

Brain Radiosurgery

Prof Debnarayan Dutta, MD Prof & Head, Radiation Oncology Amrita Institute of Medical Sciences, Kochi

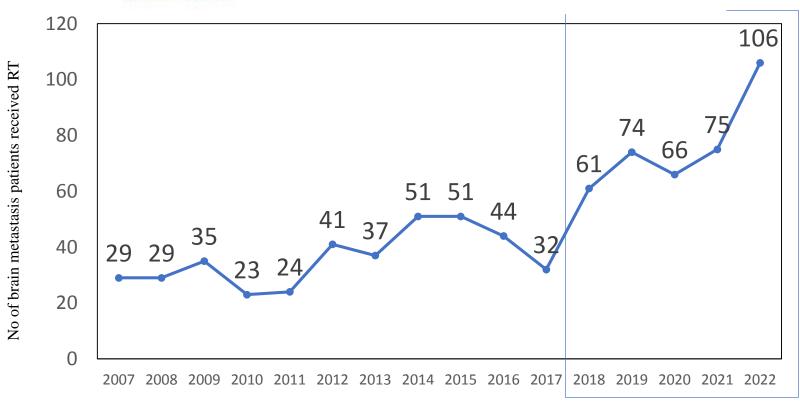
Amrita Institute Radiosurgery: Presentation

35-40 patients / month 450-500 patients / year

60% Intracranial

- 50% are benign brain tumours
- 50% brain metastasis

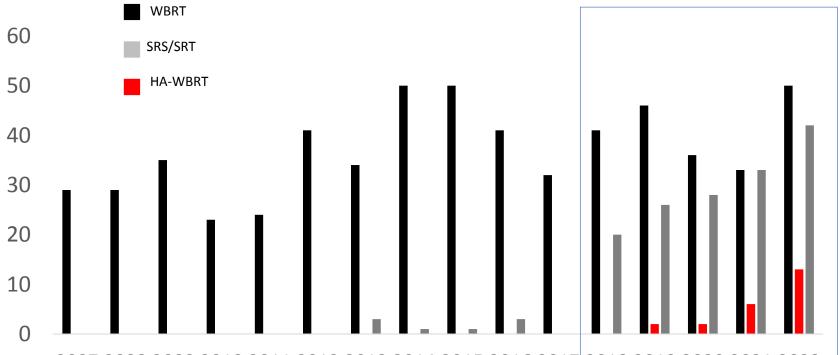
50% Extracranial


- 30% HCC
- 20% Oligo metastasis
- 10% Other extra-cranial
 - 3% Prostate cancer
 - 5% lung primary
 - 2% Mics (eye, RCC etc)

CyberKnife case	1352					
Intracranial	769 (59%)					
Brain metastasis	338 (25%)					
Benign brain tumours	420					
Meningioma	112					
Acustic schwannoma	150					
AVM	108					
Glomus jugulare	35					
Extra-cranial	583 (41%)					
HCC	226					
Lung	29					
Prostate	28					
Extra-cranial mets	225					

In any radiosurgery program 60-70% of cases are brain radiosurgery

Audit of Presentation, Primary Site, and Pattern of Treatment in 778 Indian Patients with Brain Metastasis in 15 Years (2007–2022)


Debnarayan Dutta*, Haripriya P Surendran1*, Sruthi Kalavagunta, Ajay Sasidharan, Narmadha M P1

- Audit of 730 brain metastasis patient treated at Amrita Institute
- Yr-2007-2022
- Brain metastasis pts treated with RT increasing over the years

Dutta et al, Neurol India 2023

Treatment pattern per year (2007-2022)

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

		2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	Total Ca in RT	-	1368	1756	1762	1831	1683	1791	2182	1971	1748	1682	1933	1893	1659	1767	1960
	Incidence of BM (%)	-	2.1	1.65	1.98	1.91	2.43	2.06	2.33	2.58	2.51	1.90	3.15	3.9	3.97	4.24	5.40
	WBRT	29	29	35	23	24	41	34	50	50	41	32	41	46	36	33	50
Ī	HA-WBRT	0	0	0	0	0	0	0	0	0	0	0	0	2	2	6	13
	SRS	0	0	0	0	0	0	3	1	1	3	0	20	26	28	33	42

Dutta et al, Neurol India 2023

Brain Radiosurgery Indications

Benign brain tumours:

- 1. Acustic schwannoma
- 2. Glomus Jugulare
- 3. Meningioma
- 4. Pituitary tumour

Usually need lower dose (12-15Gy) Dose escalation do not help 'Lack of progression' is considered response Need years for radiological response Long term survival Toxicity is of paramount importance

Vascular lesions:

- 1. AVM
- 2. Haemangiomas
- 3. Cavernomas

Usually need Higher dose (18-20Gy) Obliteration need time. Usually 2-3 years Risk of bleed persists during 'latent' period Complete obliteration is considered response

Brain Radiosurgery Indications

Malignant lesions:

- 1. Brain metastasis
- 2. Recurrent glioma

Usually need higher dose (20-24Gy). Dose escalation helps Survival 1-2 years Radiological Response considered 'effective' treatment Response assessment at 3 months

Functional Indications:

- 1. Trigeminal neuralgia
- 2. Epilepsy
- 3. Movement disorders

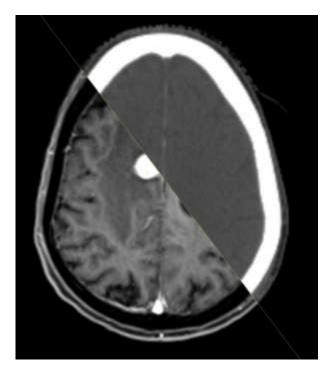
Usually need high dose (150-170Gy) Long term survival Toxicity is paramount importance Symptom free period and 'medicine free period' considered response

Approach, response assessment and duration of follow up depends upon the indications

SRS?

Single fraction RT for brain lesions. Mostly coined for GammaKnife. Since 1960

SBRT ?


Multiple fraction treatment for extra-cranial lesions. Mostly for LA based treatment. Since 1980

SABR?

RT dose >6Gy, Single or multiple session for brain & extra-cranial site. Since 2011

Modern Radiosurgery: 'stereotaxy' less & image guidance more

- Modern radiosurgery have evolved in last few decades
- 'Stereotaxy' has become less important
- Image guidance is critical for radiosurgery
- Role of stereotactic frame, rigid immobilization & stereotactic localization have reduced
- Imaging has become critical for contouring
- 'real time' imaging is used for 'guidance' instead of stereotactic guidance
- 'Stereotactic radiosurgery' terminology have less relevant & image guided radiosurgery is the new terminology
- Planning, dose distribution & dosage schedule, radiobiology, response assessment is important in modern radiosurgery
- Role of trained radiation oncologist in high dose radiation has become more important

Brain Radiosurgery: Work flow

Case selection

Immobilization

CT Simulation

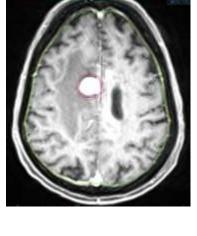
Image fusion

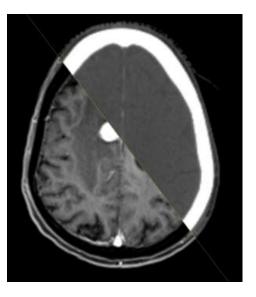
Contouring

Planning

Treatment delivery

Response assessment & follow up



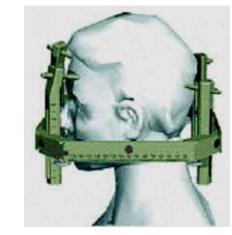


Radiosurgery: tools

Gamma-Knife

LA based SRS Systems

BrainLAB Novalis Trilogy Tomotherapy


CyberKnife

Gamma knife

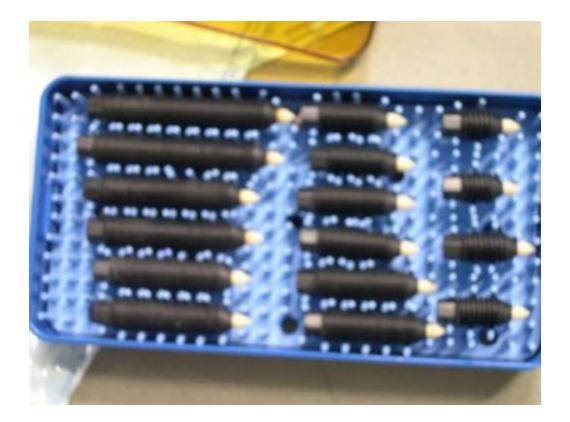
- Gamma-knife: 201 Cobalt source
- Only for intracranial lesions
- Rigid/ fixed frame required
- Single fraction treatment

BrainLAB

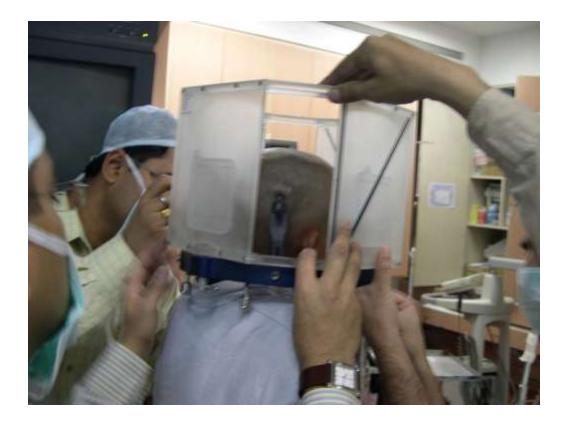
Micro MLCs

Rigid frame / mask

BrainLAB planning System


Both SRS & SCRT

For brain lesions





BrainLAB SCRT frame

QA: Beam's eye view & LUTZ's test

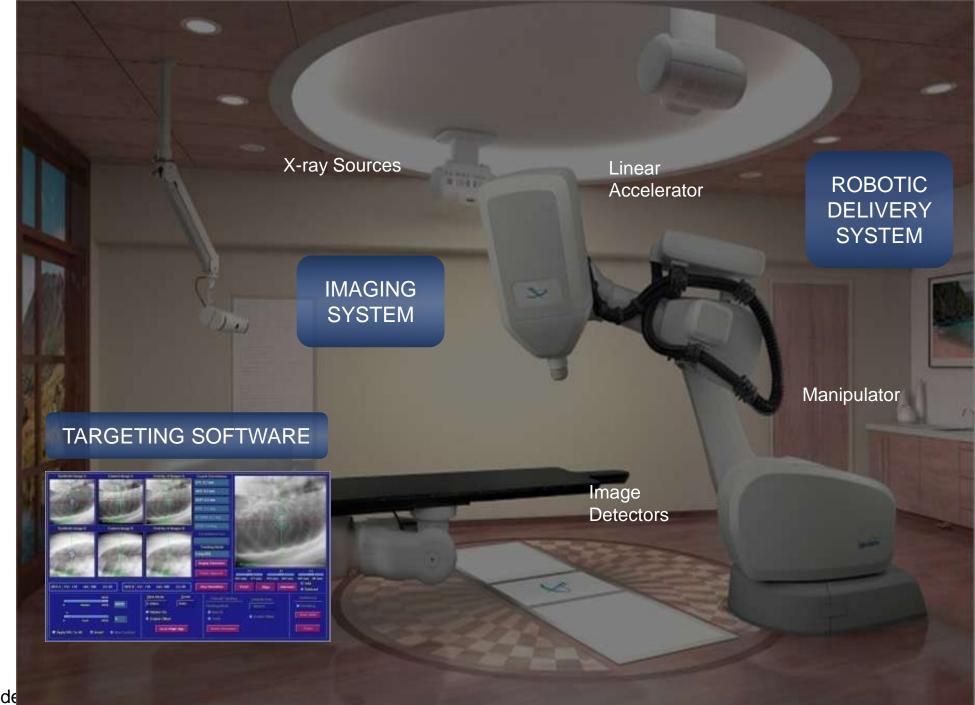
Iso-centric accuracy: LUTZ test

Beam's position check

Robotic Radiosurgery (CyberKnife)

