SETTING UP RADIOSURGERY PROGRAM IN THE CLINIC

Dr Raghavendra Holla Ruby Hall Clinic, Pune

Radiation Errors Reported in Missouri

By WALT BOGDANICH and REBECCA R. RUIZ FEB. 24, 2010

A hospital in Missouri said Wednesday that it had overradiated 76 patients, the vast majority with brain <u>cancer</u>, during a five-year period because powerful new radiation equipment had been set up incorrectly even with a representative of the manufacturer watching as it was done.

The hospital, CoxHealth in Springfield, <u>said</u> half of all patients undergoing a particular type of treatment — stereotactic <u>radiation therapy</u> — were overdosed by about 50 percent after an unidentified medical physicist at the

hospital miscalibrated the new equipment and routine checks over the next five years failed to catch the error.

The revelation comes at a time of growing concern about safety procedures for a new generation of powerful, computer-controlled medical radiation equipment.

Stereotactic therapy delivers radiation in such high doses that usually only one treatment is required. It is commonly used to treat small <u>tumors</u> in the

No communication

article. Wet www.rytreprints.com for samplest and additional information. Only a report of this article now

en and ha been word for his deservation

Demonitor 28, 2018

A Pinpoint Beam Strays Invisibly, Harming Instead of Healing

"There were strong similarities between what happened in Missouri and what happened in Toulouse," said Dr. Ola Holmberg, who heads the radiation protection unit for patients at the International Atomic Energy Agency.

But without a requirement that accidents and near-misses be reported, other hospitals cannot learn from these mistakes, Dr. Holmberg said.

"There is no effective way now of sharing the information or learning in a systematic way," Dr. Holmberg said. "If something happens, such as Evanston, I would have wanted to know about it

The New York Times

The Radiation Boom Radiation Offers New Cures, and Ways to Do Harm

Fatal Radiation

Software problems and poor quality control at St. Vincent's Hospital cause a fatal overdose. Related Article >

1 2 3 4 6 6 7 8 NEXT#

March 16, 2005

Mr. Jerome-Parks's medical physicist ran a series of tests on the equipment. All of them showed that the collimator was wide open, and the hospital realized that a serious overdose of radiation had been administered.

February 2007

After two years of declining health, including loss of sight, hearing and balance, Mr. Jerome-Parks, 43, died of his radiation injuries.

Scott Jerome-Parks

What happened?

Che New Hork Eimes

Figure 3

Figure 4

Figure 6

Figure 7

Figure 8

Figure 9

Figure 8

Challenges in Radiation Oncology

What are the sources of errors?

Figure 4: Radiotherapy incidents (1976-2007) by the stages of treatment process

- Two Major Categories in SRS/SBRT Accidents
- Commissioning
 - Small field measurements
 - Absolute calibration
- Treatment parameter transfer
 - SRS Cones
 - Wrong side/site treatments

General Processes for SRS/SBRT

Patient process

- Consultation
- Immobilization/imaging
- Planning/prescription
- Patient specific QA
- Localization
- Delivery
- Motion management
- Real-time verification
 - Treatment assessment

Physics process

- Beam data
- QA: Safety
- QA Isocenter accuracy QA
- Like W-L testing
- Dose calculation Accuracy
- device QA Linac
- Beam calibration

Non invasive frames

- Non-invasive, relocatable device
- Thermoplastic material
- May not good for claustrophobic patients
- Potential for mask shrinkage

Body Localiser

Frameless intracranial positioning

Challenges in simulation

- The most appropriate imaging modality for a given clinical situation is driven by the characteristics of the tissues being imaged.
- Slice Thickness <1 mm(TG -151)
- Scan Boundary : 5-10cm, 15cm for Cyberknife
- Data Acquisition for moving targets uncertainties involved in it

Imaging artifacts

- artifacts due to high atomic number Z objects such as metal implants, prosthetics, and dental fillings.
 - Solution MAR algorithm, Contouring the artifacts and assigning the density.
- Motion related artifacts
 - Solution Immobilization(Patient Cooperation??)

