Radiation tolerance of normal tissues

Dr.Vadhiraja B M Consultant Radiation Oncologist Manipal Hospital Bangalore

Presentation Layout

- Why it is important to know normal tissue toxicity
- Factors influencing normal tissue toxicity
- Direct & indirect methods of measuring toxicities
- QUANTEC
- Toxicity assessment tools
- Individual sites

Is accurate estimation of radiation effects in normal tissue possible ?

- True dose to normal tissue D_A
- Problems
 - Dynamic nature of patient
 - Mapping tumor regression over a course of rx
 - Planned dose ≠ delivered dose for any given #
 - Cell or fluid loss during treatment

How can we try to be accurate ?

- Documentation
- Time dependent patient anatomy over a course Imaging / contouring / auto segmentation / image guidance laborious

(Inter institution comparison difficult – ex: inner / outer wall rectum)

- Calculate dose at each time point
 - Algorithm plays an important role
 - Monte Carlo take care of RT calculation through all the components
 - treatment unit head
 - CT based patient geometry
 - Represents gold standard of dose calculation
- Inspite of these Dose volume analysis is still poorly understood
- Tissue deformation and tracking tools are being tried

Dose tracking tools

- MOSFET detectors (metal oxide semiconductor field effect transistor
- Optical point
- Volumetric methods
- MR based GEL technologies
- Carbon Nano tube approaches
- Deformation & dose validation phantoms

Biomarkers and surrogate endpoints for normal-tissue effects

- Patient to patient variation in response as well as toxicity exists
- It is currently hypothetical to say a hyper responsive phenotype exists
- Biomarker to know the above infancy
- Predictive factors / response markers & surrogate endpoints

Predictive factors for toxicity

- TGF ß activation after first # of RT breast ca
- IL-6, IL-1∝ elevation in patients developing pneumonia
- Genetic variations
 - Ataxia telangectasia hyper radiosensitive
 - SNPs are studied to know genetic variations
 - Candidate gene studies & genome wide association

Response markers

- IL-1 \propto and IL-6 weekly assessment not useful
- TGF-ß1 level normalization at end of RT 90% PPV for not developing radiation pneumonitis

 may help for dose escalation from 73.6 to 80
 Gy in NSCLC – however not useful

Surrogate end points

Using low grade as indicator of high grade toxicity

What is QUANTEC

- Quantitative analysis of normal tissue effects
- Effort of various investigators contribution QUANTEC steering committee
- 1991- Emami et al published dose/volume / outcome data
- QUANTEC reviews various data generated 3D/IMRT/IGRT era
- Suggests shortcomings of current predictive models & highlights research areas

Aims of QUANTEC

- critical overview of the current state of knowledge on quantitative dose-response and dose-volume relationships
- practical guidance
- future research avenues
- One of the goals of QUANTEC is to summarize the available 3D dose-volume/outcome data.

Why QUANTEC ?

- Transition from 2D 3D IMRT SRS-SRT Protons
- Earlier whole / partial organ tolerances
- Currently tissue volumes exposed is known by imaging
- Currently CTRT is standard in locally advanced stage.
- Cancer survivors are increasing

- Toxicity often underreported / unrecorded
- NTCP data are mostly retrospective from charts
- Schulthesiss & Withers-Serial / parallel
- EMAMI -1062 citations 1/3 2/3 whole organ
- Kutchner DVH
- Layman-Kutchner-Burman DVH reduction scheme – it is mathematical

tion Distribution	us Heterogeneous	Diseased Lung Bone Brain	is Optic Pathway Speech			
Funct	Homogeneo	Lung Liver Kidney	Esophagus Intestines			
		Parallel	sənə2			
		Organizational Structure				

Dose volume outcome may not be applicable in

- Hypo fractionation
- Rotational delivery

Dose volume relationship

1990

- Parallel Opposed fields
- RT as single modality
- Conventional # / hyperfrac trials
- Authors search for "Safe" dose

 volume constraint
- Layman model widely used
- Analysis-mainly on group of patients
- Lack of consistency Organ contouring

2009

- Conformal/IMRT
- CTRT widely used
- Conventional # / hypofractionation trials
- Risk benefit tradeoff in individual patient
- Layman model still widely used but new modeling being persued
- Analysis-individual patient level
- Lack of consistency Organ contouring

1990

- Models applied with parameters from literature
- Lack of quantitative, evidence based dosevolume constraints
- Only partial organ tolerance from Emami et al

2009

- Adjustments for significant patient or treatment characteristics
- Toxicity is underscored and underreported inspite of CTC-AE definitions
- Lack of quantitative evidence based dose-volume constraints
- QUANTEC has systematically reviewed literature

Problems of DVH

- DVH model assumes that the functioning of organ is uniform
- critical, radiosensitive structures are not homogeneously distributed within organs
- However lung base is more sensitive than apex

Grading of toxicities

- Grade 1—mild or asymptomatic
- Grade 2—moderate, not interfering with activities of daily living (ADLs)
- Grade 3—severe interference with ADLs, possible intervention
- Grade 4—life-threatening or disabling, intervention indicated; and
- Grade 5—Death

Scoring Late toxicities

- RTOG
- EORTC
- NCI consensus SOMA (Subjective, objective, management criteria) with lab & imaging
- NCI CTC AE 3
- LENT