Highly precise RT delivery system

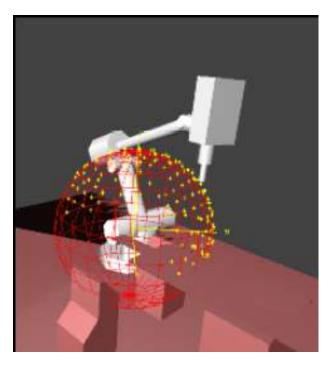
- Respiratory tracking
- Fiducial based tracking system
- Intra-fraction motion correction
- Uncomparable dose distribution
- X-ray based image verification

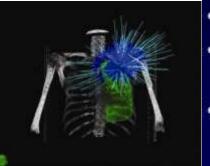

Hypofractionated RT

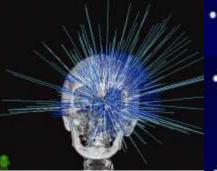
- High dose short course RT
- Higher BED delivered to target

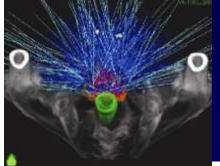
Ideal for moving targets

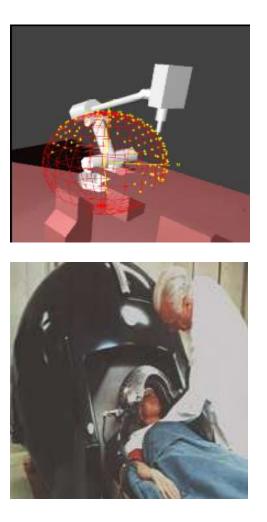
Accuray Confide





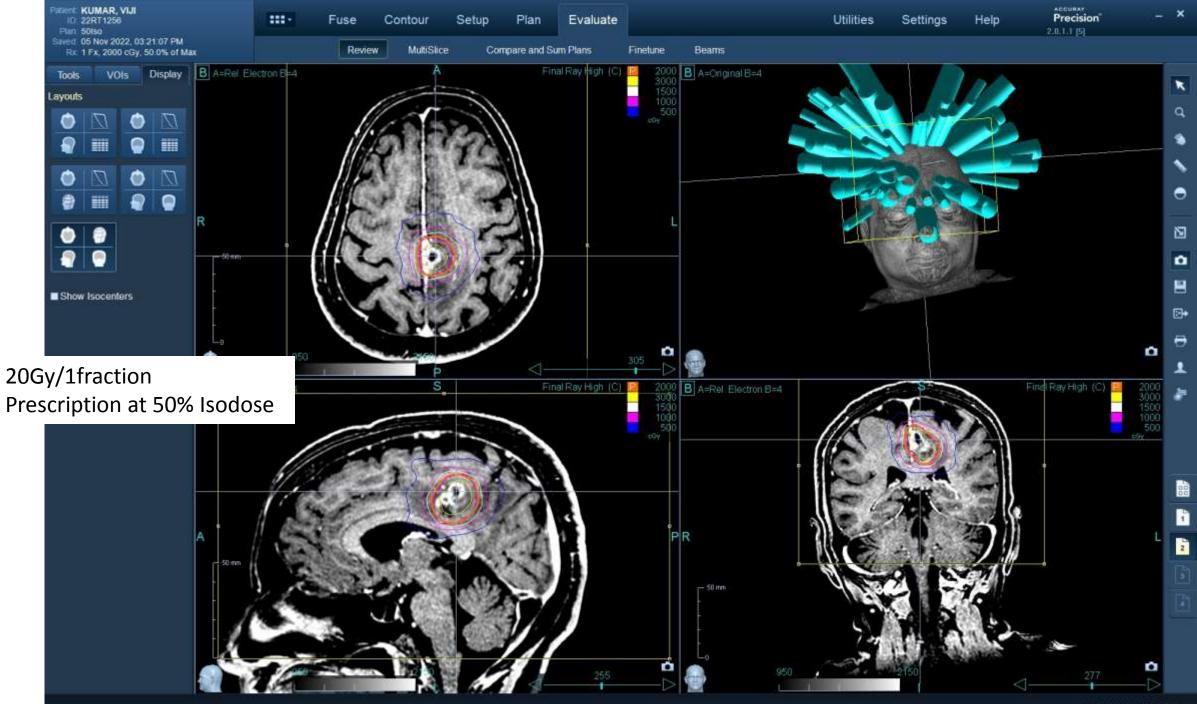



Unique features of Cyberknife: Non-coplanar field arrangement

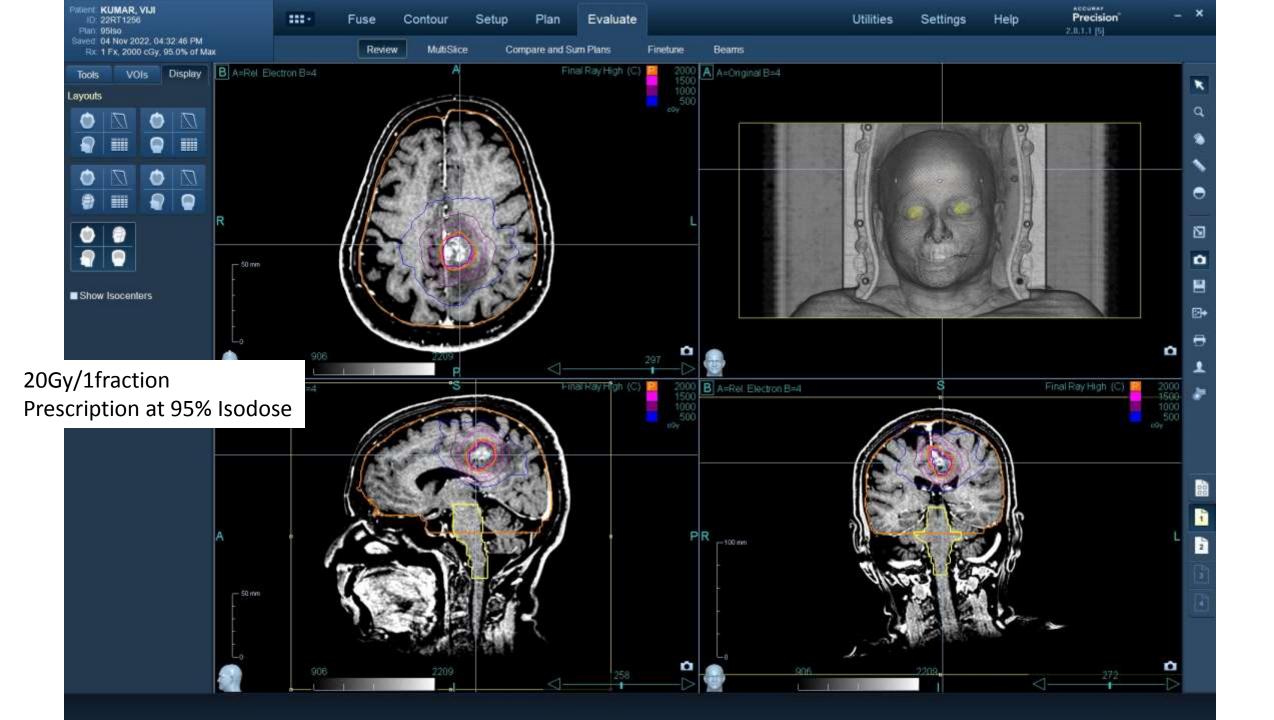


- 6 MV accelerator
- 12 interchangeable circular collimators
- At an SSD of 80cm, collimators provide a beam diameter from 5 to 60 mm
- SSD can be varied from 65 to 100 cm
- Radiation is delivered at a discrete set of linac positions (called nodes).
- A typical treatment plan will use 110 nodes distributed approximately uniformly over about one half of a sphere centered on the treatment site.

'CyberKnife is an extension of Gamma-Knife'

