

Radiobiology in Brachytherapy

> Prof Ramesh S Bilimagga Medical Director, HCG Bangalore

Overview

- Need
- History
- Key factors & their effects
- RB models
- Combination & utilities
- Future
- Conclusion

- For changing the fractionation schedules
- Change of dose rate systems (LDR/HDR)
- Gap correction
- Combining EBRT with Brachytherapy
- Choosing the right isotope
- Comparison of data between centres

Experimental- Ram testis

- Stranquist Curves 1944
- NSD –Ellis 1969

10.000

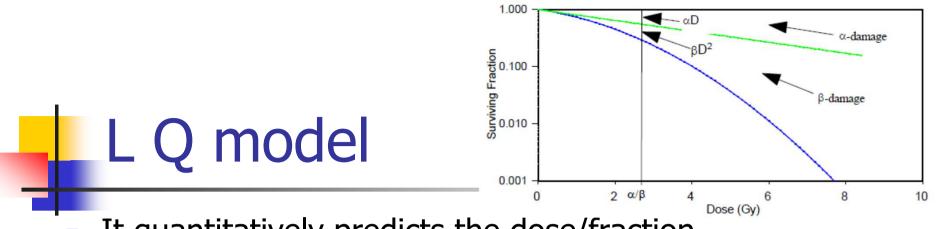
² 5,000 ≥

1.000

30 40 60

TIME IN DAYS

ш


- Elkind kind of repair
 - Inter Fr time, Dose/Fr, Dose Rate
- Cummulative Response Dose(CRE)
 - Kirk et al
- Tumor Significant Dose (TSD)

- It does not take all complex biological process
- Doubts on validity of NSD relation with tissue type
- Doubts on validity of NSD relation with different effect in same tissue type
- Range of number of fractions. The formula is provided
- Concern on the time factor taken.

Biological Models

- Linear Quadratic Model
 - Lea & Catcheside
 - Various modifications
- BED : Biological Equivalent dose
- EUD : Equivalent Uniform Dose

- It quantitatively predicts the dose/fraction dependence. The principal determinents are a & β
- a Linear portion in Cell Survival Curve.
 - Occurs along a single ionizing tract
 - Tumor cells (rapid proliferation rates & short duration for repair)
- β Quadratic portion in Cell Survival Curve
 - Occurs along a two different ionising tracts
 - Normal cells (co ordinated repair & hence requiring double hit)
- a/β ratio
 - Dose where there is proportionate of cell death due to linear & quadratic portions

Interpretation of α/β

- High α/β ratio
 For a particular dose of radiation either the
- a DNA injury is higher

or

 β DNA injury is lower

- Low α/β ratio
- For a particular dose of radiation either the
- a DNA injury is lower

or

β DNA injury is
 Higher

Pros & Cons

Low α/β means ↓ in dose/fraction less injury to normal tissue High α/β means ↑ in dose/fraction More injury to normal tissue

Limitations

Fractionated Rx delivered @ regular interval period (once in 24hrs) & 5Fr/Wk.

Gap in Rx in pt NOT considered

Biological Effective Dose (BED)

- Concept used to compare the effectiveness of cell killing by different fractionation regimen by using LQ Model
- Use
 - Intercomparison of various RT schedules
 - Intercomparison of different types of radiotherapy
- Formula
 - = Total Physical dose [D] x Relative effectiveness [RE]

Factors considered in BED

- Physical
 - Dose
 - Dose/fr
 - Inter fraction interval .
- Radiobiology
 - a/β
 - Repair rate
 - T pot
 - Repopulation & Redistribution .
 - Overall treatment time

BED contd . . .

- BED differs for different normal tissue & also for different tumor biology
- BED is represented as numerical value of dose with suffix indicating the α/β value.
- Eg: 100 BED₃,65 BED₁₀
- Relative Effective factor
 - = Phy Factor + RB Factor

Repopulation

- RE for repopulation when taken into consideration uses subtractive repopulation correction factor w.r.t repopulation rate and Rx time.
- BED = D X RE RCF (repopulation correction factor)
- RCF = K (T-T_{delay})

 T_{delay} is delay time after beginning of treatment before the repopulation rate becomes significant.

Eg: 28 days for HNSCC

Equivalence

- Each treatment specific type of biologic effect in N & T tissue
- 2 treatment if they produce the same effect then it is called Equivalent.
- Equivalence does not mean that both treatments produce the same amount of biological damage in all the irradiated structures; rather it means that both produce the same differential pattern of damage.
- In BT the source geometry is important;
 - Small difference between the 2 treatments
 - Results in change to the physical dose distribution
 - Which itself will render equivalence impossible.