Table 1 RTOG/EC	ORTC Late Radiation Morbid	ity Scoring Schema ³		
Organ Tissue	Grade 1	Grade 2	Grade 3	Grade 4
Brain	Mild headache Slight lethargy	Moderate headache Great lethargy	Severe headaches Severe CNS dysfunction	Seizures or paralysis Coma
			(partial loss of power or dyskinesia)	
Spinal cord	Mild L'Hermitte's	Severe L'Hermitte's	Objective neurological	Mono, para quadriplegia
	syndrome	syndrome	findings at or below	
			cord level treated	
Salivary glands	Slight dryness of mouth	Moderate dryness of	Complete dryness of	Fibrosis
	Good response on	mouth	mouth	
	stimulation	Poor response on	No response on	
		stimulation	stimulation	
Lung	Asymptomatic or mild	Moderate symptomatic	Severe symptomatic	Severe respiratory
	symptoms (dry cough)	fibrosis or pneumonitis	fibrosis or	insufficiency/
	Slight radiographic	(severe cough)	pneumonitis	Continuous
	appearances	Low grade fever	Dense radiographic	O ₂ /Assisted
		Patchy radiographic	changes	ventilation
		appearances		
Heart	Asymptomatic or mild	Moderate angina on effort	Severe angina	Tamponade/severe
	symptoms	Mild pericarditis	Pericardial effusion	heart failure/severe
	Transient T wave inversion	Normal heart size	Constrictive pericarditis	constrictive
	& ST changes	Persistent abnormal T	Moderate heart failure	pericarditis
	Sinus tachycardia >110	wave and ST changes	Cardiac enlargement	
	(at rest)	Low QRS	EKG abnormalities	
Esophagus	Mild fibrosis	Unable to take solid food	Severe fibrosis	Necrosis/perforation
	Slight difficulty in	normally	Able to swallow only	Fistula
	swallowing solids	Swallowing semi-solid food	liquids	
	No pain on swallowing	Dilatation may be indicated	May have pain on	
			swallowing	
			Dilation required	

133

Normal tissue tolerance dose metrics

Small and large intestine Liver	Mild diarrhea Mild cramping Bowel movement 5 times daily Slight rectal discharge or bleeding Mild lassitude Nausea, dysnensia	Moderate diarrhea and colic Bowel movement >5 times daily Excessive rectal mucus or intermittent bleeding Moderate symptoms Some abnormal liver	Obstruction or bleeding requiring surgery Disabling hepatitic insufficiency	Necrosis/perforation Fistula Necrosis/hepatic coma
Kidnev	Slightly abnormal liver function Transient albuminuria	function tests Serum albumin normal Persistent moderate	Liver function tests grossly abnormal Low albumin Edema or ascites Severe albuminuria	Malianant hypertension
(and the second s	No hypertension Mild impairment of renal function Urea 25-35 mg% Creatinine 1.5-2.0 mg%	Mild hypertension No related anemia Moderate impairment of renal function	Severe hypertension Severe hypertension Persistent anemia (<10g%) Severe renal failure Urea >60 mg%	Uremic coma/urea >100%
	Creatinine clearance >75%	Urea>36-60 mg% Creatinine clearance (50-74%)	Creatinine >4.0 mg% Creatinine clearance <50%	

6 0	Score: 0 if normal	else grade n°	_]]		
		Grade 4	Refractory and excruciating	Refractory, prevents daily activity, coma	Complete loss of reasoning and judgement	Incapable of selfcare/ supervision, coma
DMA form	\mathbb{F}	Grade 3	Persistent, intense	Persistent, needs some assistance for self care	Major loss of ability to reason and judge	Cannot perform simple tasks
X LENT-SC		Grade 2	Intermittent, tolerable	Intermittent, interferes with work or normal activity	Moderate loss of ability to reason and judge	Cannot perform complex tasks
AFFI RTOG L/	h/Year)	Grade 1	Occasional, minimal	Occasional, able to work or perform normal activity	Minor loss of ability to reason and judge	Perform complex tasks with minor inconvenience
Trial number Institution number	Today's date (Day/Mont	BRAIN	SUBJECTIVE SIGNS Headache	Somnolence	Intellectual deficit	Functional competence

Modulators of radiation effect

- Effect function of tissue renewal property
- Depends on
 - Dose
 - Fraction size
 - Duration
 - Interval between #
 - Dose rate
 - Specific organs (organizational structure serial/parellel & compensatory capacities volume)
 - volume

Dose factors

- **Strandquist plot** effect depends on dose
- Ellis Different tissues-different slope
 - Tumor has different slope compared to normal
 - Effect depends on fraction size & time for acute
 But only on fraction size for late effects
- 1980 LQ model Acute responding tissue & tumorhigh ∝/ß & Late responding – low∝/ß. Simple mathematical formula to compare various dose & fractionation schemes. Clinically acceptable & safe
- All these formula are approximation (based on single cell survival curves) hence clinical judgment imp

TD 5/5 & TD 50/5

- Assumes uniform irradiation
- Whole organ
- Conventional 2Gy/# 5#/wk
- Assumes normal organ function at base line
- No surgical manipulation / concurrent drugs
- Age range excludes children & elderly