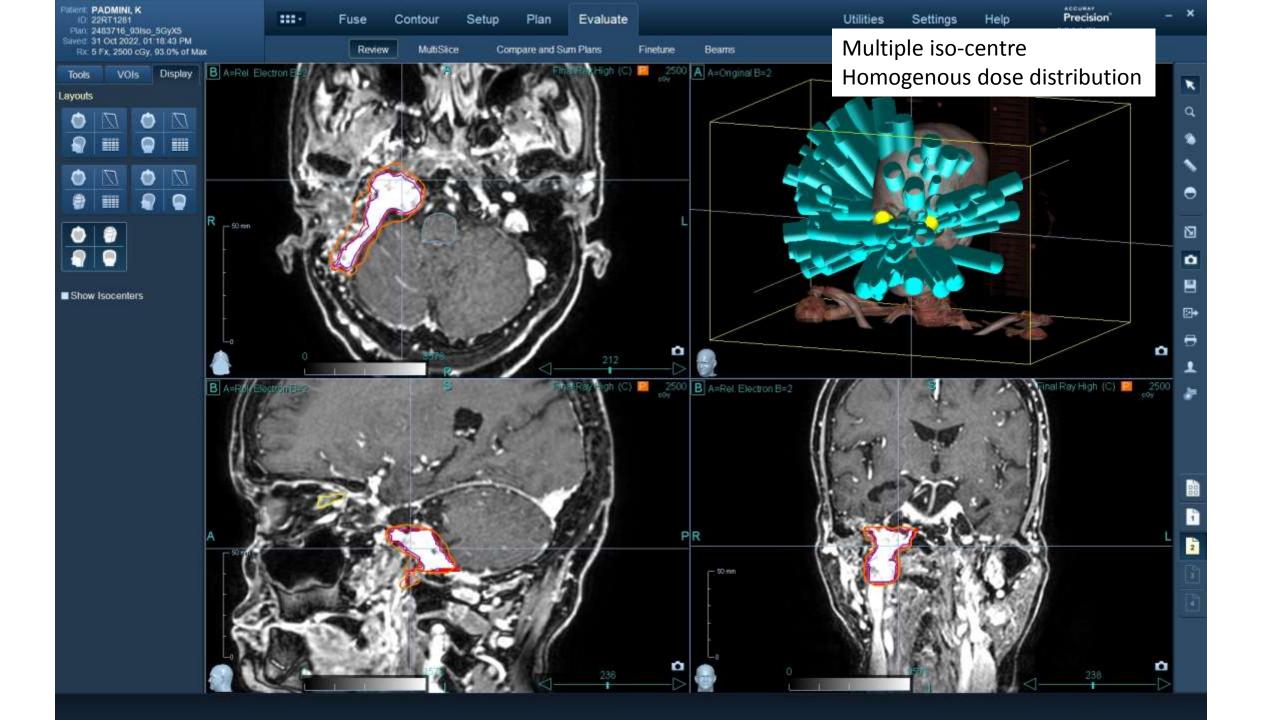


CK & GK: Similarity

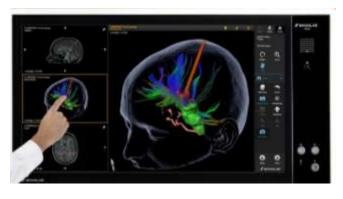

- Principles of 'field arrangement'
- Dose distribution pattern
- Multiple isocentre
- -Treatment principles
- Treatment delivery accuracy similar
- Delivered dose in single fractions
- Intra-cranial indications

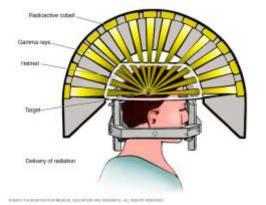
Cyberknife Vs Gamma-Knife: Dissimilarity

	GK	СК	Comments
Immobilization device	Rigid frame	Orfit	CK has favorable orfit
RT source	Co60	6MV LA	GK need to replace sources every 5/6 yrs
Planning	No complex planning	Inverse planning	Favorable dosimetry in CK
Planning method	Simple	Complex	Even neurosurgeons can plan in GK
Isodose prescription	Usually 50%	Usually 80-95%	GK: more dose heterogeniety
Fractions	Single	May treat multiple fraction	Radiobiology favorable in CK
Tumour size	Only smaller lesions can be treated	Larger lesions also can be treated in fractionated schedule	Increased indications with CK
Energy source	Radiation	Electricity	GK can work with less electricity
Verification	Not possible	Possible	Even Intra-fraction movement can be corrected
Indications	Only brain lesions	Both extra & intra cranial	CK more economical



LR:255 SI:305 AP:277





Planning & delivery in different systems

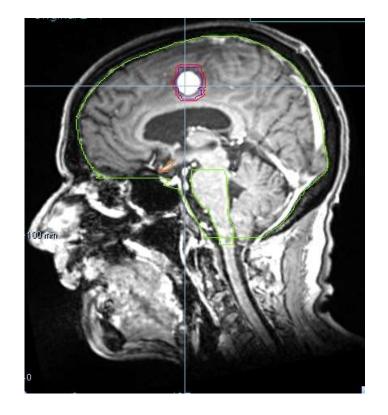
- **Dose prescription:** 50% Vs 90%
- Isocenter
 Single Vs multiple
- Dose homogeneity
 Heterogenous Vs Homogenous
- Low dose spillage
 Higher low dose spill with prescription isodose
- **Treatment time** Higher treatment time with radiobiological effect
- PTV margin

Dose prescription depending upon margin

Different radiobiological & clinical impact

Proposed Classification for SABR

- Extended boundary for the formation of planning target volume (PTV) is inconsistent in varied SABR technology
- E.gL Gamma-knife, Liner-accelerator, CyberKnife, and TomoTherapy system),
- Clinical efficacy and its side effects are quite variant.


Proposal for classification for SABR based on each equipment and technology:

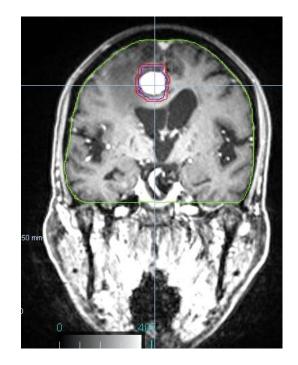
- Gamma-knife-SABR (G-SABR)
- Liner-accelerator- SABR (L-SABR)
- CyberKnife-SABR (C-SABR)
- Tomo-SABR (T-SABR)
- Proton-SABR (P-SABR)
- High-dose rate brachytherapy SABT (H-SABT)
- Low dose rate brachytherapy: SABT (L-SABT),

Convenient for communication and comparison of the clinical outcomes among these technologies.

Contouring Principle

- In Radiosurgery, we treat ONLY 'What is seen' = GTV
- There is NO CTV = HIGHER risk of failure if not contoured
- SHARP dose fall off = MARGINAL miss risk high, if not contoured
- NO margin of error

Contouring: Principles

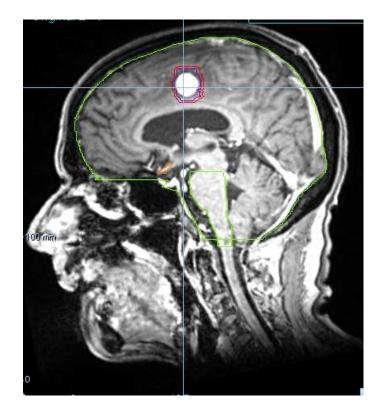

How to improve imaging to have better contouring *Solutions*

A) Improve CT scan imaging –

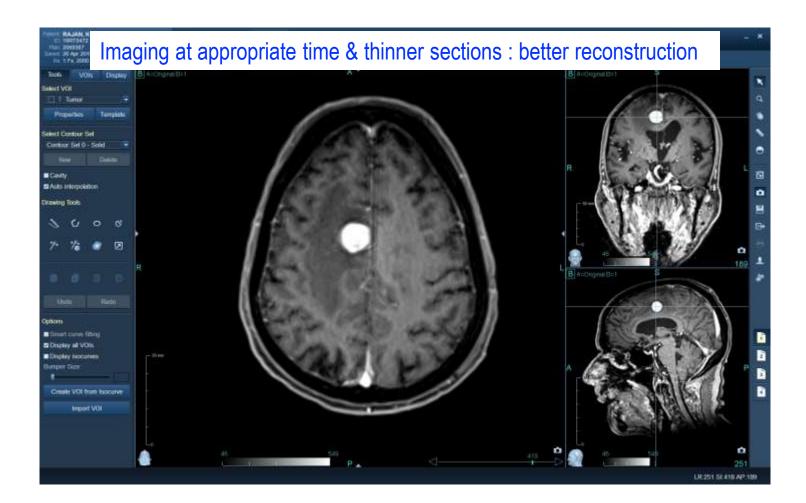
CT scan with proper contrast, slice thickness
 CT at proper sequence, phase of respiration
 CT scan image acquisition time, duration

B) Additional sequences / image modality -

- 1. MRI scan T1 / T2/ Flair
- 2. PET scan
- C) Functional imaging
 - 1. Biological imaging


CT scan: Slice spacing

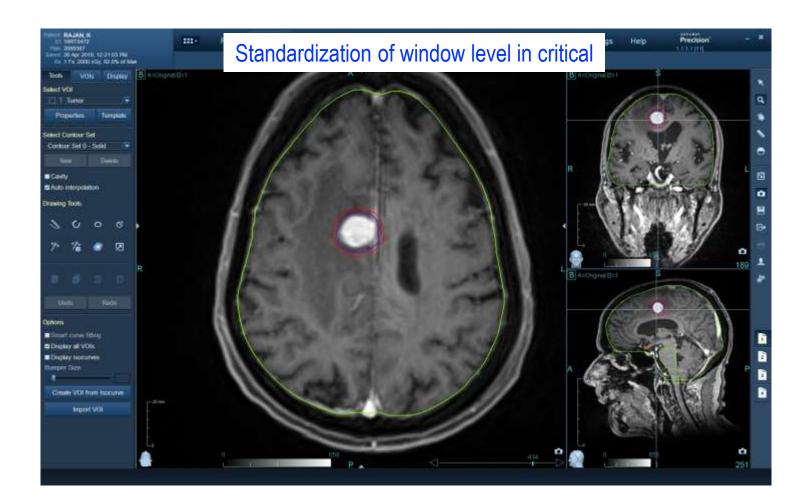
Data are usually based on CT images: Suitable slice spacing?

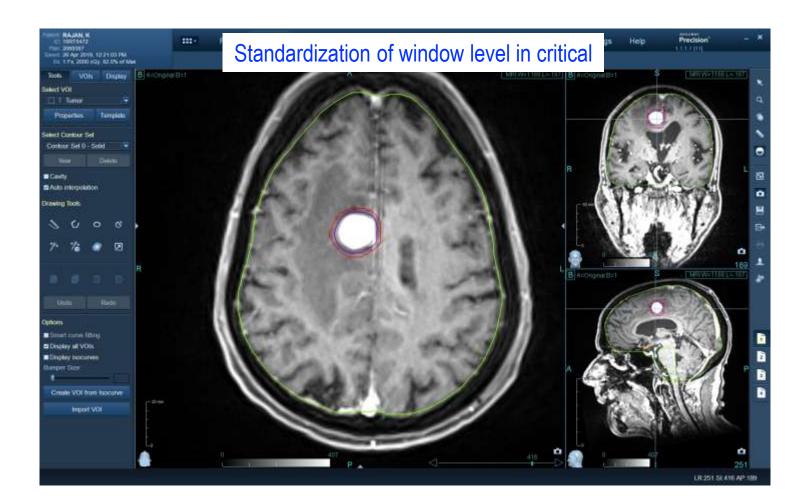

0.5 - 1 cm for thorax
0.5 cm for pelvis
0.3 cm for head and neck.
0.1cm for Radiosurgery/SBRT

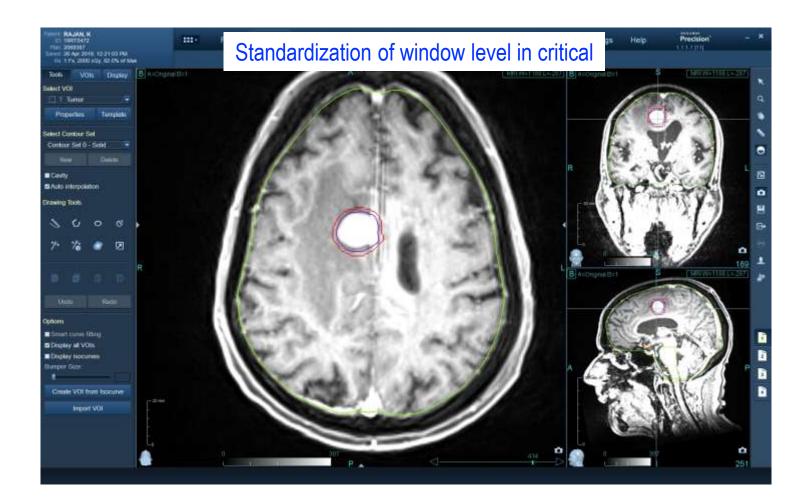
Radiosurgery slice thickness:

