 1: Randomised Trials in Recurrent/Metastatic Squamous Cell Cancer of the Head and Neck

Study	c	Regimen	Population	RR(%)	OS (months)
EXTREME ¹¹	442	Carbo/CisE vs	1st-line	36 vs 20*	10.1 vs 7.4*
		Carbo/Cis			
ECOG 539710	117	CisE vs Cis	1st-line	26 vs 10*	9.2 vs 8.0**
IMEX ²⁶	486	Gefitinib 250mg	2nd-line	2.7** vs	5.6** vs
		vs gefitinib 500mg		7.6 VS	6.0 vs
		vs methotrexate		3.9	6.7
ECOG 130229	270	D + Gefitinib	Any line	14**	6.8**
		VS D		9	0.9

Carbo/Cis = carboplatin or cisplatin; Cis = cisplatin; D = docetaxel; E = cetuximab; OS = overall survival; RR = response rate.

*p<0.05; **Not statistically significant.