Paramete	rs of Therapy	Tolerance Doses (TD5/5–TD50/5)			
Single Dose (Gy)	x	Fractionated Dose (Gy)			
Ovary	2 - 6	Testes	1 - 2		
Bone marrow	2 - 10	Ovary	6 - 10		
Testes	2 - 10	Eye (lens)	6 - 12		
Eye (lens)	2 - 10	Kidney	20 - 30		
Mucosa	5 - 20	Thyroid	20 - 40		
Gastrointestinal	5 - 10	Lung	23 - 28		
Lung	7 - 10	Skin	30 - 40		
Colorectal	10 - 20	Liver	35 - 40		
Kidney	10 - 20	Bone marrow	40 - 50		
Vasculoconnective tissue	10 - 20	Heart	43 - 50		
Liver	15 - 20	Gastrointestinal	50 - 55		
Skin	15 - 20	Vasculoconnective tissue	50 - 60		
Peripheral nerve	15 - 20	Spinal cord	50 - 60		
Spinal cord	15 - 20	Brain	55 - 70		
Brain	15 - 25	Peripheral nerve	65 - 77		
Heart	18 - 20	Mucosa	65 - 77		
Bone and cartilage	>30	Bone and cartilage	>70		
Muscle	>70	Muscle	>70		

								Selected End Point
\ /		TD	o _{5/5} Volu	me	TD _{50/5} Volume			
V	Organ	1/3	2/3	3/3	1/3	2/3	3/3	
0	Kidney	50	30	23	-	40	28	Clinical nephritis
	Brain	60	50	45	75	65	60	Necrosis, infarction
u	Brainstem	60	53	50	-	-	65	Necrosis, infarction
m	Spinal cord	5 cm:	10 cm:	20 cm:	5 cm:	10 cm:	20 cm: -	Myelitis, necrosis
е		50	50	47	70	70		
U	Lung	45	30	17.5	65	40	24.5	Pneumonitis
f	Heart	60	45	40	70	55	50	Pericarditis
а	Esophagus	60	58	55	72	70	68	Clinical stricture/perforation
С	Stomach	60	55	50	70	67	65	Ulceration, perforation
t	Small intestine	50	-	40	60	-	55	Obstruction, perforation/fistula
o r	Colon	55	-	45	65	-	55	Obstruction, perforation/ulceration/fistula
S	Rectum	Volume:	100 cm ³	60	Volume: 100 cm ³		80	Severe proctitis/necrosis/fistula
	Liver	50	35	30	55	45	40	Liver failure

The LENT Paradigm

- 1. Clinical detection
- 2. Time course of events
- 3. Dose /time/volume
- 4. Chemical / biologic modifiers
- 5. Radiologic imaging
- 6. Lab tests
- 7. Differential diagnosis
- 8. Pathologic diagnosis
- 9. Management
- 10. Follow up

Individual sites

- Data are best estimates of available data
- High level evidence lacking
- constraints should be used with appropriate caution and interpreted within the clinical context

Brain

Subjective

- Headache,
- somnolence,
- intellectual deficits,
- functional
- neurologic losses
- Memory alterations

Objective

- neurologic deficit,
- loss of cognitive function,
- mood and personality changes
- focal to generalized seizures

• Late

- Radiation necrosis & cognitive deterioration
- To document –new symptom & imaging sufficient
- Biopsy rarely done
- Surgery, Chemo, steroids, antiepileptics, opioids also impairs neurologic & cognitive fx, hence interpretation difficult
- Brain necrosis & gliosis 6 to 12 months

Dose/ Time / Volume

- 50Gy well tolerated
- Children threshold 30-35Gy
- TD5/5 50Gy; TD50: 70 80
- Conformal RT 50 110gy with ~ risk 5% to 20%
- Partial brain 50 60gy minimal effect on memory & cognition
- Children more sensitive
- Mtx, ß-interferon 个 necrosis
- Valproate low risk for necrosis

Brain- Radiation necrosis – Conventional RT α /ß = 3

- 5 to 10 % 120 Gy to 150Gy BED (72 gy & 90 GY in 2 Gy/#)
- For twice daily #, complications at >80 Gy BED
- No evidence to say children are at more risk
Brain- Radiation necrosis - SRS

- Depends on Dose, volume & region
- IN SRS
 - 31-40mm maximum 15 Gy
 - 21 30mm max 18Gy
 - <20mm max- 24 Gy
- However >12 Gy single # correlates with incidence of necrosis

Neurocognitive functions in children

- Extensively studied in childhood ALL
- ALL 24 Gy to whole brain
 - 13 point IQ \downarrow at 5yrs after RT
 - Poorer academic achievement & self image
 - Greater psycologic distress
- 14 to 18 Gy no / less toxicites
- Medulloblastoma WBRT

- IQ better by 10-15 points in 23.4Gy vs 36 Gy

• Supratentorial – RT induced cognitive decline

Neurocognitive functions in Adults

- Evidence is weak
- Improved cognitive effects after RT probably due to decrease in tumor size
- \leq 2 ys after WBRT no difference in cogn.
- \geq 5 ys after WBRT condition improved
- >2Gy/# cognitive decline
- Limited evidence 2 Gy / # causing cognitive decline

Factors affecting risk

- Dose, # size, volume
- Necrosis -Brain stem & callosum more prone
- Chemo, short overall treatment time, old age, DM
- Young age more neurocognitive Decline
- Female, NF-1 mutation, extent of surgery, hydrocephalus, MTX, location & volume

Special Situations

- Re- irradiation
 - 3-55 months cumulative BED <100Gy- no necrosis
- Primary CNS lymphoma in > 60 yrs
 -> 40 gy WBRT ↑ in cognitive decline
- Hippocampus memory formation limit the dose