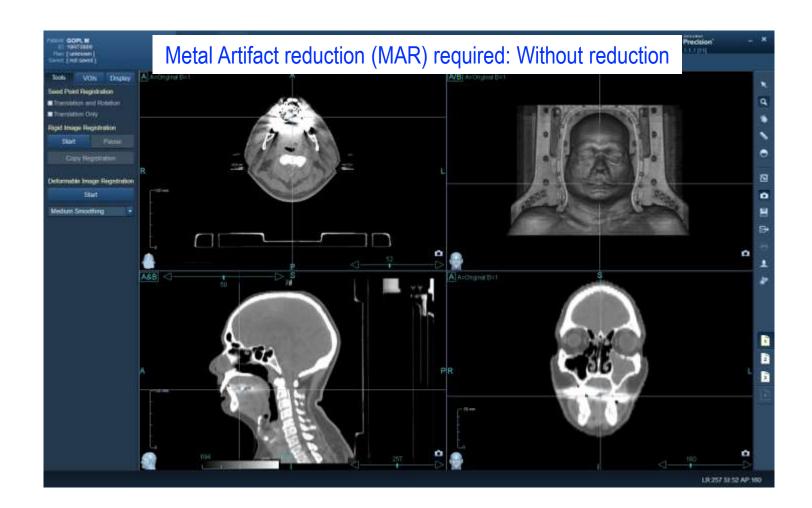
Brain : 0.65 mm Lung: 1.25 mm Pelvis / abdomen: 1.25 mm

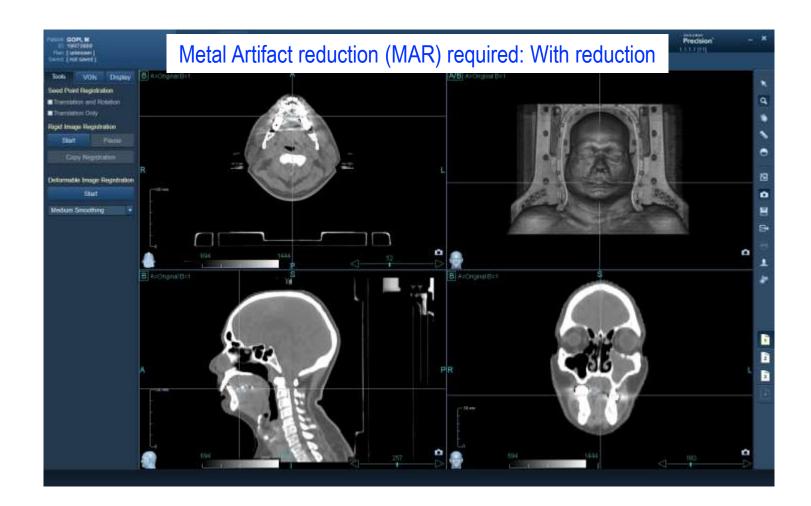
CT scan: DOUBLE contrast

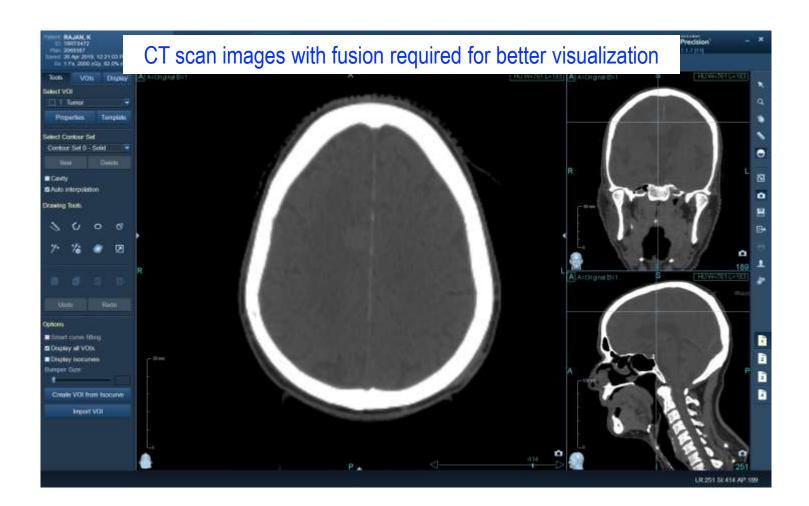

Contrast scan using double the amount of standard contrast 2mg/kg body wt

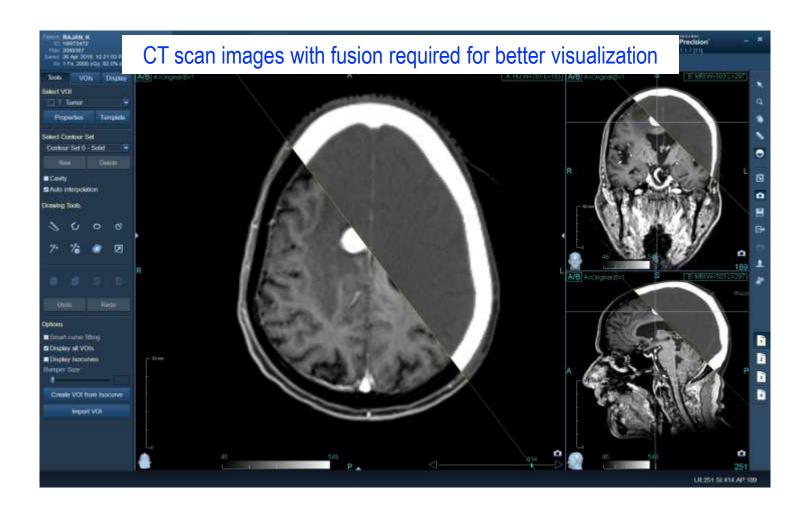

Brain – 60mg Abdomen / Pelvis – 80 mg


Better delineation of target









Radiosurgery: Tolerance SRS

Serial Tissue	Volume (mL) V	olume Max (Gy)	Max Point Dose (Gy)	Endpoint (≥Grade 3)
	SINGLE-FF	RACTION TREAT	MENT	
Optic pathway	<0.2	8	10	Neuritis
Cochlea			12	Hearing loss
Brainstem	<1	10	15	Cranial neuropathy
Spinal cord	< 0.25	10	14	Myelitis
-	<1.2	7		-

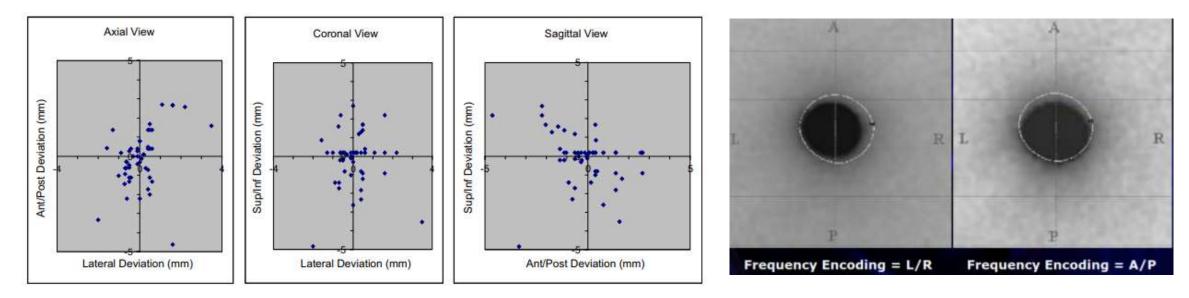
Serial Tissue	Volume (mL)	Volume Max (Gy)	Max Point Dose (Gy)	Endpoint (≥Grade 3)					
THREE-FRACTION TREATMENT									
Optic pathway	< 0.2	15 (5 Gy/fx)	19.5 (6.5 Gy/fx)	Neuritis					
Cochlea		-	20 (6.67 Gy/fx)	Hearing loss					
Brainstem	<1	18 (6 Gy/fx)	23 (7.67 Gy/fx)	Cranial neuropathy					
Spinal cord	< 0.25	18 (6 Gy/fx)	22 (7.33 Gy/fx)	Myelitis					
-	<1.2	11.1 (3.7 Gy/fx)	-	-					
Cauda equina	<5	21.9 (7.3 Gy/fx)	24 (8 Gy/fx)	Neuritis					
Sacral plexus	<3	22.5 (7.5 Gy/fx)	24 (8 Gy/fx)	Neuropathy					
Esophagus*	<5	21 (7 Gy/fx)	27 (9 Gy/fx)	Stenosis/fistula					
Ipsilateral brachial plexus	<3	22.5 (7.5 Gy/fx)	24 (8 Gy/fx)	Neuropathy					
· · · ·									

Serial Tissue	Volume (mL)	Volume Max (Gy)	Max Point Dose (Gy)	Endpoint (≥Grade 3)
	FIVE-F	RACTION TREATM	MENT	
Optic pathway	< 0.2	20 (4 Gy/fx)	25 (5 Gy/fx)	Neuritis
Cochlea			27.5 (5.5 Gy/fx)	Hearing loss
Brainstem	<1	26 (5.2 Gy/fx)	31 (6.2 Gy/fx)	Cranial neuropathy
Spinal cord	< 0.25	22.5 (4.5 Gy/fx)	30 (6 Gy/fx)	Myelitis
-	<1.2	13.5 (2.7 Gy/fx)	2	-
			04/040 // >	N. 191

Equivalent dose calculation with LQ model

Table 1. Dose per fraction for different numbers of fractions to achieve the same NTD of 60, 80, 100 and 120 Gy at 2-Gy fractions

NTD (Gy)	Conventional fractionation	1 F	2 F	3 F	4 F	5 F	6 F	10 F	20 F
60	$2 \text{ Gy} \times 30 \text{ F}$	22.30	14.62	11.28	9.32	8	7.04	4.85	2.81
80	$2 \text{ Gy} \times 40 \text{ F}$	26.39	17.47	13.57	11.28	9.73	8.60	6	3.54
100	$2 \text{ Gy} \times 50 \text{ F}$	30	20	15.62	13.03	11.28	10	7.04	4.22
120	$2 \text{ Gy} \times 60 \text{ F}$	33.28	22.29	17.47	14.62	12.69	11.28	8	4.85


Dose per fraction for hypofractionation with different number of fractions (Gy)

Abbreviations: NTD = normalized tumor dose; F = fraction(s).