- Achievable accuracy Karger et al report CT accuracy of ~0.4 mm and MR accuracy of ~1.4 mm depending on MR device and imaging sequence
- Representative MR distortion tolerance is < 2mm across a 30 cm field of view (FOV)
- However, delineation accuracy depends on imaging parameters, so per TG-66 – Simulation procedures should standardize scan protocols, use of contrast etc by treatment site – QA process should check that correct parameters were used

- Jonker, Benjamin P. "Image Fusion Pitfalls for Cranial Radiosurgery." Surgical Neurology International 4(Suppl 3) (2013): S123–8.
- For rigid CT / MR registration, achievable accuracy based on phantom studies is ~2 mm.
- Accuracy will degrade if registering to a surrogate, as distance between target & surrogate increases.

Understand limitations of fusion methods applied to different treatment sites

- Do your own testing
 - Provide training
- Ensure treatment process provides adequate review

(See TG-132 Assessment Level for fusion quality)

TG-132 Fusion Assessment Level

Uncertainty Assessment	Phrase	Description
0	Whole scan aligned	 Anatomy within 1 mm everywhere Useful for structure definition everywhere Ok for stereotactic localization
1	Locally aligned	 Anatomy local to the area of interest is un-distorted and aligned within 1mm Useful for structure definition within the local region Ok for localization provided target is in locally aligned region
2	Useable with risk of deformation	 Aligned locally, with mild anatomical variation Acceptable registration required deformation which risks altering anatomy Registered image shouldn't be used solely for target definition as target may be deformed Increased reliance on additional information is highly recommended Registered image information should be used in complimentary manner and no image should be used by itself
3	Useable for diagnosis only	 Registration not good enough to rely on geometric integrity Possible use to identify general location of lesion (e.g. PET hot spot)
4	Alignment not acceptable	 Unable to align anatomy to acceptable levels Patient position variation too great between scans (e.g. surgical resection of the anatomy of interest or dramatic weight change between scans)

Rietzel et al

4D can reduce shape artifacts

helical light breathing scan

PHYSICS CONTRIBUTION

RETROSPECTIVE ANALYSIS OF ARTIFACTS IN FOUR-DIMENSIONAL CT IMAGES OF 50 ABDOMINAL AND THORACIC RADIOTHERAPY PATIENTS

TOKIHIRO YAMAMOTO, PH.D., ULRICH LANGNER, PH.D., BILLY W. LOO, JR., M.D., PH.D., JOHN SHEN, B.S., AND PAUL J. KEALL, PH.D.

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA

Purpose: To quantify the type, frequency, and magnitude of artifacts in four-dimensional (4D) CT images acquired using a multislice cine method.

Methods and Materials: Fifty consecutive patients who underwent 4D-CT scanning and radiotherapy for thoracic or abdominal cancers were included in this study. All the 4D-CT scans were performed on the GE multislice PET/ CT scanner with the Varian Real-time Position Management system in cine mode. The GE Advantage 4D software was used to create 4D-CT data sets. The artifacts were then visually and quantitatively analyzed. We performed statistical analyses to evaluate the relationships between patient- or breathing-pattern-related parameters and the occurrence as well as magnitude of artifacts.

Results: It was found that 45 of 50 patients (90%) had at least one artifact (other than blurring) with a mean magnitude of 11.6 mm (range, 4.4–56.0 mm) in the diaphragm or heart. We also observed at least one artifact in 6 of 20 lung or mediastinal tumors (30%). Statistical analysis revealed that there were significant differences between several breathing-pattern-related parameters, including abdominal displacement (p < 0.01), for the subgroups of patients with and without artifacts. The magnitude of an artifact was found to be significantly but weakly correlated with the abdominal displacement difference between two adjacent couch positions (R = 0.34, p < 0.01).

Conclusions: This study has identified that the frequency and magnitude of artifacts in 4D-CT is alarmingly high. Significant improvement is needed in 4D-CT imaging. © 2008 Elsevier Inc.