Recommended dose-volume limits

- 5 to 10 % necrosis risk 120 gy BED 2Gy/#
- Brain is sensitive to > 2Gy/# and twice daily #s
- 5% complication at 5 yrs for partial brain- 72gy – though Emami et al says 60gy
- Radiosurgery
 - Risk \uparrow if >12 Gy to 5-10 cm³
 - Volume receiving 12 Gy and region important
 - Brain stem & corpus callosum more stringent limits

Brain Stem – α /ß = 2.1

- RT induced brain stem injury manifests months – years
- Difficult to differentiate between disease progression / side effects

- Includes midbrain, pons, medulla
- Midbrain inferior to 3rd ventricle and optic tracts
- Inferior extent upto foramen magnum
- Near cerebral and cerebellar peduncles borders are indistinct
- Coronal and sagittal planes useful

Predictors of brain stem toxicity

- Dmax > 64 Gy
- V50 >5.9ml
- V55 > 2.7 ml
- V60) 0.9ml
- Two or more skull-base surgeries
- Diabetes

Brain stem toxicity data in SRS/SRT

- Before 1994 29% neuropathies
- After 1994 5% and 2% facial and trigeminal neuropathies
- Risk if Dmax > 12.5Gy & prior open resection, tumor dia > 8mm, volume > 1.7ml, length of cr. Nerve irradiated >16mm, planning without MRI

Brain stem – pediatric patients

- No toxicity in brain stem glioma patients 54 – 60 Gy (2Gy/#)
- 75.26 at 1.26Gy twice daily, 78GY in 1Gy twice daily
- Pediatric tolerance same as adult

Brain stem- factors affecting risk

- Targets larger and close to brain stem
- Lack of MRI planning
- Number of surgeries
- Hydrocephalus
- Diabetes
- Hypertension

Recommended dose-volume limits

- Entire brain stem 54 Gy
- 1-10cc 59 Gy Max
- Risk markedly increases beyond 64Gy
- For SRS Max 12.5Gy (<5% risk)
- 15 to 20 Gy used in poor prognosis patient

Toxicity scoring

- CTC AE is used
- Baseline history, PE, Neurologic examination, cranial nerve, motor, sensory & cerebellar function examination
- Heart rate & BP are critical in patients earlier operated for brainstem lesions
- Above examinations repeated at regular intervals
- If suspicion, MRI shows structural alterations

Spinal cord

- Paraesthesia (tingling sensation, shooting pain, and Lhermitte's syndrome),
- numbness,
- motor weakness,
- loss of sphincter control
- Brown-Séquard syndrome
- total paraparesis and paraplegia

Defining volume

- Entire circumference of cord, vertebral body and spinal nerve roots
- In radiosurgery Spinal cord+ 3 mm + thecal sac and contents
- Few slices superiorly and inferiorly

Time course of events

- Spinal cord- Lhermitte's 2 to 4 months
- Paresis, numbress, altered sphincter control 6 to 12 months

Dose/Time/Volume

- 45 Gy well tolerated (risk <0.2%)
- True TD 5/5 57 to 61 Gy
- TD 50 68 to 73Gy
- Hyperfractionation ↓ cord tolerance by 10 to 15%
- IT MTX/ IV Mtx, cisp, cytarabine 个 risk

Dose-Volume data

- Cervical cord more sensitive
- Pathology vascular / endothelial damage, glial cell injury or both
- Full thickness cord more damage,
- lateral part (white matter more sensitive than central point – grey matter-possibly because of vascular density)
- Rhesus monkey experiments suggest 76 % recovery at 1 yr, 85% at 2 and 101% at 3 yrs

Re-irradiation of cord

- Dose, volume and time interval important
- No myelopathy for cumulative dose of \leq 60 Gy

Factors affecting risk

- Pediatric age more risk
- Intrathecal ARA-C, MTX, intraperitonal fludarabine immideately before radiation
- Any concurrent chemo caution

Recommended dose-volume limits

- 50 gy 0.2 %
- 60Gy 6 %
- 69gy 50% incidence of myelopathy
- SRS 13 Gy max
- SRT 20Gy in 3 # <1% risk

Difference between Cervical & thoracic tolerance

Optic Nerves & Chiasma

- Radiation induced optic neuropathy uncommon but disabling
- Painless rapid visual loss
- Pathology Vascular injury
- Interval between RT and symptom \leq 3 yrs
- Optic nerve monocular vision loss
- Hemianopia/ Quadrant loss

- Chiasma bilateral vision loss
- Pitutary adenoma inferior central chiasma upper outer quadrant visual loss
- Optic tract injury- small vision loss

Defining volume

- Posterior aspect of the center of globe
- Bracketed by rectus muscle
- Angle up through optic canals medial to anterior clenoid process
- Thin-2-5mm thick
- Medial fibers cross to opposite side in optic chiasma, lateral fibers cross opp. Side
- Superior to sella turcica
- OC is bracketed by carotid arteries laterally

Tolerance at conventional fractionation

- Emami et al- whole organ
 - 5 % complications at 50 Gy
 - 50 % complications at 65 Gy
- Steep increase in complications > 60 Gy
- Tolerance low in pituitary tumors (constraints – 45 Gy)
- <1.9Gy/# ON tolerance is better