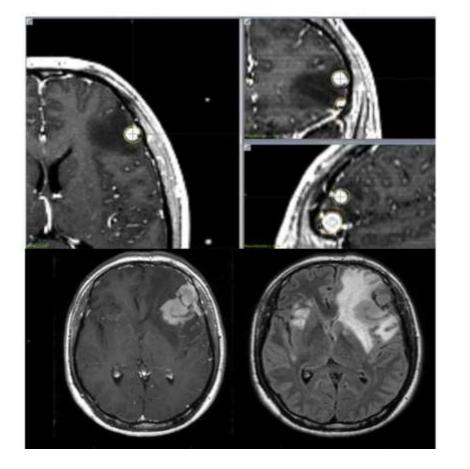
Dose per fraction, alpha/beta ratio

- Equivalent tumour control probability
- Equivalent normal tissue toxicity probability
- Different 'iso-effective' dosage schedule

PTV margin

1.8 ± 0.5 mm shift of MR images relative to CT and delivered dose. Shifts occur in the frequency encoding direction

Set up error, mechanical error, image fusion error, MRI scan distortion error PTV margin of 1-3 mm is required

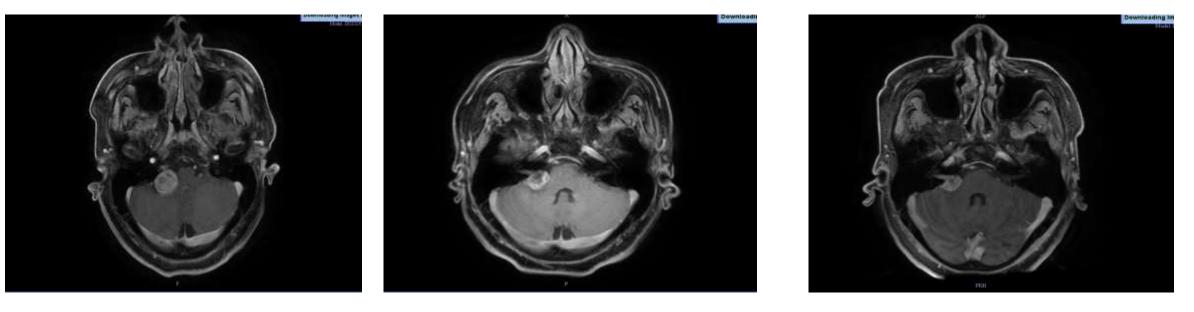

Image distortion in MRI-based polymer gel dosimetry of Gamma Knife stereotactic radiosurgery systems Results of a multi-institutional benchmark test for cranial ct/mr image registration

Y Watanabe et al, Med Phy 2001

Ulin et al. IJROBP 2010

Response depends upon radio-sensitivity

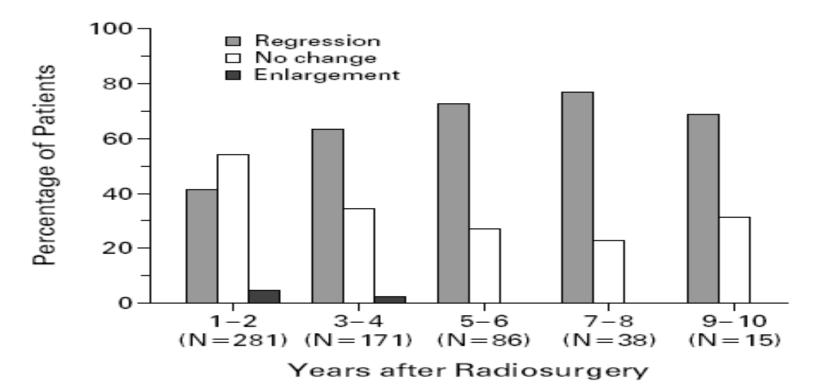
20Gy/1fr

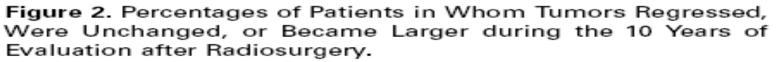


Renal cell Carcinoma primary

Breast Cancer primary

Response assessment

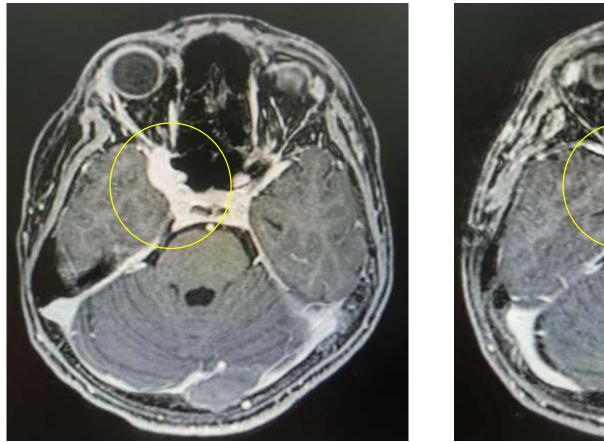



Baseline

2 years f/u

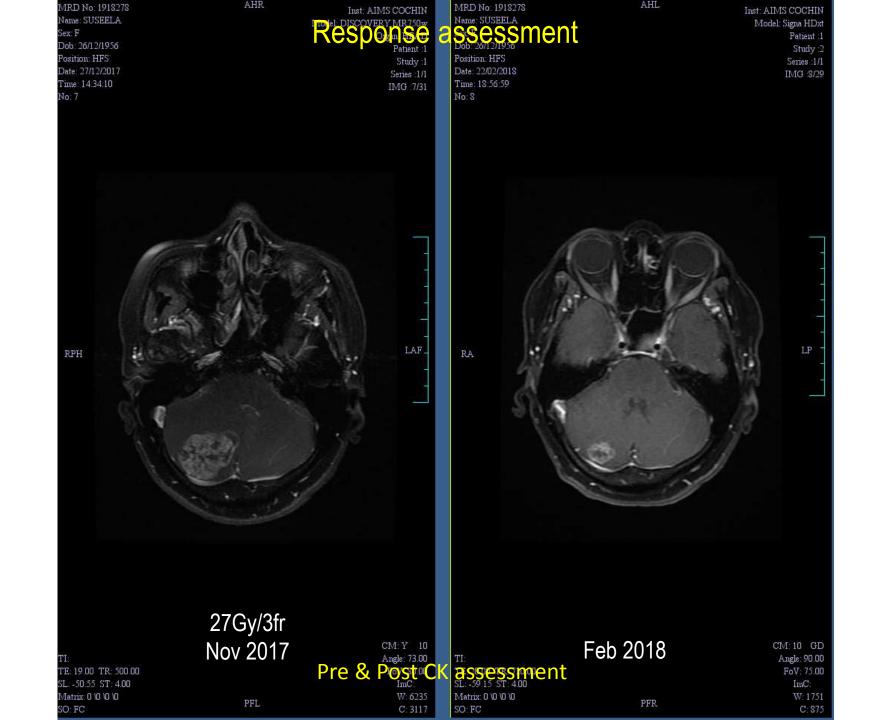
4 years f/u

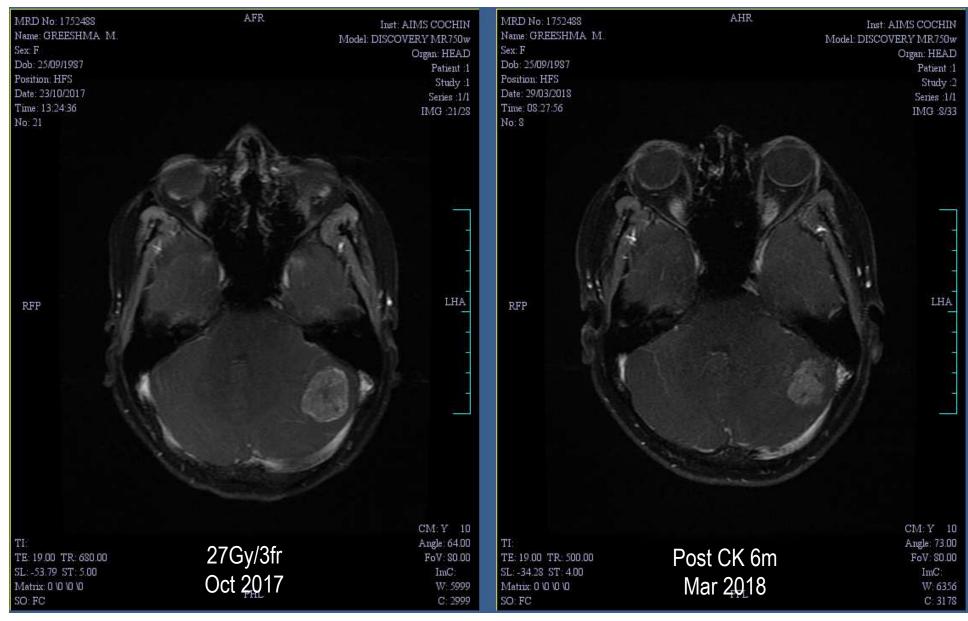
Prospective evaluation of AN pts (n=162)

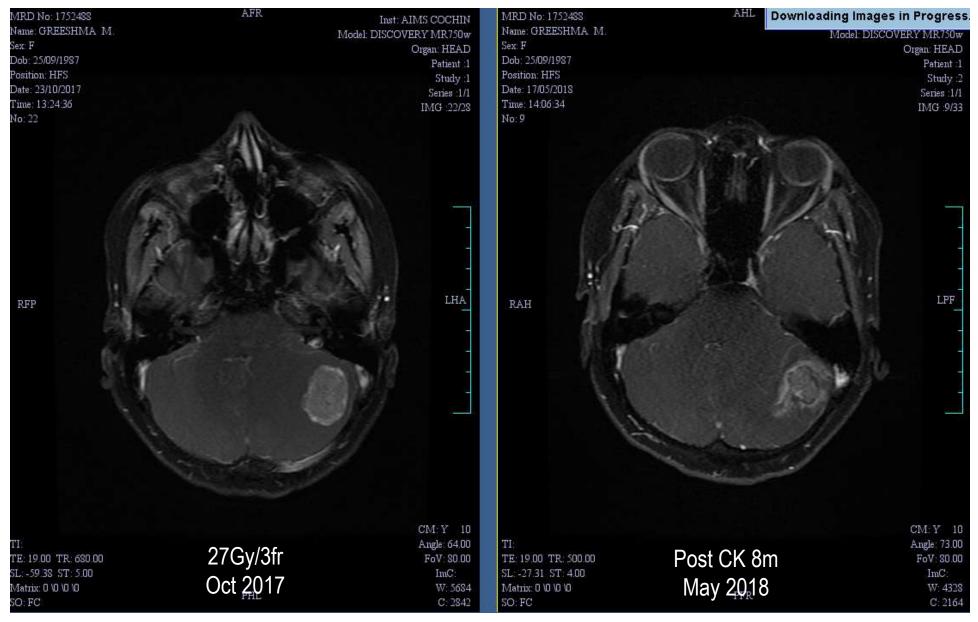


Regression of tumour in **majority** of pts Regression is slow & occurs over years