Equivalent Uniform dose

- Formula suggested by Niemerko
- Modified for IMRT
- Available in many TPS
- Different weightage
 - Target
 - Normal structure (Parallel or serial)

Combination & Utilities

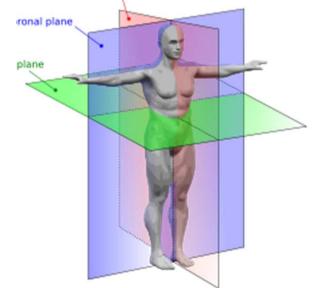
- EBRT vs Brachytherapy
- LDR vs HDR
- Volume & anatomical site
- Tumor shrinkage
- Reirradiation
- EBRT+ BT combination

Differences

- EBRT
- Large Volume
- Homogeneous
- -5% to +7% acceptable
- Small dose, protracted time (weeks)
- Full repair

Brachytherapy

- Isodose encircling a small target volume
- Very heterogenous
- High dose, short treatment (hours to days)
- Short interval (HDR), Continuosly (LDR)



LDR vs HDR

- Several Trials comparing LDR Vs HDR
 - Historical data
- Most cases similar results
- HDR beneficial with equivalent normal tissue tolerance & the tumoricidal doses
- Severe Complications
 - 3.44% (>7 Gy)& 1.28% (<7 Gy)

Volume, Anatomical site

- The Dose reqd increases with size of tumor
- As Dose increases tolerance of late responding normal tissues decreases.

Tumor shrinkage

- Combining HDR with EBRT
 - Eg: Ca Cervix

SRHINKAGE SHRINKAGE SHRINKAGE SHRINKAGE SHRINKAGE SHRINKAGE SHRINKAGE SHRINKAGE SHRINKAGE SHRINKAGE

 Important in permanent implants. Outcome depends on shrinkage which is difficult to predict.

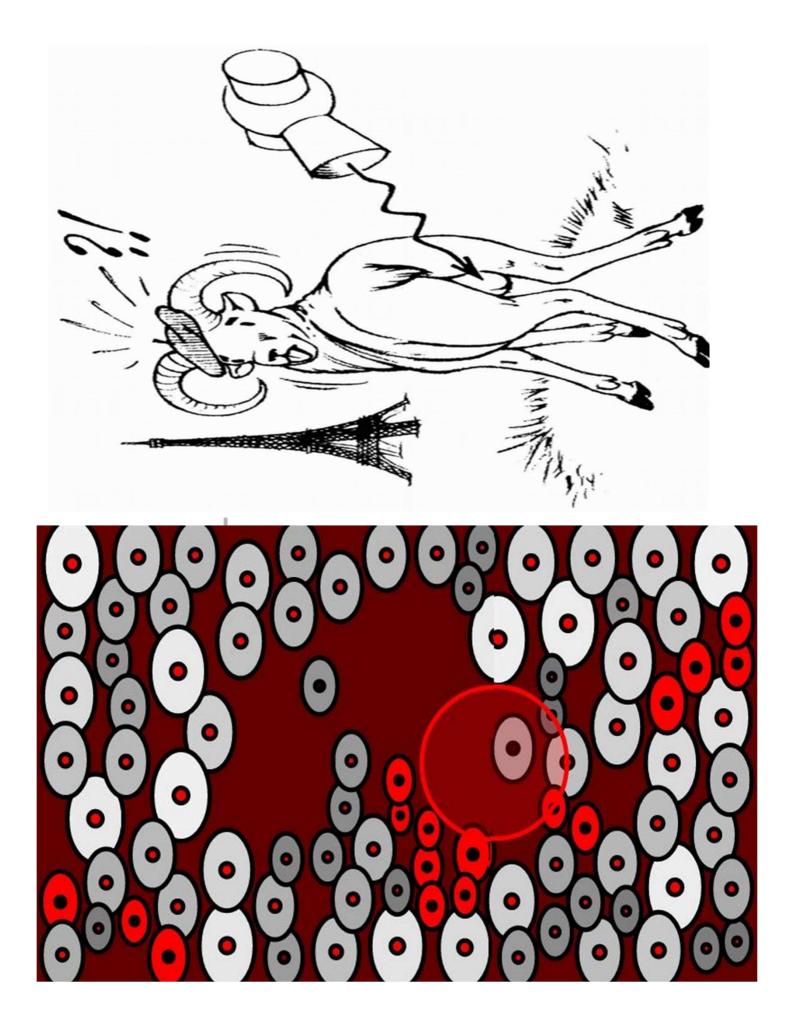
Reirradiation

- High doses can be delivered to previously irradiated area
- Can be tolerated if delivered to a limited volume. recovery seems to be less in some like CNS
- No clarity regarding minimal interval between two irradiations.

Combined with EBRT

- Because BEDs are additive the determination of biological effects associated with combined modality treatments is straightforward.
- Total BED
 - $= BED_{(EBRT)} + BED_{(Brachy)} RCF$
 - RCF (repopulation correction factor) is reqd only for tumor calculations and should be calculated using the overall treatment time of the combined treatments.
- In Brachytherapy calculation allowance for dose gradient effect. Should also be considered.

Future


- Genetherapy
 - Arrest Acclerated repopulation
- Commercially TPS incorporating biological models
 - Bioplan
 - Orbit
 - LQ Survivor

Conclusion

- Quantification of CLDR & FHDR
- Quantification of dose rate effect
- Quantification Permanent implants
- Quantification of PDR Brachytherapy
- Treatment intercomparison
- Designing new Fr & Rx schedules
- Calculating dose equivalence used with different isodose