Tolerance at single fraction

- Constraint < 8 Gy
- 0% risk at doses <10 Gy, 27% at 10 to <15 Gy
- Elderly at more risk >60 yrs (26% for 50 yrs vs 56% for 70 yrs at >60 Gy)
- Chemo, DM, HTN may be risk factor
- Reirradiation data are lacking
- Care while using hypofractionation
- ? Bevacizumab may help in RION

Eye

- Retina, lens, conjunctiva, lacrimal apparatus, optic nerve, & lid can get affected
- Survivors of rhabdomyosarcoma dry eye/ cataract, orbital hypoplasia, ptosis, retinopathy, keratoconjunctivitis, optic neuropathy, lid epithilioma, impairment of vision – 30 to 65 Gy
- Corticosteroids and GVHD ↑risk of catract
- High dose/# increases risk of toxicity

Lung

- Radiation pneumonitis occurs in (within 10 mths)
 - -5-50% of lung cancer
 - 5 10% of mediastinal lymphatics RT
 - -1-5 % of Breast cancer patients
- Large no. of pts experience Subclinical RTinduced injury
 - $-\downarrow$ in PFT
 - Radiologic changes

- Mean lung dose & Vx both are important
- Mean 10-20Gy; V13 >40%, V20 >25%, V30 >10%
- Actinomycin D (recall phenomenon), Doxo, Bleo, Busulphan, Cyclophos, BCNU & interferons 个 risk
- Radiology pneumonitic patch well defined outline
- Lab perfusion \downarrow ; PFT impaired
- IL-6, serum surfactant apoprotein, TGF-ß are on testing as predictive markers
- Differential diagnosis Recurrence/ persistant disease / mets / lymphangitc carcinomatosis / infections

Increased density on CT

- Patho only if recurrence suspected
- Management Steroids Prednislone 30-60mg/day or dex – 16 to 20mg/day; symptoms clears in 24-48 hrs. Pentoxyphylline & tocopherol are tried

Dose tolerance of lung

- Single high dose pneumonitis
 - 8.5Gy 5%
 - 9.3Gy 50%
 - 11 Gy 80%
- V20 <22% -> 0% pneumonitis (Graham et al)
- V20 >40% > 36% pneumonitis
- V13 > 40 % ipsilateral lung 5% complications
- V13 -36% to lower lung, 42% of total lung or 62% of ipsilateral lung 20% late complication risk
- Both Mean Lung dose & Vx is important

Dose volume threshold

- Lower lobe tumors more toxicity than upper
- Radiation pneumonitis is predicted on
 - Mean lung dose
 - High dose regions

Factors affecting risk

- Elderly at more risk to RP
- Smokers less risk for RP
- No difference in left vs right lung
- Chemotherapy
 - Docetaxel, gemcitabine
 - No risk with Cisp/pacli/etoposide/carbop
- Higher fraction size more risk

Heart

- Acute Pericarditis 20% progress to chronic
- Late CHF, ischemia, CAD, MI months to years
- Relative risk of cardiac events- 1.2 to 3.5 (Early breast cancer trial)
- IMN irradiation increases risk & Left side RT
- Modern RT has reduced cardiac mortality risks
- Subclinical abnormalities upto 50%
- HL patient RR of lethal MI 2.5%

Factors affecting risk

- Age, Female, DM, smoking, HTN, total cholesterol, high sensitive CRP, parental H/O MI in <60yrs
- Chemotherapy
 - Anthracycline

Dose volume limits

- Breast cancer minimize to as less as possible
- V_{25Gy} <10% <1% probability of cardiac mortality
 ≈ 15 yrs. after RT
- HL no chemo whole heart tolerates 30gy
- HL patients receiving Chemo whole heart tolerance - 15Gy
- Pericarditis if pericardial dose > 26Gy and V30 > 46%
- Left ventricle RT \downarrow perfusion

Liver

- Upper abdominal pain Abdominal swelling hepatomegaly & ascites – weigh gain
- Anicteric ascites 2 4 months after RT; CTRT (1 to 4 weeks-BMT setting)
- Whole liver 20 to 30Gy Upper 33 to 35 Gy
- Radiation hepatomegaly > 35 Gy; 1/3rd to ½ can receive >40Gy
- BCNU, Mtx, CHOP,, Pro-Mace-MOPP 个 risk

- Liver movement with respiration minimized by:
 - Abdominal compression
 - Shallow breathing
 - Breath holding
 - Deformation modeling
 - Gated treatment
 - Real time tracking

Kidney - Dose volume data

- Toxicity depends on whole volume / partial volume t one / both kidneys
- Whole kidney (Bilateral as in TBI)

- 5% toxicity - 9.8Gy (Median 12Gy)

- Non TBI patients
 - 5% toxicity 18-23 Gy; 50% with 28Gy

- Threshold 15 Gy (Children 12 to 14 Gy)
- TD 5/5 20Gy for both kidneys
- TBI setting If BED >16Gy \uparrow risk
- Dose volume tolerance reports lacking clinicians are cautious
- Cisp. BCNU, Retinoic acid, Act-D 个 risk
- ^{99m}TC renogram early diagnosis of damage
- BUN, Creat, CC changes rare before 6 months
- Microscopic hematuria, proteinuria, urinary casts
- GFR Initial ↑ by 15% to 20% after >20Gy & then ↓ by 20 to 25% of baseline