Fig. 2. Example four-dimensional CT images with schematic diagrams for the four types of artifacts: blurring, duplicate structure, overlapping structure, and incomplete structure. Corresponding artifacts are indicated by arrows in respective images. Note that other artifacts can also be observed in these images.

Ruby Hall Clinic

Fig. 3. A schematic diagram of the method to measure the artifact magnitude for the overlapping structure. The "true" edge was visually estimated by the observer. The distance in the superior-inferior direction between the edge of the artifact and the "true" edge of organ was then measured. Duplicate and incomplete structure artifacts were also measured by the same method.

- How prevalent are 4D artifacts?
- Examine retrospectively 50 patients with lung or abdominal tumors
- 90% of scans have at least one artifact!
- But this does not mean 90% of scans are not useful.

- Magnetic field inhomogeneities and non-linear magnetic field gradients cause distortion
 - Distortion often worst in coronal sections; measuring Leksell fiducials can determine distortion severity

- 1.8 ± 0.5 mm shift of MR images relative to
- CT and delivered dose. Shifts occur in the frequency encoding direction

 Y Watanabe, GM Perera, RB Mooij, "Image distortion in MRI-based polymer gel dosimetry of Gamma Knife stereotactic radiosurgery systems," Med. Phys. 29: 797-802, 2001

Carl Mideal Poundation Ruby Hall Clinic

Ruby Hall Clinic

LINAC REQUIREMENTS

History: Lars Leksell – 1968 - Gammaknife

Lars Leksell

History of Linear Accelerator Based Radiosurgery

- Early reports of linac-based radiosurgery with stereotactic frames in 1980's
- Winston and Lutz published their results from Joint Center for Radiation Therapy in Boston in 1986
- Early linac treatments required attachment of circular collimators to standard linacs
- Radionics, Leibinger and Fischer, Philips, others began commercial distribution of add-on accessories in 1990s

Current technology

- Gamma Knife® by Elekta
 - Uses 192 to 201 beams of highlyfocused gamma rays
 - All beams aim at target region
- Linear accelerator (LINAC) machines
 - accelerate photons
 - Brainlab
 - CyberKnife® by Accuray
 - Elekta
 - Varian
 - ZAP

Traditional Linac Stereotactic Radiosurgery Equipment

Collimator set Typically ~5-60 mm diameter

Varian Edge

Multileaf Collimator

High-definition 120 Multileaf Collimator

Center 2.5 mm width x 32 pairs

Peripheral 5 mm width x 28 pairs

Maximum static field size 40 cm x 22 cm

6D Couch with KV imaging

Versa HD with Agility/APEX MLC

2.5mm resolution12 cm x 14 cm Max Static field6D Couch with KV imagingAgility: 5mm up to 40 x 40 cmgiving Effective 1mmusing jaw modulation

ein et al.: Task Group 142 Report: QA of Medical Accelerators

TABLE I. Daily.

		Machine-type tolerance	6
Procedure	Non-IMRT	IMRT	SRS/SBRT
Dosimetry			
X-ray output constancy (all energies)			
Electron output constancy (weekly,		3%	
except for machines with unique			
e-monitoring requiring daily)			
Mechanical			
Laser localization	2 mm	1.5 mm	1 mm
Distance indicator (ODI) @ iso	2 mm	2 mm	2 mm
Collimator size indicator	2 mm	2 mm	1 mm
Safety			
Door interlock (beam off)		Functional	
Door closing safety		Functional	
Audiovisual monitor(s)		Functional	
Stereotactic interlocks (lockout)	NA	NA	Functional
Radiation area monitor (if used)		Functional	
Beam on indicator		Functional	

TABLE II. Monthly.