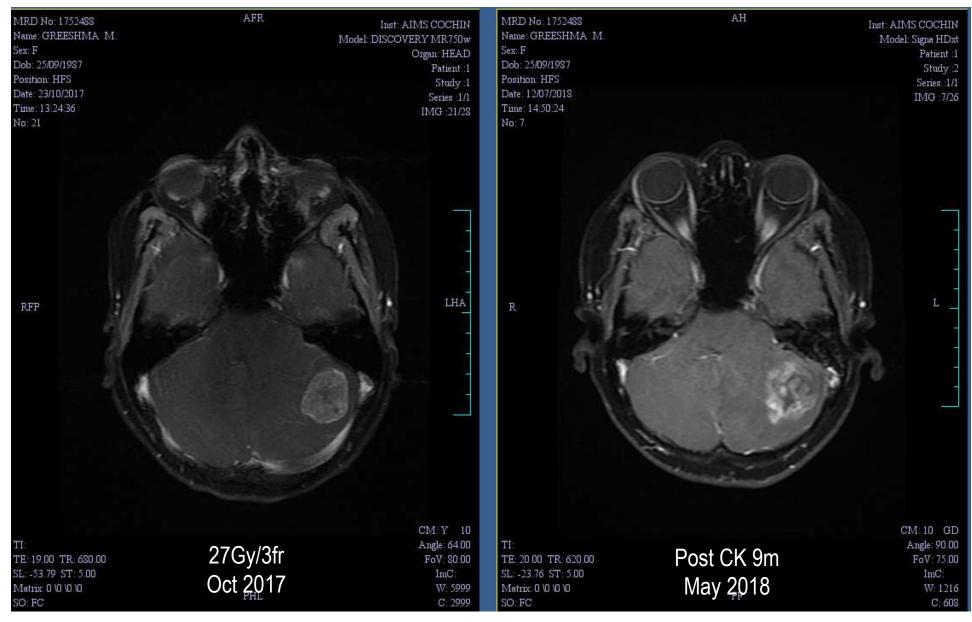
Kondziolka et al NEJM 1998

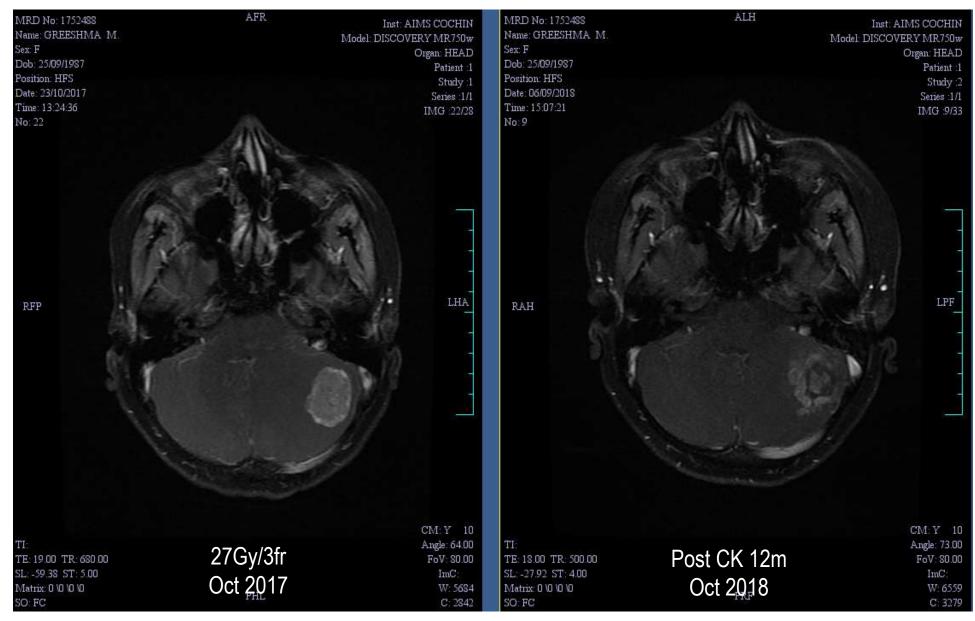

Response assessment



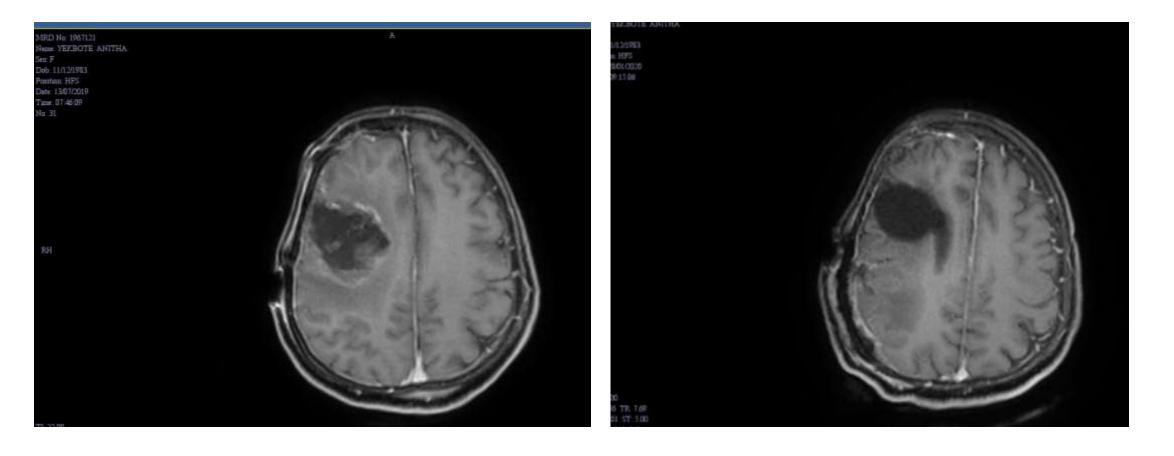

Pre-CK: 2020

Post-CK 3 years: 2023




Contrast enhancement may not always be disease progression

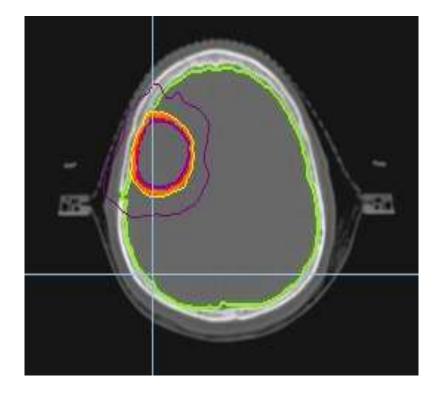
Contrast enhancement may not always be disease progression



Contrast enhancement may not always be disease progression

MRD No: 1967121 Name: YEKBOTE ANITH Sex: F Dob: 11/12/1983 Position: HFS Date: 21/05/2018 Time: 12:11.39 No: 34	A HA	Inst: AIMS COCHIN Model: Signa HDxt Patient :1 Study :1 Series :1/1 IMG :34/46	MRD No: 1967121 AH Name: YEKBOTE ANITHA Sex. F Dob: 11/12/1983 Position: HFS Date: 22/04/2019 Time: 08.05.06 No: 32	Inst: AIMS COCHIN Model: Signa HDxt Patient :1 Study :2 Series :1/1 IMG :32/44
R		L	R	
TI: 23.00 TE: 2.62 TR: 7.80 SL: 34.70 ST: 5.00 Matrix: 0 V0 V0 V0 SO: FAST_GEMS	Pre-CK May 2018	CM: 10 GD Angle: 12.00 FoV: 90.00 ImC: W: 2866 C: 1432	TI: 22.00 TE: 2.54 TR: 7.68 SL: 59.37 ST: 5.00 Matrix: 0 V0 V0 SO: FAST_GEMS	Angle, 12.00

CK 24Gy/1fr


Post-OP Sep 2019 Post-OP Jan 2020

Surgery done Only radiation necrosis NO viable tissue

Brain metastasis – Toxicity depends upon

14Gy & 18Gy Normal brain dose predicts RN

18Gy normal brain vol in 3 fr SRS schedule						
Normal brain vol	RN (%)					
<30cc	5%					
>30cc	14%					
<22.8cc	0%					
22.8-30.2cc	6%					
30.3-41.2cc	13%					
>41.2cc	24%					
14Gy normal brain vol in sin	gle fr SRS schedule					
>7cc	>14%					
<7cc	<5%					

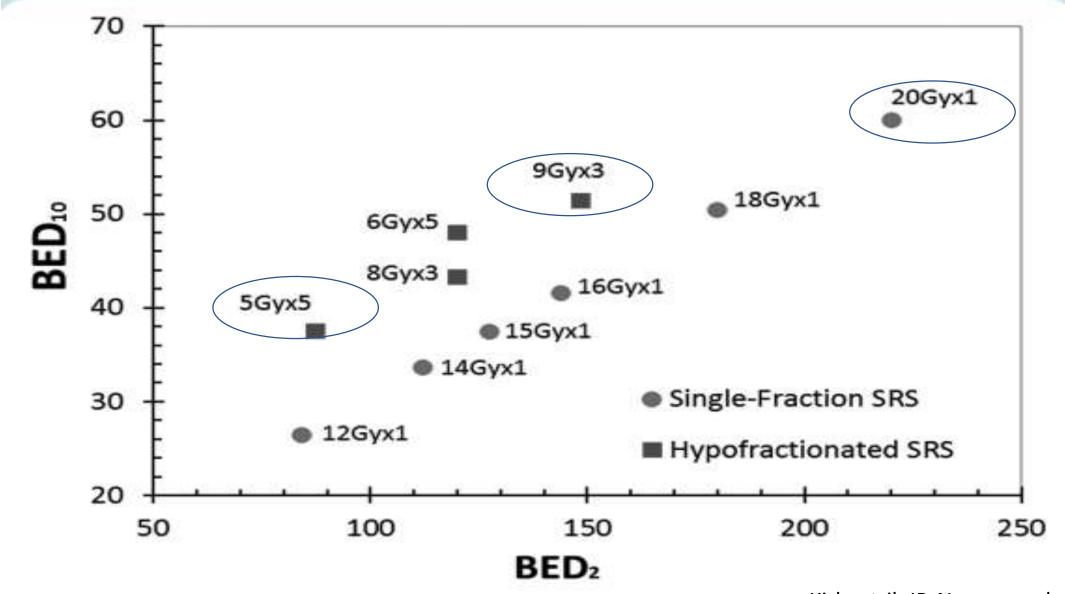
Radionecrosis: 10-15% In <3cm lesion, BED 90-127 (dose 24-35Gy/3-5fr): RN 2-15%