- After TBI arteriolonephrosclerosis
- TD 5/5 20Gy for both kidney

Factors affecting renal damage

- Renal insuffiency
- DM
- HTN
- Liver diseases
- Heart diseases
- Smoking
- Dexa/ Ace inhibitor/ acetyl salicylic acid prevent RT injury

Table 5. Suggested dos	e-volume constraint risk of <5%	s for estimated
Variable	Dose-volume metric	Investigator
Bilateral kidney irradiation	Moon Lidnon	Change at al (0)
101	dose <10 Gy	Circlig et m. (o)
Non-TBI	Mean kidney dose <18 Gy	Cassady (10)
Partial kidney irradiation		
Bilateral kidneys	Mean kidney	Nevinny-Stickel
	dose <18 Gy	et al. (34)
Bilateral kidneys	$V_{28Gy} < 20\%$	Nevinny-Stickel et al. (34)
Bilateral kidneys	$V_{23Gy} < 30\%$	Nevinny-Stickel et al. (34)
Bilateral kidneys	$V_{20Gy} < 32\%$	Jansen et al. (15)
Bilateral kidneys	$V_{12Gy} < 55\%$	Welz et al. (13)*
If mean kidney dose to	V _{6Gy} (remaining	
1 kidney >18 Gy	kidney) <30%	

Salivary Gland

- Poor orodental hygine / oral infections / sleep disorders / oral pain / difficulty in chewing & swallowing
- Stimulated salivary production 60 to 70% by parotid
- Resting (unstimulated) primarily from submandibular/sublingual gland

- Measurements objective criteria, measured salivary production – rest / simulation, Imaging – scintigraphy of parotid ejection #, dynamic MRI sialography of ductal flow.
- ↓ in salivary function within 1 week if starting RT & persists
- Recovery ≈ 2 yrs after RT

- Mean parotid gland dose correlated with whole mouth / individual salivary gland production.
- Minimal finction \downarrow <10-15Gy mean dose
- Gradually ↓ between 20 40 Gy; >75% reduction (Gr 4) at doses above 40Gy.
- Risk ↓ if at least one parotid / even one SMG spared

Mean percentage of reduction in stimulated salivary flow rate vs. mean parotid gland dose for different follow-up durations

Mean Parotid Gland Dose (Gy)

- Submandibular sparing ↓ both stimulated & unstimulated xerostomia
- Amifostine reduces xerostomia rates
- Sparing one parotid / submandibular gland eliminates xerostomia
- At least one parotid < 20 Gy or if both mean dose < 25gy
- Lower the mean dose better the function
- Submandibular sparing to <35Gy when possible
 ↓ xerostomia

Esophagus

- CCRT / hypofractionation 15-25% Gr 3 esophagitis (acute - < 90 days)
- TOF occurs in 0.4 to 1%
- Acute esophagitis occurs between 4 8 wks
- Late stricture ~ 3 8 months
- Differentiating esophagistis from candidiasis important
- Reflux may worsen RT induced esophagitis

- Contoured from cricoid GE junction
- Esophagus can move 5-9mm in AP / CC directions
- Mean dose 34 Gy recommended as per RTOG 0617 – NSCLC study
- Esophagistis increases with CCRT (49% with Gemcitabine)
- Older patients have more esophagitis than young

Incidence of acute esophagitis according to Vx

Hypofractionation – risk of esophagitis to be kept in mind

- RTOG 0167 recommends mean dose to esophagus < 34 Gy & V60 to be calculated for each patient
- Doses of 74 Gy to a segment of esophagus with CT appears safe

Stomach & small bowel

- Nausea & Vomiting can occur within hrs
- Stomach Days to weeks dyspepsia > ulceration -> life threatening
- Small bowel cramping / diarrhea / interference in nutrient absorption – starts 1 to 2 weeks after RT
- Weight loss secondary
- Intestinal obstruction weeks to months
- Bowel adhesions requiring surgery

- Late toxicity
 - Stomach- dyspepsia , ulceration
 - Small bowel persistent diarrhea, ulceration, fistula, perforation & bleeding (majority within 3 yrs, but risk period is indefinite)

Defining volume - Stomach

- Oral contrast useful in defining
- Position varies based on content
- Avoid large meal / carbonated drinks before sim / treatment

Defining volume – Small bowel

- Sometimes difficult to differentiate small bowel from nodes / large bowel
- Contrast helps but affects dose calculation
- Calculate without heterogeneity correction if contrast is used
- Prone position significantly ↓ volume of small bowel receiving 80 to 100% prescribed dose

Radiation induced gastritis+telangectasia

Early effects

- Early effect Nausea 4% if dose ≤ 40Gy
 36% if dose ≤ 60Gy
- 5FU increases nausea
- 8Gy single # in hemi body RT 66% moderate – severe nausea – relieved (6%) by Ondensetrone 2 hrs prior RT & 8mg bd

Late radiation effects - Stomach

- Higher fraction size more complications
- Chemo (Gemcitabine / 5 FU) increases chances of ulceration
- 50Gy 2% to 6% risk of clinical severe late injury
- Effect of volume not well characterized for stomach

Late radiation effects – small bowel

- Diarrhea/ obstruction / constriction / fistula / perforation / ulcer
- CCRT \uparrow risk
- RT alone 5% Gr III GI toxicity ; CTRT 14 %(Cisp 40mg/m2)
- 5FU regimens more toxic with RT
- Extended field RT more toxicity compared to pelvic only
- Post OP adhesions small bowel toxicity is more
- Preoperative CTRT in rectal cancer –less small bowel toxicity (9%) compared to post operative CTRT (15%) – German rectal cancer study
- 50 gy obstruction / perforation 2 to 9%
- 25Gy/5# similar risk