	Machine-type tolerance				
Procedure	Non-IMRT	IMRT	SRS/SBRT		
Dosimetry					
X-ray output constancy					
Electron output constancy		2%			
Backup monitor chamber constancy					
Typical dose rate ^a output constancy	NA	2% (@ IMRT dose rate)	2% (@ stereo dose rate, MU		
Photon beam profile constancy		1%			
Electron beam profile constancy		1%			
Electron beam energy constancy		2%/2 mm			
Mechanical					
Light/radiation field coincidence ^b		2 mm or 1% on a side			
ight/radiation field coincidence ^b (asymmetric)		1 mm or 1% on a side			
Distance check device for lasers compared with front pointer		Imm			
Gantry/collimator angle indicators (@ cardinal angles) (digital only)		1.0°			
Accessory trays (i.e., port film graticle tray)		2 mm			
aw position indicators (symmetric) ^e		2 mm			
aw position indicators (asymmetric) ^d		1 mm			
hoss-tair centering (walkout)		1 0000			
freatment couch position indicators ^e	2 mm/1*	2 mm/1°	1 mm/0.59		
Vedge placement accuracy		2 mm			
Compensator placement accuracy		1 mm			
.atching of wedges, blocking tray ^g		Functional			
ocalizing lasers	±2 mm	±1 mm	<±1 mm		
Safety					
Laser guard-interlock test		Functional			
Respiratory gating					
Beam output constancy		2%			
hase, amplitude beam control		Functional			
n-room respiratory monitoring system		Functional			
Jating interlock		Functional			

^bLight/radiation field coincidence need only be checked monthly if light field is used for clinical setups.

^cTolerance is summation of total for each width or length. ^dAsymmetric jaws should be checked at settings of 0.0 and 10.0.

"Lateral, longitudinal, and rotational. ŧ.....

Ruby Hall

TABLE III. Annual.

		Machine-type tolerance	
Procedure	Non-IMRT	IMRT	SRS/SBRT
Dosimetry			
X-ray flatness change from baseline		1%	
X-ray symmetry change from baseline		±1%	
Electron flatness change from baseline		1%	
Electron symmetry change from baseline		+14.	
SRS arc rotation mode (range: 0.5-10 MU/deg)	NA	NA	Monitor units set vs delivered: 1.0 MU or 2% (whichever is greater) Gantry arc set vs delivered: 1.0° or 2% (whichever is greater)
A PLATFORM CONTRACTOR AND THE PLATE	<u></u>	· Fit (absolute)	
Spot check of field size dependent output factors for x ray (two or more FSs)		2% for field size <4×4 cm ² , 1% \ge 4×4 cm ²	
Output factors for electron applicators (spot check of one applicator/energy)		±2% from baseline	
X-ray beam quality (PDD ₁₀ or TMR ²⁰)		±1% from baseline	
Electron beam quality (R ₅₀)		±1 mm	
Physical wedge transmission		±2%	
factor constancy			
X-ray monitor unit linearity (output constancy)	±2% ≥5 MU	±5% (2-4 MU), ±2% ≥5 MU	±5% (2-4 MU), ±2% ≥5 MU
Electron monitor unit linearity (output constancy)		12% ±3 MU	
X-ray output constancy vs dose rate		±2% from baseline	
X-ray output constancy vs gantry angle		±1% from baseline	
Electron output constancy vs gantry angle		±1% from baseline	
Electron and x-ray off-axis factor constancy vs gantry angle		±1% from baseline	
Arc mode (expected MU, degrees)		±1% from baseline	
TBI/TSET mode		Functional	
PDD or TMR and OAF constancy		1% (TBI) or 1 mm PDD shift (TSET) from baseline	
TBI/TSET output calibration		2% from baseline	
TBI/TSET accessories		2% from baseline	
Mechanical			

Collimator rotation isocenter Gent Medice Foundation Ruby Hall Clinic

F

+1 mm from baseline

Mechanical

Collimator rotation isocenter		±1 mm from baseline	
Gantry rotation isocenter		±1 mm from baseline	
Couch rotation isocenter		±1 mm from baseline	
Electron applicator interlocks		Functional	
Coincidence of radiation and mechanical isocenter	±2 mm from baseline	±2 mm from baseline	±1 mm from baselin
Table top sag		2 mm from baseline	
Table angle		1*	
Table travel maximum range movement in all directions		±2 mm	
Stereotactic accessories, lockouts, etc.	NA	NA	Functional