Inoue et al, Radiat Oncol 2014

Brain metastasis SRS: Dose Vs Response & Toxicity

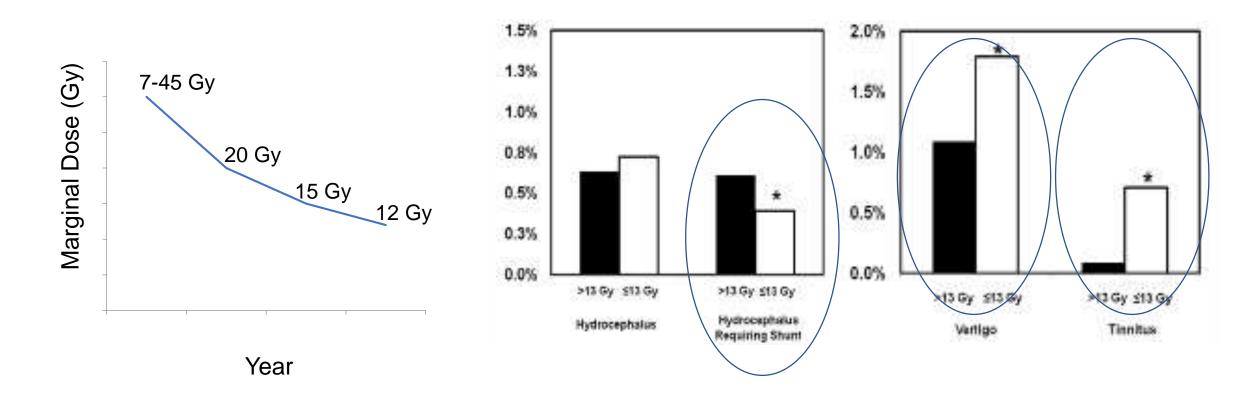
Author	n	Vol	Dose	MS (mo)	1-yr Sur (%)	RN (%)
Fokas et al	102	Gr1: 2cc Gr2: 5.9cc	Gr1: 7x5Gy Gr2: 10x4Gy	Gr1: 7 mo Gr2: 10 mo	Gr1: 75% Gr2: 71%	Gr1: 1pt
Minniti et al	138	12.5cc	9Gyx3fr	13.4 mo	<3cm: 90% >3cm: 78%	<3cm: 9% >3cm: 14%
Navarria et al	102	Gr1: 2.1-3cm Gr2: 3.1-5cm	Gr1: 9Gyx3Fr Gr2: 8Gyx4fr	Gr1: 14mo Gr2: 14 mo	Gr1: 100% Gr2: 91%	5.8%
Murai et al	54	>2.5cm			Gr1: 66% Gr2: 65%	NIL
Fahrig et al	150	6cc	Gr1: 5x7Gy Gr2: 10x4Gy Gr3: 7x5Gy	Gr1: 11mo Gr2: 17mo	Gr1: 87% Gr2: 95% Gr3: 96%	1.3%
Rajakesari et al	70	1.7cm	5Gyx5fr	10.7 mo	56%	4.3%
Aoyama et al	87		9Gyx4fr	8.7 mo	81%	
Ernst Stecken et al	51	2.27	5x7Gy	11 mo	76%	2%

'Hotter' dose prescription: Better LC (1-Yr Sur), but higher RN 27Gy/3fr: LC 90% & RN 9% 25Gy/5fr: LC 56% & RN 4%


Brain metastasis SRS: Dose Vs Response

Estimated percentage of patients in whom time to local failure exceeded 3, 6, 9, and 12 months*

	Dose & Local Control Rate (95% CI)†						
Factor	15 Gy	18 Gy	24 Gy				
total no. of lesions	41	85	249				
follow-up interval	\frown						
3 mos	100%)	99%)(96-100%)	(100%)				
no. of lesions at risk	31	56	166				
6 mos	71% (54-88%)	87% (77-96%)	92% (87-97%)				
no. of lesions at risk	18	37	92				
9 mos	63% (44-81%)	64% (49-80%)	85% (78-92%)				
no. of lesions at risk	13	18	60				
12 mos	(45%)(23-67%)	49% (30-68%)	(85%)(78-92%)				
no. of lesions at risk	6	8	37				


Vogelbaum MA et al, Neurosurg 2006

BED2 & BED10 for SRS & fSRS

Kirkpatrik JP, Neurooncology 2017

Acoustic schwannoma: Lower dose have better toxicity profile

Local control maintained (>95% at 10 years) Toxicities have come down Hearing preservation increased

Mendenhal et al 2000

Kondziolka et al NEJM 1998

Need for own outcome data

what Radiosurgery offers

In Benign conditions,

1. shorter course of treatment, 2) quality of life preservation, 3) preservation of functions

In Brain metastasis,

1. Preservation of cognitive function, 2. Response to treatment, 3. availability of treatment in new lesions

In Functional disorder,

1. Quality of life preservation, 2. Decrease in medication dependence, 3. reduction in pain

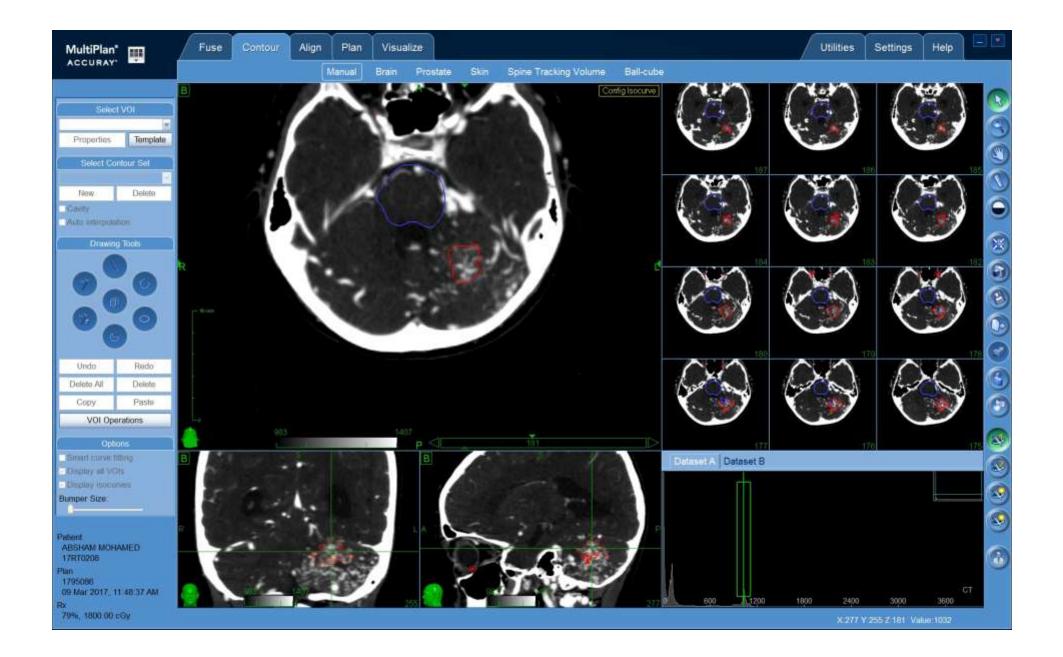
Availability of resources, expertise depends upon geographic location and socio-economic strata

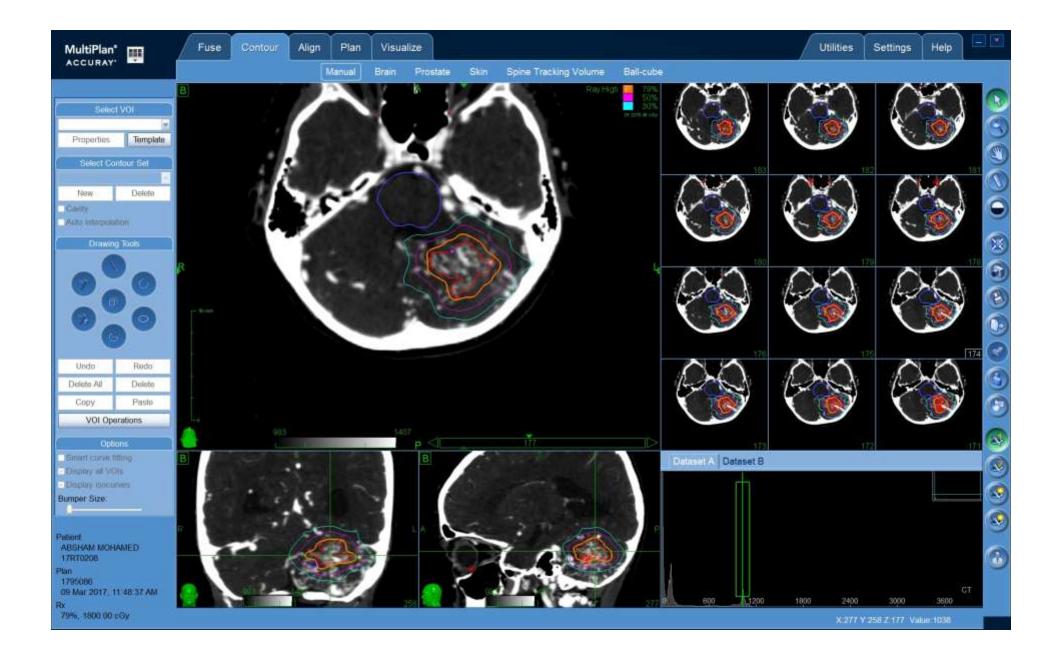
Hence, the expectation of outcome also depends upon different geographical population Hence need own outcome data with radiosurgery

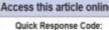
Micromultileaf collimator-based stereotactic radiosurgery for selected arteriovenous malformations: Technique and preliminary experience

Wieddun	
Number of patient referred for SRS	87
Number of patients planned for SRS	23
Number of patients treated with SRS	21
LFU status clinical examination No deficits	22
Neurological deficit persists after 2 yr FU	01
Type of Imaging done for Assessment	
MRI and MRA done at 2 yrs FU	15
DSA	12
Imaging awaited on follow up	06
Last Follow up status on Imaging	
MRA proven obliteration	15
Obliteration confirmed on DSA	11
No Obliteration on DSA	01
Complication after SRS	
No complication	18
Temporary worsening	02
Persistent neurological deficit	01

Mean

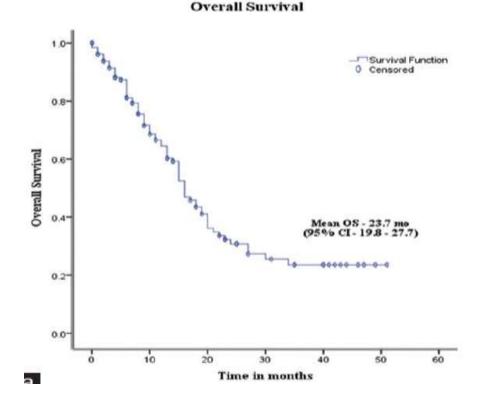

Median


Obliteration rate at 2 yr follow up DSA: 92%


24.3

(1.57 to 71.2)

