IMAGING AND THERAPEUTIC RATIO

S HUKKU MD Chairman, Roentgen-BLK Radiation Oncology Centre BL Kapur Memorial Hospital, Delhi

Effect of Underdosage and Overdosage

Evolution of Radiation Technology with Imaging

2D – 3D- Molecular Imaging

- Clinical Planning with anatomical landmarks
- Orthogonal X-rays 2D
- CT based planning 3D
- MRI: adds better soft tissue delineation
- Molecular Imaging

2D Image Based

- Wider margins based on bony landmarks
- Difficulty in OAR delineation
- More normal tissue irradiated
- Increased toxicity
- Reduced therapeutic ratio at tumouricidal doses

Theoretical Basis

3D Image Based

- Implications of ICRU 50/62: GTV,CTV
- 3D tumor volumes/OAR delineation
- Accurate normal tissue delineation
- Shields, custom blocks, MLC to protect normal tissues
- Reduced dose to normal tissues
- Improved Therapeutic Ratio

Volume Based Planning

CT

• 3D Volumes for tumor and OAR

• Electron Density data for planning

CT

CT versus MRI

MRI

- Better visualization of soft tissues due to better soft tissue contrast
- Allows improved delineation of RT treatment volumes
- MR images can be acquired in any spatial plane and as high resolution volumetric data sets
- Extremely useful in pelvic/brain tumors
- Fusion possible with CT for planning

MRS

- NAA Neuronal marker
- Creatine metabolic activity
- Choline cellular proliferation
- Lactate anaerobic glycolysis
- Choline peak,
- Reduced NAA, creatinine
- Lactate increased in necrosis

MRI & MRS

Dynamic MR Perfusion

- Cerebral blood volume (CBV)
- Increased both high and low grade tumors
- Reduced radiation necrosis
- Highest vascularity site of biopsy

PET

- Metabolically active areas
- Biological target volumes
- Dose escalation to improve TR

Prostate

- Escalation of radiation dose is one of the major strategies currently being explored in an attempt to improve rates of local control and overall survival in prostate cancer.
- As the dose to the prostate is increased, the risk of side effects, particularly to the rectum and bladder/urethra, increases

Prostate Limitations of CT

- Limitations of visualization of soft tissue boundaries between prostate gland and other pelvic organs (similar x-ray attenuations)
- Most difficulty in visualizing the apex (data suggests that cancer is present in the apex in up to 75% patients)
- Transaxial plane of imaging can result in partial volume averaging effects

MRI

 T2 weighted images provide the best internal architecture of prostate and seminal vesicle involvement

T2 Weighted MRI Image

Prostate Apex

Dominant Intraprostatic Lesion

- Magnetic resonance (MR) imaging can facilitate prostate delineation and tumor (DIL) localization.
- In 67% of tumors, the location of the tumor can be correctly depicted at high-spatial-resolution T2-weighted MR imaging by using a 1.5-T endorectal coil
- The addition of findings from proton MR spectroscopic imaging results in a 90% sextant positive predictive value
- Findings from multisection fast dynamic contrast material—enhanced MR imaging can also provide additional information
- The combination of data from T2-weighted MR imaging, dynamic contrastenhanced MR imaging, and MR spectroscopic imaging has been previously shown to provide up to 93% localization accuracy
- Thus, tumor localization with MR imaging appears to be at a level that is suitable for use with IMRT planning.

Images show integration of T2-weighted MR, dynamic contrast-enhanced MR, and 3D spectroscopic image information into a single tumor map

Registered tumor map overlaid in red on top of transverse treatmentplanning CT image

Radiation therapy treatment plan.

Role of Imaging in Cancer cervix

• CT

Treatment Planning LN assessment

• MRI

Extracervical Spread

Design of lateral portals

• PET

LN involvement

Cervix Infiltrating Myometrium/Endometrium

Lymph node evaluation

Cervix Parametrial Pelvic wall Invasion

Cervix Bladder Invasion Rectal Invasion

Brain Tumors

- Advantage of MRI for standard tumour delineation is obvious
- Use T₂ weighted images

Conventional vs IMRT

Functional MRI

Functional MRI

- Dose to functional OAR is reduced when it is defined as a constrained organ in the optimisation
 - 21% of the motor cortex 45 Gy when planned conventionally
 - 9% when IMRT is used (without specific OARs)
 - 2% when IMRT is used and fMRI data is included as OAR.

Journal of Radiotherapy in Practice 3(2): 66-72 2003

CT/MRI in Head & Neck Cancer

Variations In Target Coverage with CT/MRI

Where Do we Stand?.....Where Do we Go?

Emami et al IJROBP,2003

Variations In Target Coverage with CT/ MRI fusion In Nasopharyngeal Primary

MRI & CT are complementary

Emami et al IJROBP,2003

PET CT Fusion And Effect On PTV

Reduction In size of PTV at Primary

Primary

GTV CT/GTV PET = 3

Node

Node PET/Node CT= 0.7

Heron et al IJROBP,2004

PET

- Before PET , CT scanning represented the most accurate imaging modality for planning RT in lung cancer. It was a major advance over the use of plain X-rays
- Limitations of CT

Use of the conventional CT criterion of short axis transverse diameter greater than 1cm to determine if there is tumor in a mediastinal lymph node is notoriously inaccurate.

CT cannot detect tumor in normal-sized lymph nodes.

CT cannot usually delineate the boundary between atelectasis and tumor clearly.

Value of PET CT in defining gross tumor volume (GTV) in atelectasis.

Tumor is readily apparent on PET/CT image enabling reduction in treatment volume.

Advantage of PET

- PET has contributed in reducing the GTV by 25% in NSCLC
- Reduced normal tissue inclusion
- Improved TR

IJROBP NOV 2005

Conclusion

- Conformal Radiation has evolved parallely with evolution in imaging from 2D to 3D
- It is possible to use imaging for accurately delineating the target and OAR's
- Combination of imaging modalities has helped to reduce irradiated volume
- This has resulted in improving TR
- Future rests with functional and molecular imaging to further improve the therapeutic ratio