	Application-typ	be tolerance
Procedure	non-SRS/SBRT	SRS/SBR1
	Daily ^a	
Planar kV and MV (EPID) imaging		
Collision interlocks	Functional	Functional
Positioning/repositioning	≤2 mm	≤1 mm
Imaging and treatment coordinate coincidence (single gantry angle)	≤2 mm	≤1 mm
Cone-beam CT (kV and MV)		
Collision interlocks	Functional	Functional
Imaging and treatment coordinate coincidence	≤2 mm	≤1 mm
Positioning/repositioning	≤1 mm	≤1 mm
	Monthly	
Planar MV imaging (EPID)		
Imaging and treatment coordinate coincidence (four cardinal angles)	≤2 mm	≤1 mm
Scaling ^b	≤2 mm	≲2 mm
Spatial resolution	Baseline ^r	Baseline
Contrast	Baseline	Baseline
Uniformity and noise	Baseline	Baseline
Planar kV imaging ^d		
Imaging and treatment coordinate coincidence (four cardinal angles)	≤2 mm	≤1 mm
Scaling	≤2 mm	≤1 mm
Spatial resolution	Baseline	Baseline
Contrast	Baseline	Baseline
Uniformity and noise	Baseline	Baseline
Cone-beam CT (kV and MV)		
Geometric distortion	≤2 mm	≤1 mm
Spatial resolution	Baseline	Baseline
Contrast	Baseline	Baseline
HU constancy	Baseline	Baseline
Uniformity and noise	Baseline	Baseline

н

Ruby Hall Clinic

	Annual (A)	
Planar MV imaging (EPID)		
Full range of travel SDD	±5 mm	±5 mm
Imaging dose ^e	Baseline	Baseline
Planar kV imaging		
Beam quality/energy	Baseline	Baseline
Imaging dose	Baseline	Baseline
Cone-beam CT (kV and MV)		
Imaging dose	Baseline	Baseline

"Or at a minimum when devices are to be used during treatment day.

^bScaling measured at SSD typically used for imaging.

"Baseline means that the measured data are consistent with or better than ATP data.

^dkV imaging refers to both 2D fluoroscopic and radiographic imaging.

"Imaging dose to be reported as effective dose for measured doses per TG 75³⁶.

Summery of the Tolerances

Procedure	SRS/SBRT Tolerance
Radiation/Mechanical Isocenter	±1 mm from baseline
Collimator Rotation Isocenter	±1 mm from baseline
Gantry Rotation Isocenter	±1 mm from baseline
Couch Rotation Isocenter	±1 mm from baseline
Laser Localization	1 mm
Collimator Size Indicator	1mm
Couch Position	1mm/0.5°
Table Top Sag	1 mm

- After commissioning has identified appropriate uses and limitations for the TPS, the goal is to detect deviations
- RPC (now IROC) data suggests ~80% of institutions can achieve dosimetric accuracy of ~7%
 - TG-53 provides comprehensive guidelines for QA
- Treatment process should standardize parameters such as beam arrangements, calc. grid size, jaw tracking

• TPS upgrades are a source of changes, so re-testing is required after upgrades

Treatment Planning commissioning

Small Field Dosimetry – Data Collection and Modeling

Dosimetric Variation with Detectors

Das et al, J Radiosurgery, 3, 177-186, 2000

Small field Detector Selection

Experimental Setup Consistency

OF Correction

- MC differs from TRS-398
- Effects of correction for several collimator systems

Francescon et al, PMB 57 (2012) 3741

Table 1. Values of k_{Ome} , Q_0 calculated by Monte Carlo simulation of the CyberKnife system an a reference Co-60 beam. For comparison, $k_{Q,Q0}$ extracted from TRS-398 using a hypothetic $100 \times 100 \text{ mm}^2$ TPR20/10 converted using the method of Sauer (2009) from the measure TPR20/10 at 60 mm circular field size is shown, together with the difference between these tw calculations.