- Peritoneal cavity is surrogate to small bowel
- 45-50Gy should be < 195cc
- Special situation
 - SRT <4% stomach can receive >22.5Gy
 - -<5% intestine receive >22.5Gy
 - -<50% > 12.5 Gy & 50% isodose line not reaching opposite luminal wall
- Single # Brachy in liver D1ml 11gy

Recommended dose/volume limits

- 45 gy to whole stomach ulceration 5 to 7 %
- SBRT volume receiving >22.5 should be <4%/ 5cc & Maximum point dose < 30Gy/3#, Avoid circumferential margin
- If bowel loops are contoured absolute volume receiving ≥15 Gy should be <120Gy
- Entire peritoneal cavity V45 < 195cc

Rectum – volume delineation

- Superior rectosigmoid flexure
- Inferior Anal canal
- Contoured as a solid though it is hollow
- Uncertainties of rectal filling variations are not considered in dose tolerance analysis

Factors affecting risk

- Diabetes / hemorrhoids / Inflammatory bowel disease / advanced age / ADT / rectum size/ prior abdominal surgery & severe acute rectal toxicity
- \downarrow acute toxicity \downarrow late toxicity
- Image guidance \downarrow risk of toxicity

Recommended dose/volume limits

- In prostate cancer empty rectum at simulation advised – to avoid systematic error
- Image guided RT avoids day today variations
- V50 < 50%
- V60 < 35%
- V65 <25%
- V70 < 20%
- V75 <15%

Skin & Soft tissue

- Acute Erythema (2nd -3rd wk), hypersenstivity, edema, alopecia (3rd wk onwards; regeneration – 9wks), hyperpigmentation, desquamation
- Late telangectasia (5 yrs), dermal fibrosis (3 yrs), sebaceous gland atrophy, loss of hair follicle, altered melanin deposition, skin ulceration
- 个 dose /#; 个 volume -> 个 late toxicity risk
- Hair follicle D50 of 43 gy permanent alopecia

- Mtx, Act-D, Doxo 个 skin toxicity
- Radiologic finding subcutaneous ↑ density
- Lab −↑ Plasma TGF-ß may indicate RT fibrosis
- DD Breast recurrence; systemic sclerosis, SLE, Lupus, Lichen sclerosus, stasis dermatitis
- Patho:
 - Acute-↓ basal epithilial cells, ↑mitotic index, inflammation, vascular dilatation
 - Microvascular destruction, epidermal atrophy, dense dermal fibrosis, loss of pilosabeceous units, atrophic sweat glands, arterial & venous lesions

- Management:
 - Acute –Symptomatic & care self limiting
 - Prevent infection
 - Vit E & Pentoxiphylline ? Useful in RT fibrosis
 - Hyperbaric oxygen for ulcer healing
 - Skin graft in non healing ulcers
- Pathophisiology
 - Injury to basal epithelial cells erythema
 - $-\downarrow$ in endothelial cell & vascular lumen moist desq / necrosis
 - Telangectasis destroyed capillary fusion below atrophied epidermis
 - Basal cell loss 20 to 25 gy (2Gy/#);
- Mitoxantrone, Act-D, Pacli 个 skin toxicity

- \geq 20 gy epilation
- >45Gy dry desquamation & hyperpigmentation
- Moist desquamation can occur in doses >45 Gy
- Moist desquamation prevents healing if RT continued
- 6 Months- 10 yrs telangiectasia, fibrosis
- Second malignancy of skin

Thank You

Neuroendocrine

- GH more sensitive to RT than ACTH
- GH ↓- ↓growth velocity / inadequate pubertal spurt; In adults asymptomatic/ ↓ muscle mass
- ACTH ↓ muscle weaknessskin hyperpigmentation, hypotension, dehydration, anorexia.
- TRH ↓ hypothyroidism weight gain, cold intolerance, dry skin, brittle hair, menstrual irreg, hypotension, bradycardia, poor linear growth

- GNRH ↓ ↓ sex hormone production delayed puberty; precocious puberty can also occur – cause unclear – probably hypothalamic deregulation affects girls more than boys
- Hyperprolatinemia, infertility, ↓ libido, menstrual irregularities, galactorrhea, hot flushes & osteopenia
- **Time course** highly variable, depends on dose, age during RT, patient age at assessment

- GH deficiency & precocious puberty > 18 to 20 GY to HP axis (ALL – prophylactic CRT)
- TRH, ACTH deficiency and hyperprolactenemia > 40 to 50Gy (nasopharynx & paranasal tumors)
- Busulphan & cyclophosphamide 个 risk
- Diagnosis lab investigations, growth X-ray of joints to assess normal age
- DD: idiopathic / congenital hormonal deficiency

- Management :
 - GH replacement in prepubescent children
 - GnRH agonist block puberty
 - ACTH deficiency hydrocortisone
 - TRH deficiency thyroxin
 - Dopamine agonist (bromocriptine) to treat hyperprolactinemia
 - Sex hormone replacement
- Children biannual F/U