22


www.neurologyindia.com

Website

DOI:

 Prospective Evaluation of Response to Treatment, Survival Functions, Recurrence Pattern and Toxicity Profile in Indian Patients with Oligo-Brain Metastasis Treated with Only SRS

Debnarayan Dutta, Sruti K. Reddy, Ram K. Kamath, Yarlagadda Sreenija, Haridas Nair, Ajay Sashidharan, Anoop Remesan Nair R, Pushpuja KU, Rajesh Kannan¹, Annex Edappattu², Nikhil K. Haridas³, Wesley M. Jose³, Pavithran Keechilat³

Table 3: Treatment outcome (n=132)

Follow-up mean (range) (mo)	15 (SD±11.9) Range: 0-56 months)	
Actuarial OS mean (range)	23.7 (SD±2)	
	(95% CI: 20-28 months)	
Follow-up >3 months	124 (89.9%)	
Follow-up >6 months	108 (78.2%)	
Follow-up >12 months	65 (47%)	
Follow-up >24 months	26 (19%)	
Intracranial disease control	Controlled	72 (52.2%)
status at last follow-up	Progression	54 (39.1%)
	Not known	12 (8.7%)
Intracranial recurrence	54 (39.1%)	
	"In-field" recurrence	6 (11.1%)
	"Out-of-field" recurrence	23 (42.5%)
	In-field and out-of-field recurrence	25 (46.2%)
Status at last follow-up	Alive	55 (39.9%)
	Dead	75 (54.3%)
	Not known	8 (5.8%)

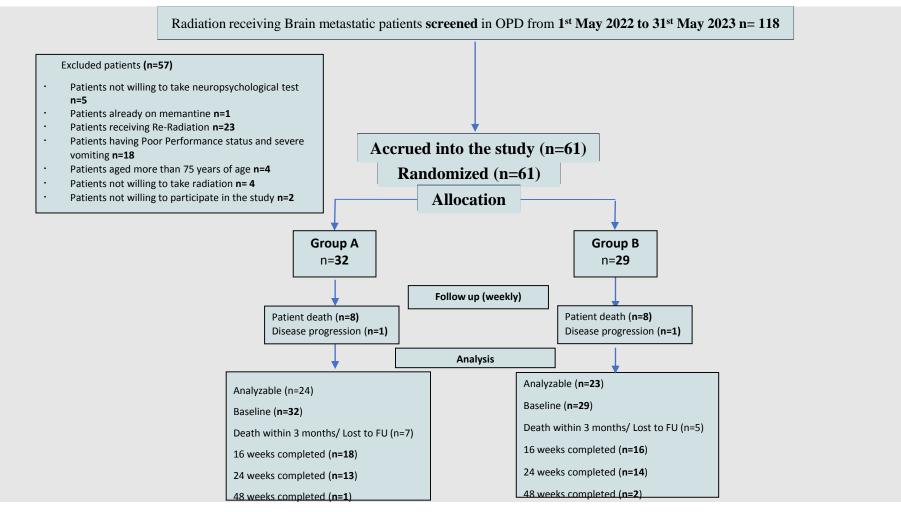
Dutta et al Neurol India 2023

Prospective study on Indian patients with brain mets treated with SRS only

Table 6: Prognostication based on grouping system

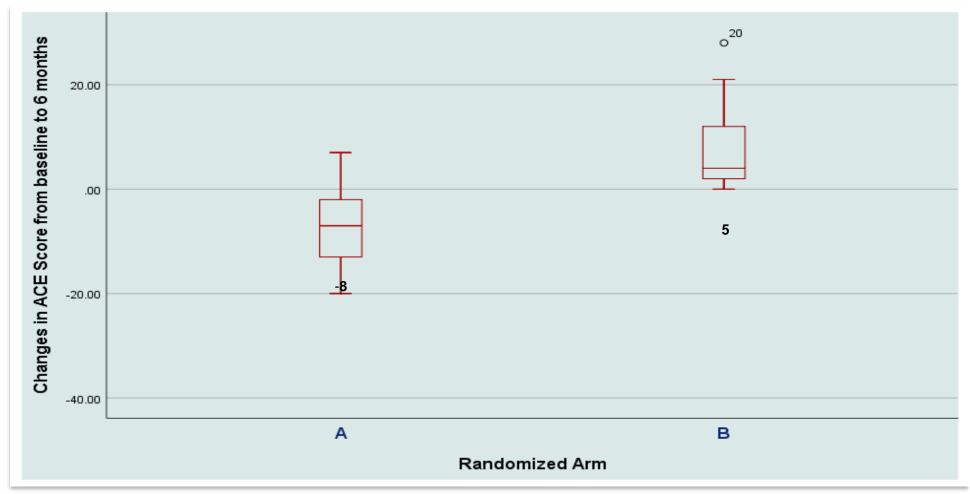
		Our pati	ent cohor	t (<i>n</i> =138)						
	Risk group	n	Risk group n		Survival% n		Mean OS (95% CI)	Survival%		
	(Score)		6 mo	12 mo	-	_	6 mo	12 mo	24 mo	
Prognostic	1 (17)	47 (22%)	36%	27%	9 (6.5%)	12.7(6.7-18.7)	89%	22.2%	22.2%	
group score	2 (18-20)	120 (56%)	65%	44%	84 (60.8%)	23.3(18.6-28)	77.4%	51.1%	21.4%	
	3 (21-22)	47 (22%)	80%	71%	45 (32.7%)	20.1 (14.9-25.3)	77.8%	44.4%	15.6%	

Primary tumor type (breast ca 8, NSCLC 7, Melanoma 5, others 6); number of cerebral metastasis (1 lesion 7, 2-3 lesions 5); Extra-cerebral metastasis (No mets 7, mets 8) scores given and Risk groups (RG) considered (RG 1: 17; RG2: 18-20; RG3: 21-22)


- Good prognostic group (Gr 2&3): Excellent correlation between Western patients & Indian patients
- Poor prognostic group (Gr 1):
 Poor correlation (less patient in Indian patient cohort)

Dutta et al Neurol India 2023

Huttenlocher S et al Radiat Oncol 2015


Study: Memantine for the Prevention of Radiation Induced Cognitive Dysfunction in Brain Metastatic Patients: A Randomized Placebo-Controlled Phase 3 Trial (CTRI /2022/ 01/ 039599)

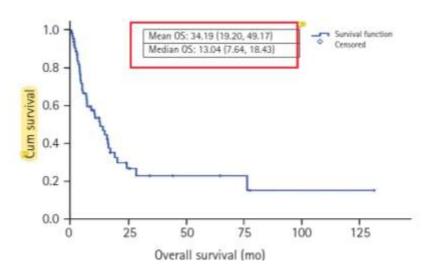
Estimated Sample Size: 186 Estimated completion: 2025

Institutional grant supported CTRI/2022/01/039599

NEUROCOGNITIVE OUTCOMES AT 6 MONTHS

SRS arm with memantine had significantly better preservation of cognitive function scores

Original Article


pISSN 2234-1900 - eISSN 2234-3156 Radiat Oncol J [Epub ahead of print] https://doi.org/10.3857/roj.2023.00542

Validation of Combs prognostic scoring system in Indian recurrent glioma patients treated with re-radiation

Debnarayan Dutta1, Meenu Jose1, Sruthi Kalavagunta1, Ajay Sasidharan1, Haridas Nair1, Annex H. Edappattu2

¹ Department of Radiation Oncology, Amrita Institute of Medical Science, Kochi, Kerala, India ³ Department of Medical Physics, Amrita Institute of Medical Science, Kochi, Kerala, India

Table 3. Re-RT treatment and outcome parameters (n = 66)

Exaction school de	PT	/ (mL)	Dose (Gy)	OS (mo)	
Fractionation schedule	Mean ± SD	Median (range)	Mean (range)	Mean (range)	
Conventional fractionation (1.8–2 Gy/fx)	226.1 ± 140.7	180.0 (24.0-574.5)	50 (40-60)	18.8 (2.43-76.8)	
Hypofractionation (2.2–4 Gy/fx)	162.8 ± 123.3	156.9 (27.5-387.9)	31 (20-40)	6.6 (2.0-17.4)	
Ultra-hypofractionation (4-16 Gy/fx)	143.3 ± 145.8	84.6 (4.5-582.0)	20 (10-30)	13.9 (2.0-131.9)	

Re-RT, reirradiation; PTV, planning target volume; SD, standard deviation.

Table 6. Survival function as per Combs scoring system

Group	Number of patients		Median OS (mo)		Proportion of patients surviving after							
					6 mo		12 mo		18 mo		24 mo	
	Our patient cohort (n = 66)	Combs cohort (n = 209)	Our patient cohort	Combs cohort	Our patient cohort	Combs cohort	Our patient cohort	Combs cohort	Our patient cohort	Combs cohort	Our patient cohort	Combs cohort
а	8	16	16.6	19.5	100	94	88	88	47	22	13	15
b	25	60	24.6	11.3	92	79	74	47	45	21	37	12
с	27	95	4.6	8.1	34	70	22	22	0	5	0	3
d	6	38	2	5.5	17	41	0	7	0	0	0	0

OS, overall survival.

Conclusions

- Brain radiosurgery have long history of more than 50 years
- The indications for radiosurgery in brain lesions are defined with multiple long term and large prospective series
- Linac based SRS systems help in expanding the indications in larger lesions
- Contouring is the most important step in radiosurgery
- Treatment delivery need to be monitored
- Plan evaluation and prescription criteria are different in radiosurgery
- Response assessment schedules and goal depends upon indications
- There are many scopes for further exploration in radiosurgery

Abnormal olfactory perception during stereotactic radiation therapy using Cyberknife for primary brain tumor: A case study

Parth Verma, MBBS¹, Sruthi K Reddy, MD¹, Prasath Bhaskaran, MSc², Annex Edappattu Haridas, MSc³ and Debnarayan Dutta, MD¹

Department of Radiation Oncology, Amrita Institute of Medical Science, Kochi, Kerala, India Department of Radiation Technology, Amrita Institute of Medical Science, Kochi, Kerala, India Department of Medical Physics, Amrita Institute of Medical Science, Kochi, Kerala, India

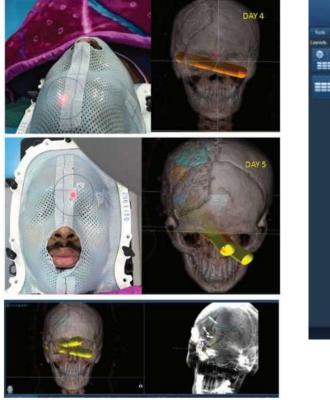


Figure 1. Details of beam delivery with altered odor sensation.