Chamber	k_{Q_{max},Q_0}	$k_{Q,Q0}$ (TRS-398)	Difference (%)
PTW 30006 Farmer	1.000	0.993	+0.7%
PTW 31014 PinPoint	0.990	0.995	-0.5%
Exradin A12 Farmer	1.006	0.997	+0.9%
NE 2571 Farmer	1.003	0.995	+0.8%
PTW 31010 Semiflex	0.990	-	

Correction factors for CyberKnife dosimetry

3753

Is the OF Measurement Correct?

- CyberKnife has reference data set available in commissioning tool.
- "Golden" beam data sets
- Literature

		10 x 10	6 x 6	4 x 4	3 x 3	2 x 2	1 x 1	.5 x .5
Elekta *	MLC	1	0.930	0.878	0.842	0.790	N/A	N/A
Varian *	MLC	1	0.921	0.865	0.828	0.786	N/A	N/A
BrainLab	mMLC			Se	e Next Sli	ide		
BrainLab	Cone	1	N/A	N/A	0.969	0.926	0.85	0.711
СК	Cone	N/A	1	0.997	0.993	0.974	0.911	0.709

*JACMP Vol 13 (5) 2012:

Independent Output Check

- Absolutely necessary before treating a patient!
- Too many misadministrations based on reference dosimetry gone wrong
- E.g. use TLD/OSLD service
- Peer review

Understand the detectors available

Attribute	lonization chamber	Micro Chambers	Stereotactic Diodes	Diamond detector	Plastic Scintillator	Gels
Field size	≥ 2 cm x 2 cm	≥ 3 mm x 3 mm	≥ 3 mm x 3 mm	≥ 3 mm x 3 mm	≥ 3 mm x 3 mm	≥ 3 mm x 3 mm
Energy dependence	Use k _Q to correct energy dependence	Use k _Q to correct energy dependence	Normalize at 4 cm ² for energy dependence	Almost none	Almost none	Depends on gel material
Drawbacks	Volume effect	Stem and cable effect, S/N ratio	Some models: Aging, dose rate	Weak dose rate dependence; availability	S/N ratio; temperature dependence; cable irradiation	Availability
Advantage	Familiarity/ Availability	Spatial resolution	Small size, availability	Near ideal	Small size	Spatial resolution

Dosimetry: Dose Calculation Algorithm

Common MC uncertainty setting: 2% at maximum dose

Challenges in CT-to-material conversions

Can result in errors in dose estimations
Dose errors up to 10% for 6 & 15 MV photons
Go up to 30% for 18 MeV electrons
Conversion techniques based purely on mass density is discouraged
Artifacts are potentially important in MC dose calculations

Isocentric Accuracy

Is the projection of the ball centered within the field?

Test results

Max Tolerances: 1mm

End To End Test

- Multiple non-coplanar converging arcs technique:
- Target dose is delivered through a series of gantry arcs, each arc with a different stationary position of the treatment couch or chair.
- Arc angles are usually smaller than 180° to avoid parallelopposed beams in the plane of the arc.
- Typical number of arcs used ranges from 4 to 11.

Target coverage with various isodose surfaces:

The 50 % isodose surface covers the target well but also irradiates much of healthy surrounding tissue.

If the dose is prescribed to the 50 % isodose surface, target dose inhomogeneity is very large, but the dose conformity to the target is optimized.

MI, Y., Ma, P., Xu, Y., & Dai, J. (2019). Selection of prescription isodose line for brain **metastases** treated with volumetric modulated arc radiotherapy. *Journal of applied clinical medical physics*, *20*(12), 63–69. https://doi.org/10.1002/acm2.12761

XU, Y., Ma, P., Xu, Y., & Dai, J. (2019). Selection of prescription isodose line for brain metastases treated with volumetric modulated arc radiotherapy. *Journal of applied clinical medical physics*, *20*(12), 63–69. https://doi.org/10.1002/acm2.12761

CI = 1.0 represents perfect conformity

Paddick, J Neurosurg 93 Suppl. 3 (2000), pp. 219-222

Evaluation – Gradient Index

Volume of isodose that is ½ of PI

Volume of PI Measures how quickly dose is dropping outside of target:

Example: If prescription isodose is at 60%, measure volume of 30% / 60%

GI < 3.0 is "good" dose falloff

GI =

Paddick, et. al., J Neurosurg 105 Suppl. 7 (2006), pp. 194-201

Beam Profile – Flattening Filter

Relative to a flattened beam of the same energy, the surface dose for a flattening filter free beam is higher for small field sizes and comparable at 40x40 cm2

Reference: Vassiliev ON, Titt U, Pönisch F, Kry SF, Mohan R, Gillin MT. Dosimetric properties of photon beams from a flattening filter free clinical

Delivery QA -DEPTH HELMET

Ruby Hall Clinic

AMRITA INSTITUTE OF MEDICAL SCIENCES & RESEARCH CENTER, DEPARTMENT OF MEDICAL PHYSICS & RADIATION SAFETY,

SRS DEPTH HELMET MEASUREMENT SHEET

PATIENT DETAILS

Name	Ominalt Ali	Physicist(s)	55
M.R.NO.	1774432	Date	15/12/16
RTNO	16RT 1355	SITE	DVM

Hole No	Scale reading		
	Before CT	Before treatment	
0	83	83	
AL	84	84	
A3	80	80	
AS	13	73	
AT	98	99	
B2	78	78	
Bu	69	69	
BG	88	88	
Bs	104	104	
Ch	56	59	
C6	SI	81	
(1	104	105	
CI	73	73	
CS	101	101	

-

Collision test

Challenges during Trt Delivery - How many Fiducials??

Alignment	Readiness	Delivery					
Couch	Technique		Align				
100 mA 100 ms	В	Axis	Offsets Calculated	Applied		120 kV 100	mA 100 ms
		+ 🛉	0.0 mm				
		→☆	-0.2 mm				
		*#	0.2 mm				
		•	0.1 deg				6
6 6	5	e 🛉	-0.1 deg				3 6
		•	0.5 deg				
		Rotation	al Bounds Checking	Enabled	3		
800 C		X	Acquire Im	W¢	/注		
		Acquire	Tracki	19 Range (mm) 3 a 10.0	xA8 (mm) 0.5 	 Uncertainty (%) 233 14.1
			Rigid I 0.6	Sody (mm)	• Co	silinearity (degi	Fiducial Spacing
m).	Couch Rotation (deg)			17 C			Service Service and

Alignment	readiness	Denve	а у у		
Couch	Technique	Align			
A 100 ms	B	Axis Calculated	Applied •	120 kV 100 mA	100 ms
		-0.6 mm	888 245		6
		e∦ · •∦ •	1		
		norstand Blundi Chi Acquir	re Image Tracking Range (mm)	 dxAB (mm) 0.2 Collinearity (deg) 15 	Uncertainty (2.5 Fiducial Space
		-	Fiducials	F1 0F2 0F3	OF4

E2E testing

- Specialized SBRT/ SRS phantoms
 - End-to-end testing crucial
 - Spatial accuracy (hidden target)
 - Dosimetric accuracy
 - E2E needs to incorporate imaging

Position Uncertainty

(by Quadrature)

TABLE II. Achievable Uncertainties in SRS		
Stereotactic Frame	1.0 mm	1.0 mm
Isocentric Alignment	1.0 mm	1.0 mm
CT Image Resolution	1.7 mm	3.2 mm
Tissue Motion	1.0 mm	1.0 mm
Angio (Point Identification)	0.3 mm	0.3 mm
Standard Deviation of	2.4 mm	3.7 mm

Stereotactic Radiosurgery, AAPM Report No. 54, 1995

Recommendation for Treatment - AAPM TG101

- At least one qualified physicist be present from the beginning to end of the first treatment fraction.
- For subsequent fractions, it is recommended that a qualified physicist be available, particularly for patient setup in order to verify immobilization, imaging, registration, gating, and setup correction.
- Radiation therapists be well-trained in SRS/SBRT procedures.
- A radiation oncologist approve the result of the image guidance and verify the port films before every fraction of the SBRT treatment.

THANK YOU