Thyroid

- Hyperthyroidism / hypothyroidism can develop
- Hyperthyroidism heat intolerance, weight loss, insomnia, ↑ appetite, diarrhea, moist skin, tachycardia, nervousness, tremors, exophthalmous, goiter, thyroid enlargement
- Time course 3 to 5 years hypo/hyper; nodules ≥ 10 yrs
- Dose > 20Gy to neck/ cervical spine or >7.5Gy TBI

- Chemo does not \uparrow risk of hypothyroidism
- Assessment USG / I125 scan– thyroid nodules
- Free T4 & TSH to monitor thyroid function
- DD: Graves/ Hashimoto's/ Idiopathic
- Patho FNAC of thyroid nodule/ biopsy if ca suspected
- Management Thyroid shielding if possible;
- Hypo thyroxin replacement,
- Hyper propylthiouracil, propranalol, I-131, thyroidectomy
- NCI recommends assessment upto 10 yrs post RT

Reproductive endocrine

- Ovary RT infertility/ oligomenorrhea/amenorrhea, hot flushes, atrophic vulvitis & vaginitis, changes in fat distribution, breast changes, bone demineralization & ↓ libido
- Testis germ cell oligospermia, azospermia, testicular atrophy
- Testis leydig cells ↓ testosterone ↓ libido, impaired sexual performance
- Delayed puberty in male & female children

- Oligospermia- in months, recover after low doses
- Amenorrhea can also recover after low doses

 months /years later
- Ovary / testis threshold for temporary 1 Gy; permanent > 3 to 4 Gy
- Alkylating agents impair testis & ovarian functions along with RT (HD data)

- Bone densitometry/ FSH/LH/testosterone/ estradiol estimation are useful investigations
- Semen analysis oligospermia
- DD: Cranial RT patients can also have the above problems. To rule out other causes of infertility
- Management:
 - Testicular shield/ovarian transposition & shield
 (10hvl), sperm banking & oocyte harvest
 - Hormonal replacement

- Follow up testicular size assessment in males
- Girls FSH, LH & estradiol estimation at 12 years age.
- Boys LH & testosterone level at 13 yrs age
- Consult endocrinologist for delayed puberty & endocrine fertility specialist for infertility

Male gonadal function

- Spermatogenisis highly sensitive to cyclophosphamide, procarbazine, and nitrogen mustard - used in HD
- Even without RT 86% azoospermia with chemo
- <4G cyclophasphamide without RT retain fertility; cumulative >9g/m2 – unlikely fertility preserved
- RT male germinal epithelium > 1 Gy & Leidig cells 20 to 30Gy; <30Gy puberty in males unaffected
- Permanent azoospermia > 3 to 4 Gy

Female gonadal function

- menstrual irregularity, ovarian failure, and infertility - 个 with cyclophosphamide & age
- Amenorrhea & premature ovarian failure in adult women than adolescents

Bone

- Scoliosis/ kyphosis/lordosis/limb assymetry
- Time Occurs progressively till normal bone growth has ceased
- Avoid growth plate \downarrow late growth defects
- Partial irradiation of growth plate more severe growth abnorms
- Management mild scoliosis physio; moderate – brace; severe – surgery
- Epiphyseal spillage surgical pinning / osteotomy / osteoplasty

- Prevent scoliosis- by including entire vertebra instead of half
- Avascular necrosis of femoral head 2 to 3 years after 30 to 60 Gy; corticosteroids ↑ risk

Bone marrow

- Toxicity depends on volume, marrow reserve, chemo history; exception – BMT patients receiving conditioning regimen
- ANC <500 \uparrow risk of infection
- Platelet <20000 \uparrow risk of bleeding
- Anemia- hypoxiemia, fatigue
- Single fraction as I TBI latent period 1 to 2 weeks
- Fractioation weeks to months

- Permanent suppression of limited marrow 30 to 40Gy
- Chemo has additive effect
- Diagnosis bone marrow ^{99m}Tc-sulfur colloid imaging. MRI is alternative inv.
- Lab Bone marrow evaluation & PS
- DD: Metastatic marrow infiltration
- Management : Growth factors/ BMT
- <10 to 15% marrow RT Permanent ablation in fractionated dose after 30Gy and 20Gy single #
- Remaining marrow compensates but irradiated marrow doesn't recover
- If large area of marrow irradiated in field regeneration after2 to 5 years

TBI

- With conditioning chemotherapy for BMT
- Space travel accidental exposure
- Potential terrorist threat / accidents
- 1.5 to 7.5 Gy whole body exposure:
 - Rapid depletion of stem cells within 1 week
 - Without hemopoietic stem cell rescue death due to granulocytopenia & thrombocytopeniainfection, hemorrhage
 - With stem cell rescue 7.5 to 10.5 Gy well tolerated

- Fractionated RT for leukemia, myeloma & lymphoma
- Neutropenia in first week , 2 -3 weeks later thrombocytopenia, 2 to 3 months anemia.

Hematologic response after 4.5Gy single

Second malignant neoplasm

- Hodgkin's Survivors 个 risk
- Leukemia risk related to alkylating agents & topoisomerase II inhibitors – risk plateau by 10 to 15 years
- RT induced secnd malignancy risk increases with time sarcoma, melanoma, nreast, lung, thyroid & GI tract
- BMT patients at risk for myelodisplasia, leukemia, lymphoma, liver, oral cavity, brain, bone, connective tissue, genitourinary & skin
- RT responsible for solid malignancy (breast cancer)